车辆悬架振动的神经网络半主动控制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
行驶平顺性和乘坐舒适性是衡量轿车行驶品质的基本指标。本研究试图建立基于新型智能材料的车辆悬架振动控制新技术,进而改善车辆的平顺性和舒适性。
     影响车辆乘坐舒适性的主要因素是车身的垂直振动。为了描述这种振动,先将车辆简化为1/4车二自由度模型,讨论并分析了悬架系的振动特性以及悬架参数对此特性的影响。然后将车辆简化为1/2车四自由度的悬架模型,根据其车身垂直振动加速度幅频特性的折算结果,验证了二自由度分析模型的正确性。由于在某一特定条件下经参数优化得到的被动悬架,不能适应路面及车辆行驶状况等条件的变化,因而在提高悬架行驶平顺性的研究过程中,提出了悬架半主动控制的要求。
     在分析新型智能材料用做作动器的磁流变阻尼器特性的基础上,本文给出阻尼器线圈的前置电流放大电路,并讨论了因磁流变液体固液态之间的可逆变化而产生的悬架系附加非线性刚度。通过分析车身振动的变化,可知这一附加的非线性刚度为一弱非线性项,对悬架的侧倾刚度和侧倾角的影响不大。因此,基于磁流变阻尼器的半主动悬架在改善行驶平顺性的同时,能够保证车辆的操纵稳定性。
     由于磁流变液体的滞回特性,采用磁流变阻尼器的车辆悬架系成为一个典型的非线性系统。本研究采用神经网络控制来解决这类非线性系统的控制问题。本文提出一种带二次动量项的多层前向网络误差反传算法,提高了神经网络的误差收敛速度。针对悬架系统的辨识和控制过程,本文提出一种神经网络间接自适应控制方法,优化了控制结构,提高了控制精度。半主动悬架的数值仿真结果表明,磁流变阻尼器半主动悬架的减振效果明显优于被动悬架以及其他控制方式和阻尼调节方式。根据悬架的仿真控制结果及轿车悬架的具体情况,本文建议对RD1005型磁流变阻尼器进行部分参数修改,以期使阻尼作动器更适用、有效。
     本文最后对含有磁流变阻尼减振器的半主动悬架进行了实验研究。路面低频输入和磁流变液体毫秒级快响应的特点,为神经网络的在线控制提供了条件。实验控制过程采用计数器/定时器,实现了计算机的多任务工作方式。同时,利用TurboC语言实现对硬件的访问。通过比较神经网络参数的影响,可知单隐含层的神经网络能够实现半主动悬架的精确控制,太多的隐含结点数对控制效果没有很大提高,反而增加了计算时间。在半主动悬架控制中,解决了神经网络控制的实时问题。实验结果表明,基于磁流变阻尼器半主动悬架的减振效果明显优于被动悬架及其它控制策略。同时证实了磁流变阻尼器附加非线性刚度的存在及其弱非线性特性。这些结果对车辆行驶平顺性的改善具有理论和实践意义。
Traveling and ride comfort is the basic evaluation criterion for a ground vehicle. This dissertation presents an effective method based on the new-type smart material for vibration isolation of vehicle suspensions, and further to improve the performance of suspensions. The paper reports a systematical investigation on semi-active vehicle suspension, including dynamic characteristic of vehicle suspension, the properties and functions of a magnetoreological (MR) damper, the adaptive neural network control and the experiment on a test rig of quarter car model. The four topics are studied from Chapters 2 to 5, respectively.
    The ride comfort of a vehicle mainly depends on the vertical vibration of vehicle body. Chapter 2 presents the study on a two-degree-of-freedom model of quarter car. The vibration characteristic and the effect of the suspension parameters on vertical vibration are mainly analyzed. The amplitudes of vehicle body acceleration of half car model of four degrees of freedom verify the efficacy of quarter car model. The passive suspension via the specified parameters can optimize the suspension sometimes. However, the global optimization is difficult to achieve under disturbance. This paper presents an adaptive control for the semi-active suspension using the combination of MR damper and feedback neural networks.
    Analyzing the MR damper, a smart actuator, Chapter 3 gives the design of pre-amplifier of current, which provides the external magnetic field. And it discusses the additional nonlinear stiffness resulted from the transition of MR fluid from liquid to semi-solid or solid. According to the study of the vibration of car body, it can be concluded that this additional stiffness, a weakly nonlinear term, would not influence the purpose of vibration isolation. At the same time, the nonlinear stiffness hardly affects the rolling stiffness and roll angle. Consequently, the suspension with MR damper not only increases ride comfort, but also guarantees the controlling stability of vehicle.
    As the MR damper features nonlinearity, the vehicle suspension equipped with MR damper is a nonlinear system. Nonlinear neural network (NN) control strategy, which was certified the high capacity of approximation, is adopted to control this typical nonlinear system. Chapter 4 presents an error back propagation algorithm with quadratic momentum of the multilayer forward neural networks that will speed up the error convergence velocity. And it proposes an indirect adaptive neural network law. This law optimizes the control structure and improves the quality of control. The numerical simulation results show that the semi-active suspension with MR damper using NN strategy is superior to those with traditional control or without any control. To narrow the hysteretic loops and improve saturation, the author suggests partially modifying the parameters of the RD1005 MR damper hi terms of the exclusive utilization, such as the vehicle suspension.
    Chapter 5 presents an experiment on a test rig of quarter car model equipped with MR damper. The low frequency of road-induced vibration of a vehicle and quick response of MR damper make NN real-time control of possible. In the experiment the timer and counter are adopted to realize computer multi-work environment, and the Turbo-C computer language is used to call on the hardware. The effects of various neural network
    
    
    
    parameters on the vibration of car body are compared and the results demonstrate that only single implicit layer structure can considerably improve the ride comfort. However, excessive implicit nodes can not increase the performance but lengthen the time consuming. The real-time control of neural network is adopted successively for the semi-active suspension with MR damper. The experiments indicate that the suspension with MR damper and NN control is superior to the passive one in the frequency band of concern. The isolation performance is particularly pronounced at the resonance of car body. The existence of additional nonlinear stiffness and its weak affecti
引文
A 机械振动与非线性动力系统
    [A-1] 丁文镜编著,减振理论,北京:清华大学出版社,1988
    [A-2] 张阿舟、诸得超、姚起航、顾松年主编,实用振动工程.振动控制与设计,北京:航空工业出版社,1997
    [A-3] 顾仲权、马扣根、陈卫东编著,振动主动控制,北京:国防工业出版社,1997
    [A-4] 胡海岩编著,应用非线性动力学,北京:航空工业出版社,2000
    [A-5] 胡海岩主编,机械振动与冲击,北京:航空工业出版社,1998
    [A-6] 舒仲周,运动稳定性,西安:西安交通大学出版社,1989
    [A-7] 蔡燧林、盛骤编,常微分方程组与稳定性理论,北京:高等教育出版社,1986
    [A-8] 陈予恕编著,非线性振动,天津:天津科学技术出版社,1983
    [A-9] (德)P.C.米勒,W.O.席伦著,线性振动——多自由度系统的理论分析方法,天津:天津大学出版社,1989
    [A-10] 李润方、王建军编,结构分析程序SAP5原理及其应用,重庆:重庆大学出版社,1992
    [A-11] 张令弥著,振动测试与动态分析,北京:航空工业出版社,1992
    [A-12] C.T.F.鲁斯著,吴德心等译,结构力学的有限元法,北京:人民交通出版社,1991
    [A-13] 楼梦麟编著,结构动力分析的子结构方法,上海:同济大学出版社,1997
    [A-14] 傅志方编,振动模态分析与参数辨识,北京:机械工业出版社,1990
    [A-15] 郑兆昌主编,机械振动,北京:机械工业出版社,1986
    [A-16] 汪凤泉、郑万泔等编著,实验振动分析,江苏:江苏科学技术出版社,1988
    [A-17] 戴诗亮编著,随机振动实验技术,北京:清华大学出版社,1984
    [A-18] 郭尚来编著,随机控制,北京:清华大学出版社,1999
    [A-19] 吴业森、罗明廉编,随机振动,北京:机械工业出版社,1989
    [A-20] 徐昭鑫,随机振动,北京:高等教育出版社,1990
    [A-21] 李敏霞、刘季,电液式变刚度结构振动控制系统的稳定性分析,振动与冲击,1999,18(2):81-83
    B 车辆悬架系统
    [B-1] Krtolica R. and Hrovat D., Optimal active suspension based on a half-car model: an analytical solution, IEEE Transaction on Automatic Control, 1992,Vol.37, No.4:528-532
    [B-2] Taghirad Hamid D. and Esmailzadeh E., Automobile passenger comfort assured through LQG/LQR active suspension, Journal of Vibration and Control, 1998,4: 603-618
    [B-3] Barak P. and Hrovat D., Application of the LQG approach to design of an automotive suspension for three-dimension vehicle models, in Proc. Int. Conf. Adv. Suspensions, ImechE, London, GB., OCT. 1988
    
    
    [B-4] Hac A., Suspension optimization of a 2-DOF. vehicle model using a stochastic optimal control technique, Journal of Sound and Vibration, 1985, 100(3): 343-357
    [B-5] Wilson D.A., Sharp R.S. and Hassan S.A., The application of linear optimal control theory to the design of active automotive suspension, Vehicle System Dynamics, 1986, 15:105-118
    [B-6] Shannan J. E., Vanderploeg M.J., A vehicle handling model with active suspensions, Journal of Mechanisms, Transactions, and Automation in Design, 1989,111:375-380
    [B-7] Esmailzadeh E., Servo-valve controlled pneumatic suspensions, Journal Mechanical Engineering Science, 1979, 21(1): 7-18
    [B-8] Bakhtiari-Nejad F. and Karami-Mohammadi A., Active vibration of vehicles with elastic body, using model reference adaptive control, Journal of Vibration and Control, 1998, 4:463-479
    [B-9] Elmadany M. M. and Samaha M. E., On the optimum ride control of a stochastic model of a tractor-semitrailer vehicle, Journal of Sound and Vibration, 1992, 156(2): 269-281
    [B-10] Krtolica R. and Hrovat D., Optimal active suspension control based on a half-car model, in Proc. 29th. IEEE Conf. Decision Cont. Honolulu, HI, Dec. 1990
    [B-11] Esmailzadeh E. and Taghirad H. D., State-feedback control for passenger ride dynamics, Transaction of the CSME, 1995,Vol. 19, No.4:495-507
    [B-12] Thompson A. G, An active suspension with optimal linear state feedback, Vehicle System Dynamics, 1976(5): 187-203
    [B-13] Hac A. Optimal linear preview control of active vehicle suspension, Vehicle System Dynamics, 1992, 21:167-195
    [B-14] Redfield R. C., Performance of low-bandwidth, semi-active damping concepts for suspension control, Vehicle System Dynamics, 1991, 20:245-267
    [B-15] Yi K. and Hedrick K., Dynamic tire force control by semiactive suspensions, Journal of Dynamic System, Measurement, and Control, 1993, Vol. 115:465-474
    [B-16] Hac A., Design of Disturbance decoupled observer for bilinear systems, ASME Journal of Dynamic Systems, Measurement and Control, 1992, 114(4): 556-562
    [B-17] Hac A., Iljoong Youn, and Chen H. H., Control of suspension for vehicle with flexible bodies-Part Ⅰ: active suspension, ASME Journal of Dynamic Systems, Measurement and Control, 1996, 118(3): 508-517
    [B-18] Hac A., Iljoong Youn, and Chen H. H., Control of suspension for vehicle with flexible bodies-Part Ⅱ: active suspension, ASME Journal of Dynamic Systems, Measurement and Control, 1996, 118(3): 518-525
    [B-19] 余志生主编,汽车理论,北京:机械工业出版社,1981
    [B-20] 庄继德著,汽车系统工程,北京:机械工业出版社,1997
    [B-21] (苏)别符兹聂尔等著,于长林译,汽车振动的试验与研究,北京:机械工业出版社,1987
    
    
    [B-22] 姜正根编著,汽车理论,北京:北京理工大学出版社,1999
    [B-23] (日)GP企划室编,宋桔桔等译,汽车车身底盘图解,吉林科学技术出版社.香港万里机构联合出版,1995
    [B-24] (日)景山克三主编,常文宣译,汽车性能与试验,北京:人民交通出版社,1985
    [B-25] (日)自动车技术会小林明等编汽车工程手册第一、二分册,北京:机械工业出版社,1984
    [B-26] 庄继德著,汽车轮胎学,北京:北京理工大学出版社,1996
    [B-27] (日)庄野欣司著,刘茵等译,四轮驱动汽车构造图解,吉林科学技术出版社.香港万里机构联合出版,1995
    [B-28] 陈家瑞主编,汽车构造,北京:人民交通出版社,1994
    [B-29] 刘新亮、张建武、陈兆能,汽车悬架的自校正控制,汽车工程,1998,20(3):165-170
    [B-30] 范书章,模糊自整定PID参数控制器及其在汽车测试设备中的应用,汽车工程,1998,20(5):296-301
    [B-31] 黄兴惠、金达锋、赵六奇,基于频域加权性能指标和输出反馈的主动悬架控制策略研究,汽车工程,1998,20(6):321-326
    [B-32] 韩波、王庆丰、路甬祥,非线性液压阻尼悬架的优化设计及最优控制,汽车工程,1998,20(2):96-123
    [B-33] 李世雄、余群,模糊控制理论在驾驶员-汽车-环境闭环系统操纵稳定性研究中的应用,汽车工程,1999,21(3):141-144
    [B-34] 马文星,国外车辆液力传动研究现状及其展望,汽车工程,1996,18(4):195-198
    [B-35] 赵珩、卢士富,路面对四轮汽车输入的时域模型,汽车工程,1999,21(2):112-117
    [B-36] 傅志方、张志谊、华宏星,半主动悬架控制的方法H~∞方法,振动工程学报,1999,12(1):33-39
    [B-37] 方同、孙木楠、张天舒,车辆由路面激发的演变随机响应,振动工程学报,1997,10(3):86-91
    [B-38] 顾仲权,振动主动控制中低阶控制器的优化设计,振动工程学报,1990,3(3):1-8
    [B-39] 马扣根、顾仲权,结构振动主动控制技术的现状与发展趋向,南京航空学院学报,1991,23(2):97-108
    [B-40] 孙朝晖、王冲、孙进才,自适应结构振动主动控制的最佳效果实现,振动工程学报,1996,9(1):16-23
    [B-41] 杨智春、赵令诚、姜节胜,结构非线性颤振半主动抑制,应用力学学报,1994,11(1):66-69
    [B-42] 喻凡、郭孔辉,结合卡尔曼滤波器的车辆主动悬架轴距预瞄控制研究,汽车工程,1999,21(2):73-80
    [B-43] 周继铭、高世库,非线性连续反馈控制车辆半主动悬架,汽车工程,1996,18(4):207-210
    [B-44] 陈无畏等,汽车半主动悬架的非线性神经网络自适应控制研究,机械工程学报,2000,36(1):75-78
    [B-45] Palkovics L.and Venhovens P. J. Th., Investigation on stability and possible
    
    chaotic motions in the controlled wheel suspension system, Vehicle System Dynamic, 1992, 21:269-296
    [B-46] Fu M.Y, Olbrot A. W. and Plois M. P., Robust stability for time-delay systems: the edge theorem and graphical tests, IEEE Trans. Automatic control, 1989, 34(8) : 813-820
    [C-1] Wang Y. J. and Lin C.T., Runge-Kutta neural network for identification of dynamical systems in high accuracy, IEEE Trans. Neural Networks, 1998, 9(2) : 294-307
    [C-2] Leone R.D., Capparuccia R. and Merelli R., A successive overrelaxation backpropagation algorithm for neural-network training, IEEE Trans. Neural Networks, 1998, 9(3) : 381-387
    [C-3] Norirga J.R. and Wang H., A direct adaptive neural-network control for unknown nonlinear system and its application, IEEE Trans. Neural Networks., 1998, 9(1) : 27-33
    [C-4] Ha I.J., Tugcu A. K., and Boustany N. M., Feedback linearizing control of vehicle longitudinal acceleration, IEEE Trans. Automatic Control, 1989, 34(7) : 689-698
    [C-5] Nenitez J. M., Castro J. L., and Requena I.., Are artificial neural networks black boxes?, IEEE Trans. Neural Networks, 1997, 8(5) : 1156-1164
    [C-6] Fan J.C. and Kobayashi T, A simple adaptive PI controller for linear system with constant disturbances, IEEE Trans. Automatic Control, 1998, 43(5) : 733-736
    [C-7] Chen F.C., Back-propagation neural networks for nonlinear self-tuning adaptive control, IEEE Control System Magazine, 1990, 44-48
    [C-8] Levin A.U., and Narendra K.S., Control of Nonlinear dynamical systems using neural networks-Part Ⅱ: observability, identification, and control, IEEE Trans. Neural Networks, 1996, 7(1) : 30-42
    [C-9] Benedito Dias Baptista Filho and Rduardo Lobo Lustosa Cabral, A new approach to artificial neural networks, IEEE Trans. Neural Networks, 1998, 9(6) : 1167-1179
    [C-10] Plumer E.S., Optimal control of terminal processes using neural networks, IEEE Trans. Neural Networks, 1996, 7(2) : 408-418
    [C-11] Hertz J., Krogh A., Lautrup B., and Lehmann T., Nonlinear backpropagation: doing backpropagation without derivatives of the activation function, IEEE Trans. Neural Networks, 1997, 8(6) : 1321-1327
    [C-12] Mistry S. I, Chang S.L. and Nair S.S., Indirect control of a class of nonlinear dynamic systems, IEEE Trans. Neural Networks, 1996, 7(4) : 1015-1023
    [C-13] He S.L., Reif K., and Unbehauen R., A neural approach for control of nonlinear systems with feedback linearization, IEEE Trans. Neural Networks, 1998, 9(6) : 1409-1421
    [C-14] Fernandez-Delgado and Senen Barro Ameneiro, MART: a multichannel ART-based neural networks, IEEE Trans. Neural Networks, 1998, 9(1) : 139-149
    
    
    [C-15] Yang B.H. and Asada H., Progressive learning and its application to robot impedance learning, IEEE Trans. Neural Networks, 1996, 7(4) : 941-952
    [C-16] Juang J.N. and Pappat R.S., Effects of noise on modal parameters identified by the eigensystem realization algorithm, J. Guidance, 1986, 9(3) :294-303
    [C-17] Johansson R, Adaptive control of robot manipulator motion, IEEE Trans. Robotics and Automation, 1990, 6(4) : 483-490
    [C-18] Anderson C.W., Learning to control an inverted pendulum using neural networks, IEEE Control System Magazine, 1989, April, 31-36
    [C-19] Naidu S.R., Zafiriou E. and Mcavoy T.J., Use of neural networks for sensor failure detection in a control system, IEEE Control System Magazine, 1990, April, 49-55
    [C-20] Gjika K. and Dufour R., Rigid body and nonlinear mount identification: application to onboard equipment with hysteretic suspension, Journal of Vibration and Control, 1999, 5: 75-94
    [C-21] Battilotti S., Robust stabilization of nonlinear system with pointwise norm-bounded uncertainties: a control lyapunov function approach, IEEE Transaction on automatic control, 1999, 44(1) : 3-17
    [C-22] Sreenivasan S. V. and Nanua P., Kinematic geometry of wheeled vehicle systems, Transaction of the ASME, 1999, 121:50-56
    [C-23] Skidmore G R. and Hallauer Jr. W. L., Model-space active damping of a beam-cable structure: theory and experiment, Journal of Sound and Vibration, 1985, 101(2) : 149-160
    [C-24] Hac A and Liu L., Sensor and actuator location in motion control of flexible structures, Journal of Sound and Vibration, 1993, 167(2) : 239-261
    [C-25] Devasia S., Approximated stable inversion for nonlinear systems with nonhyperbolic international dynamic, IEEE Transaction on Automatic Control, 1999, 44(7) : 1419-1425
    [C-26] Ergon R., On primary output estimation by use of secondary measurements as input signals in system identification, IEEE Transaction on Automatic control, 1999,44(4) : 821-825
    [C-27] Jiang Z.P., Mareels L, and Hill D., Robust control of uncertain nonlinear systems via measurement feedback, IEEE Transactions on Automatic Control, 1999, 44(4) :807-812
    [C-28] Fariborzi E, Golnaraghi M. E and Heppler G E, Development o mathematical model of a plate for active vibration suspension, Journal of Vibration and Control, 1999,5:175-194
    [C-29] Kosmatopoulos E. B. and Ioannou P. A, A switching adapting controller for feedback linearizable systems, IEEE Transactions on Automatic Control, 44(4) : 742-750
    [C-30] Tuan H. D. and Hosoe S., On Robust and H∞ controls for a class of linear and bilinear systems with nonlinear uncertainty, Automatica, 1997,33(7) : 1373-1376
    [C-31] Faryar Jabbari, Schmitendorf W. E. and Yang J. N., H∞ control for seismic excited buildings with acceleration feedback, Journal of Engineering Mechanics,
    
    1995, Sept: 994-1002
    [C-32] Jamshid Ghaboussi, Active control of structures using neural networks, Journal of Engineering Mechanics, 1995, 121(4): 555-567
    [C-34] Geoffrey Chase J. and Allison Smith H., Robust H_∞ control considering actuator saturation Ⅰ:theory, Journal of Engineering Mechanics, 1996, Oct.: 976-983
    [C-35] (日)绪方胜彦著,卢伯英等译,现代控制理论,北京:科学出版社,1978
    [C-36] 周凤岐、强文鑫、阙志宏编著,现代控制理论及其应用,成都:电子科技大学出版社,1994
    [C-37] 沈世缢著,神经网络系统及其应用,北京:科学出版社,1998
    [C-38] 史忠植,神经计算,北京:电子工业出版社,1993
    [C-39] 王永骥、涂健编著,神经元网络控制,北京:机械工业出版社,1998
    [C-40] (瑞典)K.J.奥斯特隆姆,(瑞典)B.威顿马克著,自适应控制,北京:科学出版社,1992
    [C-41] 郑大钟编著,线性系统理论,北京:清华大学出版社,1993
    [C-42] 边肇祺等编著,模式识别,北京:清华大学出版社,1988
    [C-43] 石纯一等编著,人工智能原理,北京:清华大学出版社,1993
    [C-44] (美)包约翰著,自适应控制识别与神经网络,北京:科学出版社,1992
    [C-45] (美)约翰.D.伦克著,自动控制和仪器基础,北京:新时代出版社,1984
    [C-46] 舒迪前编著,预测控制及其应用,北京:机械工业出版社,1996
    [C-47] 史维祥、李天石、郑滇编,系统辨识,北京:机械工业出版社,1989
    [C-48] (英)哈里斯(Harris.C.J.),比林斯(Billings,S.A.)著,自校正与自适应控制,北京:科学出版社1986
    [C-49] (美)S.M.欣内尔斯(Shinners S.M.)著,现代控制理论及应用,北京:机械工业出版社,1980
    [C-50] 韩曾晋编著,自适应控制,北京:清华大学出版社,1995
    [C-51] 李清泉编著,自适应控制系统理论设计与应用,北京:科学出版社,1990
    [C-52] 袁曾任编著,人工神经元网络及其应用,北京:清华大学出版社,1999
    [C-53] 戴葵编著,神经网络实现技术,长沙:国防科技大学出版社,1998
    [C-54] 王永初、任秀珍编著,现代控制工程的数学基础,北京:化学工业出版社,1985
    [C-55] 张光海等,神经网络直接自适应控制器的设计与实现,华南理工大学学报,1999,27(3):1-6
    [C-56] 黄山松、杜继宏、冯元琨,人工神经网络及其在控制中的应用,计算机自动测量与控制,1999,7(2):20-23
    [C-57] 姜天戟、袁曾任,基于BP和统计的混合法前馈型神经网络及其应用,软件学报,1996,7(6):379-384
    [C-58] 周锐、韩曾晋,一类非线性系统的自适应控制方法,自动化学报,1999,25(2):152-161
    [C-59] 靳其兵、李鸿儒、顾树生,带神经网络补偿的极点配置广义最小方差自校正控制,信息与控制,1999,28(4):268-272
    [C-60] 舒怀林,PID神经元网络多变量控制系统分析,自动化学报,1999,25(1):105-111
    [C-61] 孙富春、孙增圻、张钹,基于观测器的机械手神经网络自适应控制,自动化学报,1999,25(3):295-302
    
    
    [C-62] 吴今培、肖建华著,智能故障诊断与专家系统,北京:科学出版社,1997
    [C-63] (日)雨宫好文主编,高木樟二著,数字控制入门,北京:科学出版社,OMH社,2000
    [C-64] 肖建编著,现代控制系统综合与设计,北京:中国铁道出版社,2000
    [C-65] 李人厚编著,智能控制理论和方法,西安:西安电子科技大学出版社,1999
    [C-66] 梁军、符雪桐、吕勇哉,自适应PID控制,浙江大学学报,1994,28(5):523-529
    [C-67] 徐健雪、陈永红、蒋耀林,人工神经网络非线性动力学及应用,力学进展,1998,28(2):145-162
    [C-68] 董聪等,多层前向网络研究进展及若干问题,力学进展,1995,25(2):186-196
    D 流变液体类
    [D-1] Winslow W.M., Contributed original research. Journal of Applied Physics, 1949, V(20): 1137-1140
    [D-2] Spencer B.F., Dyke S.J., Sain M.K., et al. Phenomenological model of a magnetorheological damper. ASCE Journal of Engineering Mechanics, 1997, 123(3): 230-238.
    [D-3] Wu C.W. and Conrad H., Negative electrorheological effect and electrical properties of a Teflon/silicone oil suspension, J. Rheol., 1997,41(2): 267-281
    [D-4] Tajiri K., et al., Electrorheological effect in immiscible polymer blends, J. Rheol., 1997,41(2): 335-341
    [D-5] Bossis G., lemarie E. and Volkova O., Yield stress magnetorheological and electrorheological fluids: A comparison between microscopic and macroscopic structural models, J. Rheol., 1997, 41(3): 687-704
    [D-6] Wen W.J. and Lu K.Q., Experimental investigation of dipole-dipole interaction in a water-free glass particle/oil electrorheological fluid, Appl. Phys. Lett., 1996,68(25): 3659-3661
    [D-7] Wen W.J. and Lu K.Q., A primary x-ray investigation of the turning of ferroelectric microspheres contained in electrorheological fluids under a direct current electric field, Appl. Phys. Lett., 1996, 68(8): 1046-1047
    [D-8] Wen W. J., Wang N., Tam W. Y. and Sheng P., et al., Magnetic materials-based electrorheological fluids, Appl. Phys. Lett., 1997, 71(17): 2592-2531
    [D-9] Hao T. and Xu Y.Z., Correlation of the dispersed particles surface properties with the electrorheological response, AppL Phys. Lett., 1996, 69(18): 2668-2670
    [D-10] Hill D. A., Thermodynamic considerations on the electrorheology of noncolloidal suspensions, J. Rheol., 1996, 40(3): 449-458
    [D-11] 郝田等,电流变学研究进展,力学进展,1994,24(3):315-335
    [D-12] 朱克勤、陶荣甲,电流变液和电流变效应,力学进展,1994,24(2):154-162
    [D-13] 周鲁卫等,电流变液研究进展及最新动态,力学进展,1996,26(2):230-236
    [D-14] 翁建生、胡海岩、张庙康,磁流变阻尼器的实验建模,振动工程学报,2000,13(4):616-620
    [D-15] 翁建生、胡海岩、张庙康,磁流变液体的流变力学特性试验和建模,应用力学学报,2000,17(3):1-5
    
    
    [D-16] Trlica J., Quadrat O. and Bradna P., et al, An anomalous electrorheological behavior of magnesium hydroxide suspensions in silicone oil, J. Rheol., 1996, 40(5): 943-946
    [D-17] Sakurai R., See H. and Saito T, The effect of blending particles with different conductivity on electrorheological properties, J. Rheol., 1996, 40(3):395-403
    [D-18] Jordan M., Schwendt A. and Hill D.A., et al, Zeolite-based electrorheological fluids: Testing, modeling and instrumental artifacts, d. Rheol., 1997,41(1): 75-91
    [D-19] Lee S.N, Chien L.C. and Sprunt S., Polymer-stablized diffraction gratings from cholesteric liquid crystals, Appl. Phys. Lett., 1998, 72(8): 885-887
    [D-20] Pan X.D and Mckinley G.H., Structural limitation to the material strength of etectrorheological fluids, Appl. Phys. Lett., 1997, 71(3): 333-335
    [D-21] 唐新鲁等,电流变液在两平行极板间流动行为的实验研究,力学进展,1996,28(5):585-590
    [D-22] 高向阳等,电流变液的多链相互作用,力学学报,2000,32(1):94-98
    [D-23] 姚国治等,电流变液的性能及其应用研究,力学进展,1996,26(4):521-531
    [D-24] 方南图等,浓悬浮体的屈服应力和最大填充率,力学学报,1996,28(4):400-405
    [D-25] 张洪斌、周持兴,流场中聚合体共混体系液滴形变的理论模型,力学进展,1998,28(3):402-413
    [D-26] 袁龙蔚,流变力学,北京;科学技术出版社,1986
    [D-27] 叶敬棠等编著,流体力学,上海:复旦大学出版社,1989
    [D-28] 韩式方著,非牛顿流体本构方程和计算解析理论,北京:科学出版社,2000
    [D-29] 潘胜等,磁流变液的屈服应力与温度效应,功能材料,1997,28(2):264-267
    [D-30] 杨仕清等,磁流变液的流变学性质研究,功能材料,1998,29(5):550-552
    [D-31] 刘彦菊等,电流变体智能材料在交变电场下的透光性能研究,功能材料,2000,31(2):162-163
    [D-32] Tao R., Woestman J.T, and Jaggi N.K., Electric field induced solidification, Appl. Phys. Lett., 1989,55(18): 1844-1846
    [D-33] Halsey T.C., Electrorheological Fluids, Science, 1992, 258(30): 761-766
    [D-34] Conrad H., et al, The temperature dependence of the electrical properties and strength of electrorheological fluids, J. Rheol., 1991, 35 (7): 1393-1410
    [D-35] Bonnecaze B.Z. and Brady J.F., Yield stresses in electrorheological fluids. J. Rheol., 1992, 36(1): 73-115
    [D-36] Yang I.K. and Shine A.D. Electrorheology of a nematic poly(n-hexylisocyanate) solution, or. Rheol., 1992, 36(6): 1079-1104
    [D-37] Treasure U.Y., Filisko F.E. and Radzilowski L.H., Polyelectroly as inclusions in electrorheologically active materials: Effect of chemical characteristics on ER activity, J. Rheol., 1991, 35(6): 1051-1068
    [D-38] Gamota D.T and Filisko F.E., Dynamic mechanical studies of electrorheological materials: Moderate frequencies, J. Rheol., 1991 35(3): 399-425
    [D-39] Hartstock D.R., Novak R.F., and Chaundy G.J., ER fluid requirements for automotive devices, J. Rheol., 1991, 35(7): 1305-1326
    [D-40] Plpplewell J. and Rosensweig R. E., Magnetorheological fluid composites, J. Phys., D: AppL. Phys., 1996, 29:2297-2303
    
    
    [D-41] Kamath G M, Hurt M K, Wereley N M. Analysis and testing of Bingham plastic behavior in semi-active electrorheological fluid dampers, Smart Materials and Structures, 1996, 5(5): 576-590
    E 机械电子及数字信号处理
    [E-1] 路甬祥、胡大宏编著,电液比例控制技术,北京:机械工业出版社,1988
    [E-2] 贾培起编著,液压传动,天津:天津科学技术出版社,1982
    [E-3] 刘长年著,液压伺服系统的分析与设计,北京:科学出版社,1985
    [E-4] 林国重、盛东初主编,液压传动与控制,北京:北京工业学院出版社,1986
    [E-5] 葛宜远,流体传动及控制技术的新成就,液压与气动,1998,n2:1-3
    [E-6] 陈希孺编著,概率论和数理统计,合肥:中国科技大学出版社,1992
    [E-7] 浙江大学数学系高等数学教研组编,概率论和数理统计,北京:人民教育出版社,1979
    [E-8] 秦曾煌主编,电工学.电工技术,电子技术,北京:高等教育出版社,1990
    [E-9] 梁明理主编,电子线路,北京:高等教育出版社,1993
    [E-10] (日)山田茂宏、铃木雅臣、村井员夫编著,世界最新集成运算放大器极其互换技术手册.续集,广州:中南工业大学出版社,1993
    [E-11] 日美中晶体管互换速查手册,北京:中国自动化技术公司,1989
    [E-12] 邹理和编著,数字信号处理,北京:国防工业出版社,1985
    [E-13] 戴明桢主编,数字信号处理的硬件实现,北京:航空工业出版社,1998
    [E-14] 吴兆熊、黄振兴、黄顺吉编著,数字信号处理,北京:国防工业出版社,1985
    [E-15] A.V.奥本海姆,K.W.谢著,董士嘉等译,数字信号处理,北京:科学出版社,1980
    [E-16] (美)J.S.贝达特,A.G.皮尔索著,凌福根译,相关分析和谱分析的工程应用,北京:国防工业出版社,1982
    [E-17] (美)J.S.贝达特,A.G.皮尔索著,凌福根译,随机数据分析方法,北京:国防工业出版社,1976
    [E-18] 徐金梧、杨德斌、徐科编,TURBO C实用大全,北京:机械工业出版社,1996
    [E-19] 徐士良编,C常用算法程序集,北京:清华大学出版社,1995
    [E-20] 潘金贵、陈兆乾等编写,TURBO C工具库,南京:南京大学出版社,1991
    [E-21] 薛定宇著,控制系统计算机辅助设计——MATLAB语言及应用,北京:清华大学出版社,1996
    [E-22] 戴梅萼编著,微型计算机技术及应用,北京:清华大学出版社,1991
    [E-23] 谢宋和、甘勇等编,单片机模糊控制系统设计与应用实例,北京:电子工业出版社,1999
    [E-24] 刘均华编著,智能传感器系统,西安:西安电子科技大学出版社,1999
    [E-25] 黄德双著,神经网络模式识别系统理论,北京:电子工业出版社,1996
    [E-26] 谭浩强编著,C程序设计,北京:清华大学出版社,1991
    [E-27] 李志球主编,实用语言程序设计教程,北京:电子工业出版社,2000