曲轴非圆磨削表面几何形状误差及其在线测量方法的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
曲轴是各种内燃机的关键零部件,其轴颈的圆度误差直接影响着发动机的配合精度、旋转精度、摩擦、振动和噪声,伴随着汽车工业的发展,对曲轴的制造精度、效率和质量提出了更高的要求。曲轴非圆磨削技术的出现虽然提高了磨削效率,但是在非圆磨削特殊的跟踪磨削过程中,影响工件几何尺寸和形状误差的因素不同于常规磨削,其加工过程中的质量控制的难度也更加困难。因此开展曲轴非圆磨削加工中表面几何形状误差及其在线测量方法的研究工作,不仅有利于提高加工精度,促进曲轴非圆磨削在线检测技术的完善和推广,而且对于我国先进制造装备水平及国际竞争力的提升也有积极的作用,具有重要的理论意义和经济意义。
     本文以曲轴非圆磨削加工中的表面形状误差和几何尺寸为主线,对影响磨削加工精度的主要因素、曲轴非圆磨削过程振动及其与工件表面波纹度之间的联系、在线检测方法及圆度误差分离方法等关键技术展开研究,论文的主要研究工作和取得的成果如下:
     论文首先研究了曲轴连杆颈非圆磨削运动过程及影响曲轴加工表面几何形状误差的主要因素,探讨了由磨削力引起工件弹性变形对加工精度的影响,并建立了补偿模型,经实验验证补偿模型能有效降低弹性变形产生的影响。
     其次对曲轴非圆磨削过程的振动现象及其对磨削表面波纹度的影响进行了研究。应用双再生反馈模型对曲轴连杆颈非圆磨削颤振的机理进行分析,探讨了砂轮磨削切点线速度变化和曲轴变速转动对颤振的抑制作用;建立了曲轴连杆颈非圆磨削的六自由度动力学模型,通过模态分析方法对系统动力学方程组解耦后,对强迫振动产生影响进行了仿真计算。
     论文提出了能够同时对曲轴非圆磨削加工中轴颈圆度和直径进行在线测量的主动跟踪测量方法,并开发了与曲轴非圆磨床配套的主动跟踪测量装置,分析了跟踪测量装置系统误差及其对跟踪测量精度的影响。
     论文提出了将曲轴非圆磨削中轴颈圆度误差和系统误差从测量数据中进行分离的三点跟踪圆度误差分离方法,并探讨了影响三点跟踪法误差分离精度的因素。研究了采用小波变换原理对传感器组采集信号局部特征进行分析和提取的方法。
     最后通过计算机仿真和实验对本文研究内容进行了验证。
As a key part of engine, the crankshaft's roundness has a direct impact for engine performance, such as precision, friction, vibration, noice and so on. To achieve low production cost, high efficiency and precision of the crankshaft manufacture, the noncircular grinding process technology emerged as the times require, which avoids the fixture errors in the conventional grinding process for crankshaft. In the noncircular grinding process, there are various influences affect the process precision and the surface quality of the crankpin. Therefore, the researches on the measurement method of diameter and roundness errors of crankshaft and the way of data feedback have the great significance in theory and economy. These research works can not only improve and commercialize the on-line measurement technology for the crankshaft noncircular grinding, but also can enhance the quality and competition of the domestic advanced manufacture equipment.
     The main contents of this dissertation are focused on the surface form errors and the geometrical dimension of crankshaft, including the central factors that impair machining quality, the relationship between the vibration and the surface quality in the crankshaft noncircular grinding process, the on-line tracing measurement system for diameter and roundness errors as well as the three-sensor tracing principle adopted for roundness error separation. This dissertation makes some creative researches on the following aspects:
     The motion process of the crankshaft noncircular grinding is described firstly. The central factors that affect diameter and roundness errors of crankshaft noncircular grinding process are analyzed in depth. The compensation model for the crankpin's deformation due to grinding force is developed. It is shown that the deformation model calculated results coincide with the experimentally observed results. And the machining-error in the radial direction of the crankpin can be easily worked out according to the predictive model of crankpin's deformation, which underpins the error compensation in crankshaft noncircular grinding process.
     The vibration and its influences occurring in the crankshaft noncircular grinding process are studied. The chattering mechanism of the crankshaft noncircular grinding is explained using dual-regenerate model; the mechanism of the suppression and delay of chattering by variable speed grinding are studied both for the grinding point on the wheel and the variable rotating speed of the crankshaft. The six-degree-freedom dynamics model of the crankshaft noncircular grinding process is developed and the impacts due to the forced vibration are simulated by computer on the basis of decoupling the system dynamics equations via modal analysis method.
     An on-line tracing measurement method is presented for measurement the diameter and roundness errors of crankshaft's journal same time according with the characteristics of the crankshaft noncircular grinding process. The tracing measurement equipment is also developed and its system errors and influence on measuring precision are conducted.
     The three-sensor tracing principle is presented for the crankpin's roundness errors separation with system errors from measurement data. The factors that impact the separation precision of the three-sensor tracing principle are presented in detail. Using the wavelet analysis method, the detail imformation of roundness is extracted from the measurement signal after errors separation process.
     Finally, the simulation and experiments prove the validity of the above research works.
引文
【1】. Y. Aoki and S. Ozono, On a new method of roundness measurement based on the three-point method [J],. Jpn. Soc. Precis. Eng., 1966, 32 (12):831-836.
    【2】.洪迈生 邓宗煌 陈健强 大园成夫,精确的时域三点法圆度误差分离技术[J],上海交通大学学报,2000,34(10):1317-1319.
    【3】.李济顺 洪迈生,三点法圆度误差分离的近似方法及精度分析[J],计量技术,1998,(2):8-11.
    【4】.陈卓宁 李江萍 黄培 张培生,两步法圆度误差分离的原理及参数选择[J],华中理工大学学报,1994,22(4):105-109
    【5】.叶京生 顾启泰 章燕申,论多步法误差分离技术的测量精度[J],计量学报,1990,11(2):119-123
    【6】.王晓慧 李占魁 袁哲俊,圆度、圆柱度在线测量及补偿控制试验研究,哈尔滨工业大学学报[J],1995,27(1).114-117.
    【7】.张宇华 王晓琳 张国雄等,多点法圆度及轴系误差分离方法的若干问题,北京理工大学学报[J],1999 19(3):309-313
    【8】.张宇华 王晓琳 张国雄 李真,提高三点法测量精度的研究,北京理工大学学报[J],1999,19(21:157-162
    【9】. Zhang H, Yun H, Li J; An on-line measuring method of workpiece diameter based on the principle of 3-sensor error separation, Aerospace and Electronics Conference, 1990, 3:1308-1312
    【10】. Maisheng Hong, Separation techniques and the new method for form error and error motion measurement [C]. Proceedings of CIRP Conference on PE & MS, 1991,: 17-24.
    【11】. S. Kiyono, W. Gao. Profile measurement of machined surface with a new differential method. Precision engineering [J], 1994, 16: 212-218.
    【12】. M.H.lee; J.I.Bae; K.S.Yoon; Harashima.F, Real-time and an in-process measuring system for the grinding process cylindrical workpieces using Kalman filtering, IEEE Transactions on Industrial Electronics[J], 2000, 47(6): 1326-1333
    【13】. J.N.Lee, J.I.Bae, S.Lee, M.H.Lee, J.M.Lee, Development of real time and in-process gauging technology for grinding process of cylindrical workpieces [C], in Proc. IEEE Int. Symp. Industrial Electronics (ISIE'97), Guimaraes, Portugal, 1997, : 160-164
    【14】.李济顺,误差分离技术统—理论及其在线测量技术[D],上海交通大学博士学位论文,1996
    【15】.施杰,曲轴连杆圆度在线检测及磨削补偿系统研究[D],上海交通大学博士学位论文,1994
    【16】. Donaldson, R. A simple Method for Separating Spindle Error from Test Ball Roundness Error [J], Annals of the CIRP, 1972, 21 (1): 125-126
    【17】. Ramesh R, Mannan Ma, Poo; An Error compensation in machine tools - a review Part Ⅰ: geometric, cutting force induced and fixture dependent errors [J]. International Journal of Machine Tool & Manufacture 2000, 40:1235-1240
    【18】. Toenshoff. Hans, Kurt. Scherger, M. Stephan; Hinkenhuis. Helmut, Adaptive process control in noncircular grinding [J], American Society of Mechanical Engineers, Dynamic Systems and Control Division, 1999, 67:923-929.
    【19】. Nagy. S; Frank. A., Stability Problems in the process of grinding non-cylindrical surfaces, Proceedings of the Conference on Mechanical Engineering, 1998,2:500-5049.
    【20】.蔡光起,磨削技术的现状与新进展[J],机械工人,2000,11:3-4.
    【21】.吴钢华 何永义 田应仲,曲轴非圆的恒当量磨削厚度磨削运动模型研究[J],中国机械工程,2006,17(6):587-591.
    【22】.许第洪 孙宗禹 周志雄等,切点跟踪磨削法运动模型研究[J],机械工程学报,2002,38(8):68-73
    【23】.周志雄 罗红平等,切点跟踪磨削法磨削曲轴零件的若干问题探讨[J],中国机械工程,2002,138(238):2004-2007
    【24】.周志雄 罗红平 许第洪等,切点跟踪磨削法中工件的刚度误差分析及其补偿[J],机械工程学报,2003,39(6):98-101.
    【25】. Hwang C L, Shi Y D. Noncircular cutting on a lathe using tool position and differential motor current [J]. International Journal of Machine Tools & Manufacture, 1999, 39:209-207
    【26】. Inasaki, I., Karpuschewski, B., Lee, H.S., Grinding Chatter——Origin and Suppression, CIRP Ann.51, 2001, 515-534.
    【27】. Hahn, R.S., On the Theory of Regenerative Chatter in Precision--Grinding Operations[C], Trans. ASME, 1954, 76(1): 593-597.
    【28】. Kondo, Eiji; Ota, Hiroshi; Effects of tool flank wear on occurrences of regenerative chatter (1st report, A model of dynamic undercutting forces caused by tool flank wear), CHen/Transactions of the Japan Society of Mechanical Engineers, Part C.- 1995.61 (584): 1279-1285
    【29】. Marui, E.; Hashimoto, M.; Kato, S. Regenerative chatter vibration occurring in turning with different side cutting edge angles, Journal of Engineering for Industry, Transactions of the ASME.- 1995.117(4):551-558
    【30】. Davies, M.A,; Dutterer, B.; On the dynamics of high-speed milling with long, slender endmills, CIRP Annals - Manufacturing Technolgy.- 1998.47(1):55-60
    【31】. David E. Gilsinn, Estimating Critical Hopf Bifurcation Parameters for a Second-Order Delay Differential Equation with Application to Machine Tool Chatter Nonlinear dynamics. 2002.30(2): 103-154
    【32】. Snoeys. R., Brown. D., Dominating Parameters in Grinding Wheel and Workpiece Regenerative Chatter[C], Proc. 10th Int. Machine Tool Design and Research Conf.,1969, :325-348
    【33】. Thompson, R. A., On the Doubly Regenerative Stability of a Grinder: The Mathematical Analysis of Chatter Growth[J], ASME J. Eng. Ind., 1986, 108:83-92
    【34】. Inasaki, I., and Yonetsu, S., Regenerative Chatter in Grinding [C], Proc. 18th Int. Machine Tool Design and Research Conf., 1977:423-429
    【35】. Hashimoto, E, Kanai, A., and Miyashita, M., Growing Mechanism of Chatter Vibration in Grinding Processes and Chatter Stabilization Index of Grinding Wheel[C], CIRP Ann. 50, 1984: 515-534.
    【36】. Srinivasan, K., Application of the Regeneration Spectrum Method to Wheel Regenerative Chatter in Grinding [J], ASME J. Eng. Ind., 1982, 104:46-54.
    【37】. Matsubara, T., Mizumoto. H., and Yamamoto. H., Experimental Analysis of Work Regenerative Chatter in Plunge Grinding [J], Bull. Jpn. Soc. Precis. Eng., 1987, 21(t): 33-37.
    【38】. Weck, M., and Alldieck, J., The Originating Mechanisms of Wheel Regenerative Grinding Vibration [C], CIRP Ann., 1989, 38(1):381-384.
    【39】. Tetsutaro H., Shigeru M., Satoshi M., Osamu H. and Yousuke K., Suppression of Wheel Regenerative Grinding Vibration by Alternating Wheel Speed, Annals of CIRP, 1986, 35(1):231-234
    【40】. Bartalucci, B., and Lisini, G. G., Grinding Process Instability [J], ASME J. Eng..Ind., 1969, 91(3):597-606.
    【41】. Srinivasan, K., Application of the Regeneration Spectrum Method to Wheel Regenerative Chatter in Grinding [J], ASME J. Eng. Ind., 1982,(104): 46-54.
    【42】. Thompson, R. A., On the Doubly Regenerative Stability of a Grinder: The Combined Effect of Wheel and Workpiece Speed [J], ASME J. Eng. Ind., 1977, (99): 237-241.
    【43】. Thompson, R. A., On the Doubly Regenerative Stability of a Grinder: The Theory of Chatter Growth [J], ASME J. Eng. Ind., 1986, (108):75-82.
    【44】. Thompson, R. A., On the Doubly Regenerative Stability of a Grinder: The Effect of Contact Stiffness and Wave Filtering [J], ASME J. Eng. Ind., 1992, (114):53-60.
    【45】. Hongqi Li, Yung C. Shin, A Time-Domain Dynamic Model for Chatter Prediction of Cylindrical Plunge Grinding Processes [J], Journal of Manufacturing Science & Engineering, 2006,128:404-415.
    【46】.庞川 熊焕庭,外圆切入磨削颤振的预报及时变进给控制[J],磨床与磨削,1998,(3):28-31
    【47】.洪玉芳 汪久根,磨削系统的时间序列建模分析[J],机械科学与技术,2000,19(2):263-265
    【48】.孔繁森 于骏一 勾治践,颤振状态的模糊识别[J],振动工程学报,1998,11(3):328-332
    【49】.孔繁森 于骏一,切削过程再生颤振的模糊稳定性分析[J],振动工程报.1998,11(1):106-109
    【50】.李刚 徐燕申 彭泽民,磨削过程动态模型的建立及其参数识别方法的研究[J],机械工程学报,1992,28(3):
    【51】.徐燕申 李刚等,磨削颤振频域特征及其机理的研究[J],振动工程学报,1992(3)
    【52】.韩相吉 于骏一,变速磨削系统稳定性的研究[J],吉林工业大学学报,1998,28(1):27-33.
    【53】.韩正铜,磨削颤振与磨削表面形貌误差的研究[M],徐州:国矿业大学出版社,2005.
    【54】.星铁太郎著,师汉民译,机械加工颤振的分析与对策[M],上海:上海科学技术出版社,1984.
    【55】.师汉民,影响机床颤振的几个非线性因素及其数学模型[J],华中工学院学报,1984,12(6):101-112
    【56】.师汉民著,机械振动系统-分析·测试·建模·对策(上、下)[M],武汉:华中科技大学出版社,2004.
    【57】.吴雅,金属切削机床切削噪声的动力学研究[J],机械工程学报,1995,31(5):76-85.
    【58】.欧珠光著,工程振动[M],武汉:武汉大学出版社,2003
    【59】.曹树谦 张文德 萧龙翔著,振动结构模态分析—理论、实验与应用[M],天津:天津大学出版社,2001.3
    【60】. http://www.marposs.cn/fenarl_G.pdf
    【61】.邬义杰 柯映林 夏冠华,非圆回转曲面CNC磨削加工轨迹直接插补技术研究[J],工程设计,2000.4
    【62】.谢胜泉 段正澄 邓勇等,自适应跟踪算法在圆柱表面磨削加工中的应用[J],中国机械工程,1998,9(7):7-9.
    【63】.谢胜泉,非圆柱表面回转体零件CBN磨削CNC系统关键技术研究[D],华中科技大学博士学位论文,1998.
    【64】.李庆华,曲轴轴颈圆度误差测量系统研究[D],长春工业大学硕士学位论文,2003.
    【65】.马庆泰,曲轴切点跟踪磨削的研究与实现[D],上海大学硕士学位论文,2006.
    【66】.吴钢华,曲轴非圆磨削轨迹控制关键技术研究[D],上海大学博士学位论文,2006.
    【67】.严爱珍 李宏胜,机床数控系统原理与系统[M],北京:机械工业出版社,2000.
    【68】.柯尼希贝格.F著,机床结构[M].北京:机械工业出版社,1982
    【69】.于骏一 杨辅伦 吴博达.变速切削的减振机理[J].机械工程学报,1995,31(6):11-1
    【70】.杨叔子 吴雅,时间序列分析的工程应用[M],武汉:华中理工大学出版社,1990
    【71】.梅志坚 杨叔子 师汉民等.机床非线形颤振的描述函数分析[J].应用力学学报,1991,8(3):69-78
    【72】.于光 薛秉源 何秀寿,外圆切入磨削表面波纹度的研究[J],磨料磨具与磨削,1988,1(43):10-15.
    【73】.曹硕生 赖于明 熊焕庭,高速低粗糙度外圆切入磨削表面波纹度的试验研究[J],中国机械工程,1999,8(2):85-87.
    【74】.杨传启,XK717数控铣床动态特性的试验研究[D],浙江工业大学硕士学位论文,2006
    【75】.杨肃 唐恒龄 廖伯瑜,机床动力学[M].机械工业出版社,1983
    【76】.汤姆逊W T.著,胡宗武等译 振动理论及其应用[M],北京:煤炭工业出版社,1980.
    【77】. Whitfield A. H., Transfer function synthesis using frequency response data [J]. Int. J. of Contorl, 1986,43(5):1413-1426.
    【78】. Ibrahim S. R., Modal identification techniques assessment and comparison [J], Proc. Of 3rd IMAC, 1985:831-839.
    【79】. Meirovitch L. Elements of Vibration Analysis (Second Edition) [M], USA,:McGRAW-Hill Book Company, 1986.
    【80】.徐兴强,机床切削颤振系统与在线监测的仿真研究[D],辽宁工程技术大学硕士学位论文,2005
    【81】.陈延军,切削颤振系统动态特性分析[D],西北工业大学硕士学位论文,2006.
    【82】.韩相吉 马世骧 刘雅梅,变速磨削抑制颤振机理[J],吉林工学院学报,1998,19(3):36-41.
    【83】.韩相吉 李广明,变速磨削对颤振增长率影响的试验[J],吉林工学院学报,1999,20(1):1-3.
    【84】.陈安华 刘德顺 郭迎福著,振动诊断的动力学理论与方法[M],北京:机械工业出版社,2001.12
    【85】.尚涛 石端伟 安宁 张李义,工程计算可视化与MATLAB实现[M],武汉:武汉大学出版社,2002,1.
    【86】.黄锡凯 郑文纬著,机械原理[M],北京:高等教育出版社,1991.3.
    【87】.田应仲 李明 何永义 吴钢华 李伟 方明伦,曲轴连杆颈在线测量方法的研究[C],第六届全球智能控制与自动化大会(WCICA'2006),大连中国,10(6),4995-4998.
    【88】.曹麟祥 王丙甲著,圆度检测技术[M],北京:国防工业出版社,1998.8.
    【89】.刘健 王晓明著,鞍点规划与形位误差评定[M],大连:大连理工大学出版社,1996.12.
    【90】.刘福生 罗鹏飞著,统计信号处理[M],长沙:国防科技大学出版社,1999.6.
    【91】. TIAN Yingzhong, LI Ming, LI Wei, etc., Three-sensor tracing principle for crankshaft roundness error measurement during noncircular grinding process[C], the 6th International Symposium on Instrumentation and Control Technology (ISICT'2006), Beijing China, 2006, 6357 (1): 2D. 1-8
    【92】.吴祥 沈德和 薛秉源 贝季瑶,外圆磨削颤振及工件变速磨削抑振研究[J],机械制造,1986,3:6-9.
    【93】.张宇华 王晓林,三点法圆度测量精度分析[J],光学精密工程,1998,6(4):127-131.
    【94】.费业泰,卢荣胜著.动态测量误差修正原理与技术[M].北京:中国计量出版社,2001.
    【95】.费业泰著.误差理论与数据处理[M].北京:机械工业出版社,2001.
    【96】.林洪桦著,动态测试数据处理[M].北京:北京理工大学出版社.1995.
    【97】.宗孔德,胡广书著.数字信号处理[M].北京:清华大学出版社,1988.
    【98】.张贤达著,非平稳信号分析与处理[M],北京:国防工业出版社,1999.7.
    【99】.机械工程手册.电机工程手册编辑委员会编.机械工程手册(第五卷)机械设计(二).北京:机械工业出版社,1984.3
    【100】.于连栋,动态测量系统现代建模理论研究[D】,合肥工业大学博士学位论文,2003.
    【101】.朱永生著,实验物理中的概率与统计[M】,北京:科学出版社,1991
    【102】. F. F.Ling Fractals, Engineering Surfaces and Tribology Wear [J], 1990 136:41-56.
    【103】. Wu J.J., Characterization of fractal surfaces [J].Wear, 2000,23(9):36-47.
    【104】. Gagnepain J J, Roques-carmas C. Fractal approach to two-dimensional and three-dimensional surface roughness [J].Wear,1986(109): 119-126.
    【105】. Zhou G Y,Len M C. Fractal geometry model for wear prediction [J].Wear, 1993 (170): 1-14.
    【106】. Hasegawa M,Liu J C,Okuda K et al.Calculation of the fractal dimentions of machined surface profiles [J].Wear ,1996(192):40-45.
    【107】. Majumdar A, Tien C L. Fractal characterization and simulation of rough surfaces [J].Wear, 1990(136):313-327.
    【108】. Karamavrus A I, Clark N N. A fractal approach for interpretation of local instantaneous temperature signals around a horizontal heal transfer tube in a bubbling fluidized bed [J]. Powder Technology, 1997,90(3): 235-244.
    【109】.杨建国著,小波分析及其工程应用[M】,北京:机械工业出版社,2005.6
    【110】.崔锦泰(美),程正兴译.小波分析导论[M].西安:西安交通大学出版社,1995.
    【111】.程正兴,小波分析算法与应用[M],西安:西安交通大学出版社,1999
    【112】. Donald B. Percival, Andrew T. Walden, Wavelet Methods for Time Series Analysis [M], London: Cambridge University Press, 2000.
    【113】. http://www, staff, washington, edu/dbp/wmtsa.html
    【114】. Wavelet Toolbox User's Guide. Mathworks Inc, 2004.
    【115】.飞思科技产品研发中心著,MATLAB6.5辅助小波分析与应用[M],北京:电子工业出版社,2003
    【116】.秦前清,杨宗觊.实用小波分析[M].西安:西安电子科学技术大学出版社,1994
    【117】.陈庆虎,李柱,表面粗糙度评定的小波基准线[J],计量学报,1998,19(4):254-257.
    【118】.陈庆虎,周莉萍,谢铁邦,李柱.表面综合形貌的小波分离法[J],华中理工大学学报,1997,25(5):25-27
    【119】.宋康,蒋庄德,李兵,基于小波函数迭代的外圆磨削表面分形分析[J],计量学报,2004,25(3):211-215.
    【120】.蒋庄德,赵卓贤.形状误差、波度和表面粗糙度划分的谱分析法[J].计量学报,1989,10(3):170-175.
    【121】.刘峰 刘贵忠 张茁生,分形信号的小波基表示[J],自然科学进展,2001,11(6):621-624.
    【122】.胡昌华等著,基于MATLAB的系统分析与设计:小波分析[M],西安:西安电子科技大学出版社.1999.
    【123】. Mandelbrot B B. The fractal geometry of nature [M].W.H.Freeman Co., San Francisco, 2nd edition, 1983
    【124】. ISO, Surface texture-Metrological characterization of phase correct filters. ISO stand, 11562, International Standard Organization, 1996
    【125】. ISO, Metrological characterization of phase correction filters and transmission bands for use in contact (stylus) Instruments (revised). 1979
    【126】. Galante G. Fractal dimension: a useful tools to describe the micro-geometry of machined surfaces [J]. Int. J. Mach. Tools and Manufacture. 1995.33:525-530
    【127】. R.S.Sayles, T.R.Thomas., Surface Topography as a Non-stationary Random Process [J], Nature (London). 1978.271:431-434
    【128】. M.V.Berry., Z.V.Lewis., On the Weierstrass-Mandelbrot fractal function [J], Proc. R. Soc. London. A 1980 370:459-484
    【129】. S Vandenberg, C F OsbornelDigital Image Processing Techniques, Fractal Dimensionality and Scale-space App lied toSurface Roughness [J], Wear, 1992, 159:17-30
    【130】. A P Thomas, T R Thomas, Engineering surface as fractals, fractal aspects of materials [J], Pittsburgh: Materials Research Society, 1986:75-77
    【131】. A Majumdar, B Bhushan, Role of fractal geometry in roughness characterization and contact mechanics of surfaces [J], ASME Journal of Tribology, 1990, 172:205-206.
    【132】. Srinivasan, R.S., etl. Geometric Tolerancing in Mechanical Design Using Fractal-Based Parameters [J]. ASME Journal of Mechanical Design, 1995,117(1):203-205.
    【133】. Majumdar A, Tien C L. Fractal Characterization and Simulation of Rough Surfaces[J]. Wear, 1990, 136(2):313- 327.
    【134】. Ameodo A, Grasseau G, Holschneider M., Wavelet transform of multifractals[J]. Physical Review Letters, 1988,61 (14):2281-2284
    【135】.董连科著,分形理论及其应用辽宁0020[M],辽宁:辽宁科学技术出版社,1991.
    【136】.葛世荣 K.Tonderl,粗糙表面的分形特征与分形表达研究[J],摩擦学学报,1997,17(1):73-80.
    【137】.葛世荣 索双富,表面轮廓分形维数计算方法的研究[J],摩擦学学报,1997,17(4):354-362.
    【138】.廖小云等.基于分形的机加工零件表面几何精度与性能分析[J],重庆大学学报,1999,(1):18-23.
    【139】.廖小云 程森林 许重庆,机加工零件的轮廓误差曲线小波建模与性能分析[J],机械,2000,27(6):12-13
    【140】.廖小云等,基于分形和小波的几何型面加工误差综合分析[J],中国工程科学,2002,4(5):75-78.
    【141】. Dubuc B, Tricot C, Zucker S W., Evaluating the fractal dimension of profiles [J]. Physical Review A, 1989,39(3): 1500-1512.
    【142】.袁长良,李成贵,刘廷启.表面微观形貌的分形表征及模拟[J],中国机械工程,1997,(5):78~80
    【143】.王安良 杨春信,评价机械加工表面形貌的小波变换方法[J],机械工程学报,2001,37(8):66-71
    【144】.王安良 杨春信,小波变换方法评价曲线的分形特征[J],机械工程学报,2002,38(5):80-85
    【145】.李小兵 刘莹,表面形貌分形表征方法的比较[J],南昌大学学报,2006,30(1):84-86
    【146】.卢圣凤 李柱 高咏生,分形表面特征信息的复合评定方法[J],机械工程学报,2002,38(8):64-67
    【147】.葛世荣,粗糙表面的分形特征与分形表达研究[J],摩擦学学报1997,17(1):73-80
    【148】.费斌,王海容,蒋庄德,机械加工表面分形特征的研究[J],西安交通大学学报,1998,32(5):83-86
    【149】.雷振山著,LabVIEW 7 Express实用技术教程[M],北京:中国铁道出版社,2004.
    【150】.GB7234-87圆度测量术语、定义及参数[S].北京:中国标准出版社,1991
    【151】.郑善良著,磨削基础[M],上海:上海科学技术出版社,1988
    【152】.刘炳文著,Visual Basic Internet程序设计[M],北京:清华大学出版社,2002
    【153】.杨乐平等著,LabVIEW程序设计与应用[M],北京:电子工业出版社,2005
    【154】.沈南燕,曲轴非圆磨削中的误差分析及补偿[D],上海大学硕士学位论文,2007.
    【155】.何秀寿 李兆高著,高精度高光洁度磨削[M],北京:机械工业出版社,1981.
    【156】. TIAN Yingzhong, LIMing, LI Wei, WU Ganghua, FANG Minglun. MULTI-SENSOR TRACING PRINCIPLE FOR CRANKSHAFT ROUNDNESS MEASUREMENT DURING NONCIRCULAR GRINDING PROCESS[C],International Technology and Innovation Conference 2006——Advanced Manufacturing Technologies (ITIC'2006), Hangzhou China, 2006: No.01050.1-5.
    【157】.华楚生主编,机械制造技术基础[M],重庆:重庆大学出版社,2000.
    【158】.王德泉主编,砂轮特性与磨削加工[M],北京:中国标准出版社,2001.9.
    【159】.中国磨料磨具工业公司著,磨料磨具技术手册[M],兵器工业出版社,1993