低电压故障下双馈风力发电系统特性分析与运行控制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
变速恒频双馈风力发电系统的电机结构与绕线式异步电机类似,转子经双向功率变换器与电网连接,流过转子电路的功率为转差功率,降低了变频器成本,通过改变双向功率变换器电子器件导通角调节转子电流的幅值、相位和频率可实现有功和无功输出的灵活控制,对电网可起到无功补偿作用,在商业化机组中应用广泛。本文结合风力发电技术的研究现状以及风力发电产业的大规模发展需求,立题对低电压故障下双馈风力发电系统运行特性与控制策略开展深入研究。
     本文提出了计及定子磁链变化、励磁电流过渡过程的双馈风力发电系统精确控制模型,为电网故障下双馈风力发电系统特性分析和运行控制提供了理论依据;以此为基础提出了基于自抗扰控制理论的强励控制方案,观测电网扰动及交叉耦合项加以前馈补偿,并利用配置非线性结构代替线性加权和形式,构成非线性误差反馈控制率,在实现解耦控制的同时抑制电网扰动对转子电流的影响,获得了比传统控制方案更优越的不间断运行能力,在系统建模及故障下控制方面具有创新性;在此基础上,本文提出了基于模型补偿ESO理论的双馈风力发电系统转速闭环辨识方法。将辨识转速作为双馈风力发电系统已知模型的一部分,实现转速辨识过程中已知模型的实时连续校正调节,随着已知模型的不断校正调整,有效缩小系统不确定部分的变化范围,有效降低ESO的观测负担,实现转速辨识的快速收敛,达到较好的辨识效果;同时,从系统不确定部分的ESO观测结果中提取转速辨识误差信息,对其进行反馈校正,辨识转速与系统不确定部分的不断校正调节,从结构上改进了原有的开环估计算法,形成了闭环辨识结构。
     同时,本文开展了低电压故障下双馈风力发电系统的运行性能评估,阐明了低电压故障下双馈风力发电系统暂态响应特性及定、转子磁链的变化规律;采用时域建模分析方法揭示了磁路饱和与集肤效应对双馈风力发电系统暂态响应的影响作用;通过对双馈风力发电系统状态空间模型进行小干扰稳定分析,研究其特征根的变化特性,进一步印证了磁路饱和与集肤效应对系统暂态运行特性的作用机制。研究结果表明,在电网电压跌落时,主磁路饱和对于系统的暂态响应特性无影响;当故障清除、电网电压恢复时,主磁路可能会产生饱和,但其影响程度有限。此外,主磁路饱和引发的励磁电感Lm减小能够增大双馈电机转子暂态阻尼,增强双馈电机的暂态稳定性,使其远离稳定极限。双馈电机集肤效应能够抑制由外部扰动,包括电网扰动引起的电磁暂态振荡,加速暂态分量的衰减过程,在促进系统恢复稳定方面发挥积极作用;但会增大双馈电机定、转子电流暂态冲击,不利于双馈风力发电系统的安全运行,在控制系统研究、暂态特性分析以及转子保护电路设计时应考虑集肤效应的影响。
     此外,本文从双馈风力发电系统运行控制及载荷分析的角度,提出了包括风速场、变速风机、传动轴系、电机、变流器在内的整个风力发电系统完整模型,为低电压故障下双馈风力发电系统的运行载荷分析提供了模型基础;通过与FAST输出结果的对比分析验证了所建模型的正确性,对其分析结果的可信度进行了评估;在此基础上,明确地揭示出低电压故障对双馈风力发电系统叶片和塔架的影响,为风力发电系统低电压运行控制策略的研究以及面向电网需求的风力发电系统设计提供了理论参考和依据。
Doubly-fed induction generator has recently received much attention as one of preferred technology for wind power generation.The structure of doubly-fed induction generators for wind turbine systems is similar to that of typical asynchronous machines. The rotor is connected to the grid through a bi-directional power converter, which only deals with slip power in double direction. It’s not only characterized by its small cubage、light weight and low cost but also realizes flexible connection of mechanical-electric system.
     This paper analyses the 5th model of DFIG. Then a new rotor current controller based on active–disturbance-rejection control theory is proposed to improve the dynamic response of the system under grid disturbances. This paper carries out simulation of the controller under normal condition and grid disturbances. The results show that the proposed controller can not only tune system power output precisely in normal condition but also ensure prominent reduction of rotor current ripple in order not to be disconnected, which contributes to power system stability. Moreover, the controller takes on good dynamic performances. Besides, for the implementation of sensorless control of doubly-fed induction geneartors, a speed identification algorithm is introduced on the basis of ESO. By means of the existing structure of ADRC system, speed information is picked up from the observation results of the unknown model in ESO. As demonstrated by simulation results, precise identification of speed is achieved.
     Moreover, taking into account the main flux saturation and deep-bar effect, this paper concentrates on transient responses and stability of the DFIG system under symmetrical grid faults. With increasing wind power penetration, transient responses of doubly-fed-induction-generator based wind turbines gain attentive focus. Accurate prediction of transient performances of DFIG under grid faults is required with increasing wind power penetration. The present paper illustrates the influences of main flux saturation and of deep-bar effect on behaviors of DFIG during voltage dips respectively, and furthermore, clarifies their roles played in the enhancement of system transient stability. Simulation results using Matlab/Simulink are presented for a 1.5MW DFIG wind turbine system. Theoretical and small-signal analyses are also provided. The analyses proposed contribute greatly to proper selection, design and coordination of protection devices and control strategies as well as stability studies.
     In addition, this paper illustrates the impact of a grid fault on the mechanical loads of a wind turbine. New grid codes require wind turbines to ride-through grid faults. This poses great challenges for the design of both electrical system and mechanical structure of wind turbines. Grid faults generate transients in the generator electromagnetic torque, which are propagated in the wind turbine, stressing its mechanical components. To study the structural loads of wind turbine under grid fault, a complete model including both mechanical and electrical parts must be constructed. A drawback of wind turbine simulation is that either a simple mechanical components is used with a detailed electrical model, or a simple electrical components with a detailed mechanical model is used, which could not provide a throughout insight on the structural loads caused by sudden disturbances on the grid. In this research, a proper combination of different simulation packages, namely FAST (Fatigue, Aerodynamics, Structures and Turbulence) and Matlab, is used to model the electrical and mechanical aspects of a wind turbine respectively. The effect of a grid fault on the wind turbine flexible structure is assessed for a typical wind turbine. A set of simulations reflecting the structural dynamic response of a wind turbine to a grid fault are presented and analyzed.
引文
[1]王承煦,张源.风力发电[M].北京:中国电力出版社,2003.
    [2] Manwell J F,Gowan J,Rogers A L.Wind energy explained-Theory,design and application[M].London:John Wiley&Sons,2002.
    [3] Burton T,Sharp D,Jenkins N,et al.Wind energy handbook[M].London:John Wiley &Sons,2001.
    [4]张新房,徐大平,柳亦兵,等.风力发电技术的发展及相关控制问题综述[J].华北电力技术,2005,5:42-45.
    [5] Muljadi E,Butterfield C.Pitch controlled variable speed wind turbine generation[J].IEEE Transactions on Industry Applications,2001,37(1):240-246.
    [6]卞松江.变速恒频风力发电系统关键技术研究[D].[博士学位论文],杭州:浙江大学,2003.
    [7] Datta R , Ranganathan V . Variable-speed wind power generation using doubly-fed wound rotor induction machine-A comparison with alternative schemes[J].IEEE Transactions on Energy Conversion,2002,17(3):414-421.
    [8]陈学顺,许洪华.双馈电机变速恒频风力发电运行方式研究[J].太阳能学报,2004,25(5):582-586.
    [9]贺益康,郑康,潘再平,等.交流励磁变速恒频风电系统运行研究[J].电力系统自动化,2004,18(13):55-59.
    [10] Polinder H,Vilder D.Comparison of direct-drive and geared generator concepts for wind turbines[J].IEEE International Conference on Electric Machines and Drives,2005,543-550.
    [11] Iov F,Hansen A D,Jauch C,et al.Advanced tools for modeling,design and optimization of wind turbine systems[C].Proceedings of Nodic Wind Power Conference,2004,1-12.
    [12] Slootweg J G,Haan S,Polinder H,et al.General model for representing variable speed wind turbines in power system dynamics simulations[J].IEEE Transactions on Power Systems,2003,18(1):144-151.
    [13] Akhmatov V,Knudsen H,Nielsen A H.Advanced simulation of windmills in the electric power supply[J].International Journal of Electrical Power and Energy Systems,2000,22(6):421-434.
    [14] Muljadi E,Butterfield C P.Pitch-controlled variable-speed wind turbine generation[J].IEEE Transactions on Industrial Applications,2001,37(1):240-246.
    [15] Hansen A D,Iov F,S?rensen P,et al.Dynamic wind turbine models in power systems simulation tool-DigSilent[R].Roskilde:Ris? National Laboratory,2007.
    [16] Ekanayake J B,Holdsworth L,Jenkins N.Comparison of 5th order and 3rd order machine models for doubly-fed induction generator (DFIG) wind turbines[J].Electric Power System Research,2003,67(3):207-215.
    [17] Petersson A,Thiringer T,Harnefors L,et al.Modeling and experimental verification of grid interaction of a DFIG wind turbine[J].IEEE Transactions on Energy Conversion,2005,20(4):878-886.
    [18] S Muller,M Deicke,W Rik,et al.Doubly-fed induction generator systems for wind turbinesp[J].IEEE Industrial Application Magazine,2002,8 (3):26–33.
    [19] Seman S,Niiranren J,Kanerva S,et al.Performance study of a doubly-fed wind-power induction generator under network disturbances[J] . IEEE Transactions on Energy Conversion,2006,21(4):883-890.
    [20] Seman S,Niiranren J,Arkkio A.Ride-through analysis of doubly-fed induction wind-power generator under unsymmetrical network disturbance[J].IEEE Transactions on Power Systems,2006,21(4):1782-1789.
    [21] Salman S K,Teo A L.Windmill modeling consideration and factors influencing the stability of a grid-connected wind power-based embedded generator[J].IEEE Transactions on Power systems,2003,18(2):508-515.
    [22]李辉,赵斌,韩力.风力发电机组暂态模型和稳定性分析方法评价[J].重庆大学学报,2008,31(5):481-494.
    [23] Ahlstr?m A.Aeroelastic simulation of wind turbine dynamics[D].[Doctoral Thesis],Stockholm:Royal Institute of Technology,2005.
    [24]丁明,吴义纯,张立军.风电场风速概率分布参数计算方法的研究[J].中国电机工程学报,2005,25(10):107-110.
    [25]李东东,陈陈.风力发电系统动态仿真的风速模型[J].中国电机工程学报,2005,25(21):41-44.
    [26] Iqbal M,Coonick A,Ereris L.Dynamic control options for variable speed wind turbines[J].Wind Engineering,1994,18(1):1-12.
    [27] Yuan G F,Chai J Y,Li Y D.Vector control and synchronization of doubly-fed induction wind generator system[C].Proceedings of the 4th International Power Electronics and Motion Control Conference,2004,875-888.
    [28] Bossanyi E A,Hassan G,Partners L.The design of closed loop controllers for wind turbines[J].Wind Energy,2000,3:149-163.
    [29]刘其辉,贺益康,张建华.交流励磁变速恒频风力发电机的运行控制及建模仿真[J].中国电机工程学报,2006,26(5):43-49.
    [30] Ekanayake J,Holdsworth L,Jenkins N.Control of doubly-fed induction wind generators[J].Power Engineering,2003,17(1):28-32.
    [31] Carrasco J,Galvan E.Improving transition between power optimization and power limitation of variable speed,variable pitch wind turbines using fuzzy control techniques[C].Proceedings of the 26th Annual Conference of the IEEE,2000,1497-1502.
    [32]叶杭治.风力发电机组的控制技术[M].北京:机械工业出版社,2002.
    [33] Slootweg J G,Haan S,Polinder H,et al.Aggregated modeling of wind parks with variable speed wind turbines in power system dynamic simulations[C].Proceedings of the 14th PSCC,2002,82-87.
    [34] Hansen A D,Iov F,Sorensen P,et al.Overall control strategy of variable speed doubly-fed induction generator wind turbine[C] . Nordic Wind Power Conference,2004,2:451-467.
    [35] Wright A D.Modern control design for flexible wind turbines[R].America:National Renewable Energy Laboratory,2004.
    [36] Dobson R C,Asher G M.Power limitation in variable speed wind turbines using pitch control and mechanical torque observer[J].Wind Engineering,1996,20(6):363-386.
    [37]郭庆鼎,赵麟,郭洪澈.1MW变速变距风力发电机的滑模变结构鲁棒控制[J].沈阳工业大学学报,2005,27(2):171-174.
    [38]刘新海,于书芳.神经网络在大型风力发电机电控系统中应用[J].微特电机,2004,32(2):37-42.
    [39]张新房,徐大平,吕跃刚,等.大型变速风力发电机组的自适应模糊控制[J].系统仿真学报,2004,16(3):573-577.
    [40] Morel L,Godfroid H,Mirzaian A,et al.Doubly-fed induction machine:Converter optimization and field oriented control without position sensor[J].IEE Proceedings of Electric Power Applications,1998,145(4):360-368.
    [41] Yamamoto M,Motoyoshi O.Active and reactive power control for doubly-fed wound rotor induction generator[J].IEEE Transactions on Power Electronics,1991,6(4):624-629.
    [42] Hansen L H,Helle L,Blaabjerg F,et al.Conceptual survey of generators and power electronics for wind turbines[R].Roskilde:Ris? National Laboratory,2001.
    [43] Bhowmik S,Spee R,Enslin J H R.Performance optimization for doubly-fed wind power generation systems[J] . IEEE Transactions on Industry Applications,1999,35(4):949-958.
    [44]刘志强.无位置传感器双馈调速系统的研究[D].[博士学位论文],天津:天津大学,2002.
    [45] Krzeminski Z.Sensorless multiscalar control of double fed machine for wind power generators[C].Proceedings of the PCC Osaka,2002,334-339.
    [46] Datta R,Ranganathan V T.Direct power control of grid-connected wound rotor induction machine without rotor position sensors[J].IEEE Transactions on Power Electronics,2001,16(3):390-399.
    [47]王亮,林成武,姚鹏.双馈电机的直接转矩控制技术[J].沈阳工业大学学报,2006,28(2):206-209,229.
    [48]郭晓明,贺益康,何奔腾.双馈异步风力发电机开关频率恒定的直接功率控制[J].电力系统自动化,2008,32(1):61-65.
    [49] Xu L,Cartwright P.Direct active and reactive power control of DFIG for wind energy generation[J].IEEE Transactions on Energy Conversion,2006,21(3):750-758.
    [50] Zhi D W,Xu L.Direct power control of DFIG with constant switching frequency and improved transient performance[J].IEEE Transactions on Energy Conversion,2007,22(1):110-118.
    [51] Mohammed O A,Liu Z,Liu S.Stator power factor adjustable direct torque control of doubly-fed induction machines[C] .Proceedings of IEEE Electric Machines and Drives,2005,572-576.
    [52] Erhich I,Winter W,Dittrich A.Advanced grid requirements for the integration of wind turbines intor the German Transmission System[C].Proceedings of IEEE Power Engineering Society General Meeting,2006,1-7.
    [53] Modis T.Fractal aspects of natural growth[J].Technological Forecasting and Social Change,1994,47:63-73.
    [54] Eriksen P B,Ackermann T,Abildgaard H,et al.System operation with high wind penetration[J].IEEE Power and Energy Magazine,2005,3(6):65-74.
    [55]张红光,张粒子,陈树勇,等.大容量风电场接入电网的暂态稳定特性和调度对策研究[J].中国电机工程学报,2007,27(31):45-51.
    [56]迟永宁,刘燕华,王伟胜,等.风电接入对电力系统的影响[J].电网技术,2007,31(3):77-81.
    [57] Hulle F V.Large scale integration of wind energy in the European power sypply:Analysis,issues and recommendations[R].Belgium:European Wind Energy Association,2005.
    [58] Holttinen H , Hirvonen R . Power system requirements for wind power[M].London:John Wiley&Sons,2005.
    [59] Jauch C,Matevosyan J,Ackermann T,et al.International Comparison of Requirements for Connections of Wind Turbines to Power Systems[J].Wind Energy,2005,8:295-306.
    [60]赵仁德.变速恒频双馈风力发电机交流励磁电源研究[D].[博士学位论文],杭州:浙江大学,2005.
    [61] Li H,Chen Z.Overview of different wind generator systems and their comparisons[J].IET Renewable Power Generation,2008,2(2):123-128.
    [62] Peterson A.Analysis,modeling and control of doubly-fed induction generators for wind turbines[D].[Doctoral Thesis],Goteborg:Chalmers University of Technology,2005.
    [63] Baroudi J A,Dinavahi V,Knight A M.A review of power converter topologies for wind generators[J].Renewable Energy,2007,32(14):2369-2385.
    [64] Hansen L,Helle L,Blaabjerg F,et al.Conceptual survey of generators and power electronics for wind turbines[R].Roskilde:Ris? National Laboratory,2001.
    [65] Yamamoto M,Motoyoshi O.Active and reactive power control for doubly-fed wound rotor induction generator[J].IEEE Transactions on Power Electronics,1991,6(4):624-662.
    [66] Tamura J,Sasaki T.Analysis of the steady state characteristics of doubly-fed synchronous machines[J].IEEE Transactions on Energy Conversion,1988,4(2):250-256.
    [67] Vicatos M S,Tegopoulos J A.Steady state analysis of a doubly-fed induction generator under synchronous operation[J]. IEEE Transactions on Energy Conversion,1989,4(3):495-501.
    [68] Tang Y F,Xu L Y.A flexible active and reactive power control strategy for a variable speed constant frequency generating system[J].IEEE Transactions on Power Electronics,1995,10(4):472-478.
    [69] Tang Y F,Xu L Y.Vector control and fuzzy logic control of doubly-fed variable speed drives with DSP implementation[J].IEEE Transactions on Energy Conversion,1995,10(4):661-668.
    [70] Akagi H,Sato H.Control and performance of a doubly-fed induction machine intended for a flywheel energy storage system[J].IEEE Transactions on Power Electronics,2002,17(1):109-116.
    [71]林成武,王凤翔,姚兴佳.变速恒频双馈风力发电机励磁控制技术研究[J].中国电机工程学报,2003,23(13):122-125.
    [72]杨文焕.双馈电机转子交流励磁矢量控制电压波形分析[J].电机与控制学报,2003,7(1):18-21.
    [73]辜承林,韦忠朝,黄声华,等.对转子交流励磁电流实行矢量控制的变速恒频发电机[J].中国电机工程学报,1996,16(2):119-124.
    [74] Datta R,Ranganathan V T.Variable-speed wind power generation using doubly-fed wound rotor induction machine comparison with alternative schemes[J].IEEE Transactions on Energy Conversion,2002,17(3):414-421.
    [75] Tapia A,Tapia G.Modeling and control of a wind turbine driven doubly-fed induction generator[J].IEEE Transactions on Energy Conversion,2003,18(2):194-204.
    [76]李辉,杨顺昌,廖勇.并网双馈发电机电网电压定向励磁控制的研究[J].中国电机工程学报,2003,23(8):159-162.
    [77]廖勇,杨顺昌.交流励磁发电机励磁控制[J].中国电机工程学报,1998,18(2):87-90.
    [78]廖勇,杨顺昌.交流励磁发电机参数变化时的解耦励磁控制[J].中国电机工程学报,1998,19(2):37-46.
    [79]廖勇,杨顺昌.交流励磁发电机运行及控制原理[J].电工技术学报,1997,12(10):21-25.
    [80]廖勇,杨顺昌.双馈发电机考虑主磁路饱和数学模型[J].电工技术学报,1996,11(4):1-5.
    [81]廖勇,杨顺昌.交流励磁发电机励磁控制[J].中国电机工程学报,1998,18(2):87-90.
    [82]李晶,王伟胜.变速恒频风力发电机组建模与仿真[J].电网技术,2003,27(9):14-17.
    [83]李晶,王伟胜.大型变速恒频风力发电机组建模与仿真[J].中国电机工程学报,2004,24(6):100-105.
    [84]李晶,王伟胜.考虑变频器特性的变速恒频双馈风力发电机组控制策略的研究与仿真[J].中国电机工程学报,2004,28(21):11-16.
    [85]李晶,王伟胜.双馈感应发电机的线性化动态模型及运行特性分析[J].电网技术,2004,28(13):13-17.
    [86]李辉,杨顺昌,廖勇.变速恒频双馈发电机励磁控制策略综述[J].电工技术杂志,2002,12:5-8.
    [87]贺益康,何鸣明,赵仁德,等.双馈风力发电机交流励磁用变频电源拓扑浅析[J].电力系统自动化,2006,30(4):105-112.
    [88] Rubira S D,Mcculloch M D.Control method comparison of doubly-fed wind generators connected to the grid by asymmetric transmission lines[J].IEEE Transactions on Industry Applications,2000,36(4):986-991.
    [89] Masmoudi A,Toumi A.Power flow analysis and efficiency optimization of a doubly-fed synchronous machines[J].Electric Machines and Power Systems,1993,21(4):473-491.
    [90] Ioannides M G.Doubly-fed induction machine state variables model and dynamic response[J].IEEE Transactions on Energy Conversion,1991,6(1):55-61.
    [91] Masmoudi A,Toumi A.On the stator-flux-oriented control of a doubly-fed synchronous machine[J] . European Transactions on Electric Power Engineering,1995,5(1):23-31.
    [92] Xu L Y,Cheng W.Torqe and reactive power control of a doubly-fed induction machine by position sensorless scheme[J].IEEE Transactions on Industry Applications,1995,31(3):636-642.
    [93] Vicatos M S,Tegopoulos J A.Doubly-fed induction motor differential cascade-Configuration and analysis in the steady state[J].IEEE Transactions on Energy Conversion,1999,14(3):361-366.
    [94] Vicatos M S,Tegopoulos J A.Doubly-fed induction machine differential cascade-Verification by test[J].IEEE Transactions on Energy Conversion,1999,14(3):367-372.
    [95]贺益康,郑康,潘再平,等.交流励磁变速恒频风电系统运行研究[J].电力系统自动化,2004,28(13):55-59.
    [96] Muller S,Deicke M.Adjustable speed generators for wind turbines based on doubly-fed induction machines and quadrant IGBT converter linked to the rotor[J].IEEE Transactions on Industry Applications,2000,30(3):21-23.
    [97] Muller S, Deicke M. Doubly-fed induction generator system for wind turbines[J].IEEE Industrial Application Magazine,2002,8(3):26-33.
    [98] Peterson A,Thringer T,Lundberg S,et al.Modeling and experimental verification of grid interaction of a DFIG wind turbine[J]. IEEE Transactions on Energy Conversion,2005,20(4):878-886.
    [99] Brune C,Spee R.Experimental evaluation of a variable-speed doubly-fed wind power generation system[J].IEEE Transactions on Industry Applications,1994,30(3):648-655.
    [100] Pena R,Clare J,Asher G.Doubly-fed induction generator using back-to-back PWM converter and its application to variable-speed wind-energy generation[J].IEE Proceedings of Electric Power Application,1996,143(3):231-241.
    [101] Muljai E,Butterfield C P.Pitch-controlled variable-speed wind turbine generation[J].IEEE Transactions on Industry Applications,2001,37(1):240-246.
    [102]刘其辉.变速恒频风力发电系统运行与控制研究[D].[博士学位论文],杭州:浙江大学,2005.
    [103] Polinder H,Haan S W H,Slootweg J G,et al.Basic operation principles and electrical conversion systems of wind turbines[J].EPE Journal,2005,15(4):43-50.
    [104]刘其辉,贺益康,卞松江.变速恒频风力发电机空载并网控制[J].中国电机工程学报,2004,24 (3):6-11.
    [105]李健,李华德.双馈感应变速恒频风力发电机控制系统研究[J].电气传动,2004,4:16-18.
    [106]卞松江.变速恒频风力发电关键技术研究[D].[博士学位论文],杭州:浙江大学,2003.
    [107] Datta R,Ranganathan V T.A method of tracking the peak power points for a variable speed wind energy conversion system[J].IEEE Transactions on Energy Conversion,2003,18(1):163-168.
    [108]韩京清.从PID技术到自抗扰控制技术[J].控制工程,2002,9(3):13-18.
    [109]黄一,张文革.自抗扰控制器的发展[J].控制理论与应用,2002,19(4):485-492.
    [110]夏长亮,李正军,杨荣,等.基于自抗扰控制器的无刷直流电机控制系统[J].中国电机工程学报,2005,25(2):82-86.
    [111]冯光,黄立培,朱东起.采用自抗扰控制器的高性能异步电机调速系统[J].中国电机工程学报,2001,21(10):55-58.
    [112]刘翔,李东海,姜学智,等.水轮发电机组的非线性控制器仿真研究[J].中国电机工程学报,2002,22(1):91-96.
    [113] Huang Y,Luo Z W,Svinin M,et al.Extended state observer technique for control of robot systems[C].Proceedings of the 4th IEEE World Congress on Intelligent Control and Automation,2002.
    [114]杨国顺,吴捷,陈渊睿.矩阵变换器的自抗扰控制技术[J].电机与控制学报,2005,9(4):311-315.
    [115]张荣,韩京清.BP神经网络在自抗扰扰控制器中的应用[C].中国控制会议论文集,1998,667-670.
    [116]朴军,韩京清.自抗扰控制器仿真软件[J].系统仿真学报,1999,11(5):383-387.
    [117]万晖.自抗扰控制器的稳定性分析及其应用[D].[博士学位论文],北京:中国科学院数学与系统科学研究院,2001.
    [118]韩京清,王伟.非线性跟踪-微分器[J].系统科学与数学,1994,14(2):177-183.
    [119] Ledesma P,Usaola J.Effect of neglecting stator transients in doubly-fed induction generators models[J].IEEE Transactions on Energy Conversion,2004,19(2):459-461.
    [120] Mohammed O A,Liu Z,Liu S.A novel sensorless control strategy of doubly-fed induction motor and its examination with the physical modeling of machines[J].IEEE Transactions on Magnetics,2005,41(5):1852-1855.
    [121] Datta R,Ranganathan V T.A simple position-sensorless algorithm for rotor-side field-oriented control of wound-rotor induction machine[J].IEEE Transactions on Industrial Electronics,2001,48(4):786-793.
    [122]邱瑞昌,阎耀明,姜学东.准稳态转子感应电势定向的双馈调速风力发电机的研究[J].中国电机工程学报,2003,23(11):133-138.
    [123]阎耀明,范瑜,汪至中.无位置传感器的双馈电机在风力发电系统中应用研究[J].太阳能学报,2003,24(3):432-436.
    [124] Kim E H,Sung B O.Power control of a doubly-fed induction machine without rotational transducers[C].Proceedings of Power Electronics and Motion Control Conference,2000,2:951-955.
    [125]马小亮,刘志强.基于电流辨识速度的双馈矢量调速系统的研究[J].电工技术学报,2003,18(4):89-93.
    [126]刘志强,王娜,魏学森.无位置传感器转子电流定向双馈电机的矢量控制调速系统[J].中小型电机,2002,29(6):38-42.
    [127] Morel L,Godfroid H.Doubly-fed induction machine:Converter optimization and field oriented control without position sensor[J].IEE Proceedings of Electric Power Applications,1998,145(4):360-368.
    [128] Datta R,Ranganathan V.T.Decoupled control of active and reactive power for a grid-connected doubly-fed wound rotor induction machine without position sensors[C].Proceedings of Industry Applications Conference, 1999,4:2623-2630.
    [129] Hopfensperger B,Atkinson D J.Stator-flux-oriented control of a doubly-fed induction machine with and without position encoder[J].IEE Proceedings of Electric Power Applications,2000,147(4):241-250.
    [130] Datta R,Ranganathan V T.A simple position-sensorless algorithm for rotor-side field-oriented control of wound-rotor induction generator[J].IEEE Transactions on Power Electronics,2001,48(4):786-793.
    [131] Schauder C.Adaptive speed identification for vector control of induction motors without rotational transducers[J] . IEEE Transactions on Industry Applications,1992,28(5):1054-1061.
    [132] Kim Y,Sul S,Park M.Speed sensorless vector control of induction motor using extended kalman filter[J].IEEE Transactions on Industry Applications,1994,30(5):1225-1233.
    [133] Derdiyok A,Guven M K.Design and implementation of a new sliding-mode observer for speed sensorless control of induction machine[J] . IEEE Transactions on Industrial Electronics,2002,49(5):1177-1182.
    [134] Peng F Z,Fukao T.Robust speed identification for speed sensorless vector control of induction motors[J].IEEE Transactions on Industry Applications,1995,30(5):1234-1240.
    [135] Hopfensperger B,Atkinson D J,Lakin R A.Stator flux oriented control of a doubly-fed induction machine with and without position encoder[J].IEE Proceedings Electric Power Applications,2000,147(4):241-250.
    [136] Morel L,Godfroid H,Mizaian A,et al.Doubly-fed induction machine:converter optimization and field oriented control without position sensor[J].IEE Proceedings Electric Power Applications,1998,145(4):360-368.
    [137] Datta R,Ranganathan V T.Direct power control of grid-connected wound rotor induction machine without rotor position sensors[J].IEEE Transactions on Power Electronics,2001,16(3):390-399.
    [138] Kim S,Park T,Yoo J,et al.Speed-sensorless vector control of an induction motor using neural network speed estimation[J] . IEEE Transactions on Industrial Electronics,2001,48(3):609-614.
    [139] Bogalecka E.Power control of a double fed induction generator without speed of position sensor[C].Proceedings of 5th European Conference on Power Electronics and Applications,1993,224-228.
    [140] Datta R,Ranganathan V T.A simple position sensorless algorithm for rotor side oriented control of wound rotor induction machine[J].IEEE Transactions on Industrial Electronics,2001,148(4):786-793.
    [141]杨淑英.双馈型风力发电变流器及其控制[D].[博士学位论文],合肥:合肥工业大学,2008.
    [142] Cardenas R,Pena R.Rotor Current based MRAS Observer for Doubly-fed Induction Machines[J].Electronics Letters,2004,40(12):769-770.
    [143]胡家兵,孙丹,贺益康,等.电网电压骤降故障下双馈风力发电机建模与控制[J].电力系统自动化,2006,30(8):21-26.
    [144] Zhi D,Xu L.Direnct power control of DFIG with constant switching frequency and improved transient performance[J] . IEEE Transactions on Energy Conversion,2007,22(1):110-118.
    [145] Hu J B,He Y K,Xu L,et al.Improved control of DFIG systems during network unbalance using PI-R current regulators[J].IEEE Transactions on Industrial Electronics,2009,56(2):439-451.
    [146] Song Z F,Xia C L,Chen W.Analysis of wind turbine structural loads under grid fault[C].Proceedings of the 11th International Conference on Electrical Machines and Systems,2008,2277-2282.
    [147] Petersson A,Lundberg S,Thiringer T.A DFIG wind turbine ride-through system influence on the energy production[J].Wind Energy,2005,8(3):251-263.
    [148] Almeida R G,Lopes J A,Barreiros J.Improving power system dynamic behavior through doubly-fed induction machines controlled by static converter using fuzzy control[J].IEEE Transactions on Power Systems,2004,19(4):1942-1950.
    [149]向大为,杨顺昌,冉立.电网对称故障时双馈感应发电机不脱网运行的励磁控制策略[J].中国电机工程学报,2006,26(3):164-170.
    [150]向大为,杨顺昌,冉立.电网对称故障时双馈感应发电机不脱网运行的系统仿真研究[J].中国电机工程学报,2006,26(10):130-135.
    [151]梁亮,李建林,许洪华.双馈感应式风力发电系统低电压穿越研究[J].电力电子技术,2008,42(3):19-21.
    [152]李梅,李建林,赵斌,等.不同电网故障情况下双馈风力发电机运行特性比较[J].高电压技术,2008,34(4):777-782.
    [153] Brekken T K,Mohan N.Control of a doubly-fed induction wind generator under unbalanced grid voltage conditions[J] . IEEE Transactions on Energy Conversion,2007,22(1):129-135.
    [154] Xu L.Coordinated control of DFIG’s rotor and grid side converters during network unbalance[J].IEEE Transactions on Power Electronics,2008,23(3):1041-1049.
    [155] Hu J B,He Y K.Dynamic modeling and robust current control of wind- turbine driven DFIG during external AC voltage dip[J].Journal of Zhejiang University,SCIENCE A,2006,7(10):1757-1764.
    [156] Martin D S,Amenedo J L,Arnalte S.Direct power control applied to doubly-fed induction generator under unbalanced grid voltage conditions[J].IEEE Transactions on Power Electronics,2008,23(5):2328-2336.
    [157]夏长亮,宋战锋.双馈风力发电系统转子电流自抗扰控制[J].电工电能新技术,2007,26(3):11-14,19.
    [158] Hu J B,He Y K,Nian H.Enhanced control of DFIG based back-to-back PMW voltage source converter under unbalanced grid voltage conditios[J].Journal of Zhejiang University,SCIENCE A,2007,8(8):1330-1339.
    [159] Hansen A D,Michalke G,S?rensen P,et al.Co-ordinated voltage control of DFIG wind turbines in uninterrupted operation during grid faults[J].Wind Energy,2007,10:51-68.
    [160] Xiang D W,Ran L,Tavner P J,et al.Control of a doubly-fed induction generator in a wind turbine during grid fault ride-through[J].IEEE Transactions on Energy Conversion,2006,21(3):652-662.
    [161] Peterson A,Harnefors L,Thiringer T.Evaluation of current control methods for wind turbines using doubly-fed induction machines[J].IEEE Transactions on Power Electronics,2005,20(1):227-235.
    [162] Morren J,Sjoerd W.Rideth-rough of wind turbines with doubly-fed induction generator during a voltage dip[J].IEEE Transactions on Energy Conversion,2005,20(2):435-441.
    [163] Xu L.Enhanced control and operation of DFIG-based wind farms during network unbalance[J].IEEE Transactions on Energy Conversion,2008,23(4):1073-1081.
    [164] Bellmnunt O G,FerréA J,Sumper A,et al.Ride-through control of a doubly-fed induction generator under unbalanced voltage dips[J] . IEEE Transactions on Energy Conversion,2008,23(4):1036-1045.
    [165] Seman S,Niiranen J,Kanerva S,et al.Analyis of a 1.7MVA doubly-fed wind-power induction generator during power systems disturbances[C].Proceedings of Nordic Workshop on Power and Industrial Electronics,2004,216-224.
    [166] Seman S,Niiranen J,Arkkio A.Ride-through analysis of doubly-fed induction wind-power generator under unsymmetrical network disturbance[J].IEEE Transactions on Power systems,2006,21(4),1782-1789.
    [167] Seman S,Niiranen J,Kanerva S,et al.Performance study of a doubly-fed wind-power induction generator under network disturbances[J] . IEEE Transactions on Energy Conversion,2006,21(4):883-890.
    [168] Lopez J,Sanchis P,Roboam X,et al.Dynamic behavior of the doubly-fed induction generator during three-phase voltage dips[J].IEEE Transactions on Energy Conversion,2007,22(3):709-717.
    [169] Ekanayake J,Jenkins N.Comparison of the response of doubly-fed and fixed-speed induction generator wind turbines to changes in network frequency[J].IEEE Transactions on Energy Conversion,2004,19(4):800-802.
    [170] Sun T,Chen Z,Blaabjerg F.Transient stability of DFIG wind turbines at an external short-circuit fault[J].Wind Energy,2005,8(3):345-360.
    [171]向大为.双馈感应风力发电机特殊运行工况下励磁控制策略的研究[D].[博士学位论文],重庆:重庆大学,2008.
    [172] Lopez J,Gubia E,Sanchis P,et al.Wind turbine based on doubly-fed induction generator under asymmetrical voltage dips[J].IEEE Transactions on Energy Conversion,2008,23(1):321-330.
    [173] Morren J,Sjoerd W.Short-circuit current of wind turbines with doubly-fed induction generator[J].IEEE Transactions on Energy Conversion,2007,22(1):174-180.
    [174] Hansen A D,Michalke G.Fault ride-through capability of DFIG wind turbines[J].Renewable Energy,2007,32:1594-1610.
    [175] Kayik?i M,Milannoci? J V.Assessing transient response of DFIG-based wind plants- The influence of model simplifications and parameters[J] . IEEE Transactions on Power Systems,2008,23(2):545-554.
    [176] Francoise M,Bikash P.Model analysis of grid-connected doubly-fed induction generators[J].IEEE Transactions on Energy Conversion,2007,22(3):728-736.
    [177] Ikeda M,Hiyama T.Simulation studies of the transient of squirrel-cage induction motors[J].IEEE Transactions on Energy Conversion,22(2):233-239.
    [178] Iov F,Blaabjerg F,Hansen A D,et al.Analysis of reduced order models for large wound-rotor induction generators in wind turbine applications[C].Proceedings of PCIM 2003 Power Quality Conference,2003,213-218.
    [179] Iov F,Hansen A D,S?rensen P,et al.Wind turbine blockset in Matlab– General overview and description of the models[R].Aalborg University,March 2004.
    [180] Krause P C,Wasynczuk O,Sudhoff S D.Analysis of electrical machinery and drive systems[M].New York:Wiley-IEEE Press,2002.
    [181] Ioannides M G.Doubly-fed induction machine state variables model and dynamic response[J].IEEE Transactions on Energy Conversion,1991,6(1):55-61.
    [182]李建林,赵栋利,李亚西,等.适合于变速恒频双馈感应发电机的Crowbar对比分析[J].可在生能源,2006,5:57-60.
    [183] Seman S . Transient performance analysis of wind-power induction generators[R].Espoo:Helsinki University of Technology,2006.
    [184] Chai C I,Lee W J,Fuangfoo P.System impact study for the inter-connection of wind generation and utility system[J].IEEE Transactions on Industry Applications,2005,40(12):163-168.
    [185] Math H,Olguin G,Martins M.Voltage dips at the terminals of wind power installations[J].Wind Energy,2005,8:307-318.
    [186] Clemens J,Julija M,Thomas A.International comparison of re-quirements for connection of wind turbines to power systems[J].Wind Energy,2005,8(7):295-306.
    [187] Clemens J.Stability and control of wind farms in power systems[R].Roskilde:Ris? National Laboratory,2006.
    [188] Hansen A D,Poul S,Florin I.Grid Support of a Wind Farm with Active Stall Wind Turbines and AC Grid Connection[J].Wind Energy,2006,9(1):341-359.
    [189] Xu L,Liang Z Y,Christian S.Grid integration of large DFIG-based wind farms using vsc transmission[J].IEEE Transactions on Power Systems,2007,22(6):976-984.
    [190] Hansen A D,Gabriele M,Poul S.Co-ordinated voltage control of DFIG wind turbines in uninterrupted operation during grid faults[J].Wind Energy,2007,10(2):51-68.
    [191] Hand M M,Johnson K E,Fingersh L J,et al.Advanced control design and field testing for wind turbines at the national renewable energy laboratory[C].Proceedings of the World Renewable Energy Congress,2004,105-117.
    [192] Bossanyi E A,Hassan G,Partners L.The design of closed loop controllers for wind turbines[J].Wind Energy,2000,3:149-163.
    [193]杨俊华,吴捷.风力发电机组的非线性控制-变结构与鲁棒控制[J].动力工程,2003,23(6):2803-2809.
    [194] Kraan I,Bongers P.Control of a wind conversion system using several linear robust controllers[C].Proceedings of the 32nd Conference on Decision & Control,Texas,1993,12:1928-1929.
    [195] Battista H,Julian R.Sliding mode control of torque ripple in wind energy conversion system with slip power recovery[C].Proceedings of the 24th Annual Conference of IEEE Industrial Electronics Society,1998,2:651-656.
    [196] Novak P,Ekelund T,Jovik I,et al.Modeling and control of variable speed wind turbine drive systems dynamics[J].Control Systems Magazine,1995,15(4):28-38.
    [197] Li B S,Zheng X,Jin H.Modelling analysis of transient stability simulation with high penetration of grid-connected wind farms of DFIG type[J].Wind Energy, 2007,10(8):303-320.
    [198]卞于中.风机叶片气动弹性实验研究[J].气动实验与测量控制,1994,8(3):40-47.
    [199]李本立,安玉华.风机气动弹性稳定性的分析[J].太阳能学报,1996,17(4):314-320.
    [200]李德源,叶枝全,包能胜.风机旋转风轮振动模态分析[J].太阳能学报,2004,25(1):72-76.
    [201] Smith E C,Chopra I.Aeroelastic response,loads and stability of a composite rotor in forward flight[J].Journal of the American Institute of Aeronautics and Astronautics,1993,42-48.
    [202]王永智,陶其斌,周必成.风机塔架的结构动力分析[J].太阳能学报,1995,16(2):162-168.
    [203] Jason M J,Marshall L B.FAST user’s guide[R].National Renewable Energy Laboratory,2005.
    [204] Wright A D.Modern control design for flexible wind turbines[R].National Renewable Energy Laboratory,2004.