多重电枢混合励磁风力发电系统的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着能源短缺和环境污染日益严重,风能作为一种可再生的绿色能源,其开发与利用得到人们的广泛关注。混合励磁电机综合了永磁电机和电励磁电机的优点,能在高效的前提下实现电机主磁场的调节和控制,在变速恒频的风力发电系统有广阔的应用前景。以多重电枢混合励磁风力发电系统及其控制技术为主题,进行了从理论到实践、从仿真到实验的全面、系统深入的研究。主要研究内容和得到的研究结论如下:
     (1)从满足三相逆变器的稳态指标和瞬态电流跟踪指标出发,提出交流侧电感设计的新方法。将设计的电感应用于三相并网逆变系统中,为后面的仿真和实验研究奠定了基础。
     (2)根据三相并网逆变器动态数学模型,采用电网电压矢量定向的矢量控制,实现了d、q轴电流的解耦控制和功率因数任意可调。同时,详细分析了如何根据有功功率的误差和无功功率的误差去选择开关表,在此基础上,提出了一种基于新开关表的直接功率控制。
     (3)针对三相并网逆变器的特点,将电流预测控制、基于误差函数预测控制、直接功率预测控制应用于三相并网逆变器。针对预测控制是对滤波电感参数比较敏感,采用电感在线辨识控制策略。将电感在线辨识应用于电流预测控制和直接功率预测控制中。最后,对三种预测控制进行了仿真和实验。
     (4)为了提高三相并网逆变器可靠性和降低并网逆变器的成本,提出了一种基于锁相环和虚拟电网磁链的无电网电压传感器的控制策略。将无电网电压传感器的控制策略应用于矢量控制和电流预测控制系统中,并通过仿真和实验进行了验证。
     (5)针对多重电枢混合励磁发电机,提出一种直流电压可以灵活串、关联切换的控制方案,并对该方案进行了实验。分析了三相并网逆变器并联运行时电流环流回路,建立三相并网逆变器并联时的平均状态模型。通过控制空间矢量调制(SVPWM)算法中不同零矢量在每一个周期的作用时间来抑制环流。
     (6)研制了系统的实验平台,以便各种控制策略在实验平台进行实验。
     (7)针对混合励磁发电机,提出一种最大风能跟踪的控制方案,通过调节混合励磁发电机的励磁电压去调节发电机的转速,使风机运行在最佳的叶尖速比。三相并网逆变器采用电网电压定向和电压、电流双闭环控制。最后对整个系统进行了建模,在Matlab7.4进行了仿真验证。
With the increasingly serious energy shortage and environmental pollution, the development and use of wind power attract people’s attention due to the wind power as a renewable green energy. Hybrid-excitation motor combines the advantages of permanent magnet motor and electric magnet motor, which main magnetic field can be adjusted and controlled with high efficiency. So the hybrid-excitation motor has broad application prospects in variable speed constant frequency wind power generation system. As wind power generation based on multiple armature hybrid-excitation generator is theme, it is carried out from theory to practice, from simulation to experiment with depth and comprehensive research. Main research contents and conclusions are as followings:
     (1) In order to meet the steady demand and the transient current tracking demand for three-phase grid-side converters, a new method is proposed for the inductance design. The designed inductance will be applied in the three-phase grid-connected inverter, which will put the foundation for the subsequent simulation and experiment.
     (2) According to the dynamic mathematical model of three-phase grid-connected inverters, using grid voltage orientation vector control, which realizes the decoupling control for the d-axis and q-axis currents and an adjustable power factor. At the same time, it is analyzed in detail how to select the switching table according to the active power error and the reactive power error. On this basis, a novel direct power control is proposed based on the new switching table.
     (3) According to the characteristics of the three-phase grid-connected inverter, the current predictive control, predictive control based on the error function and direct power predictive control are applied to three-phase grid-connected inverters. Inductance on-line identification will be applied to current predictive control and direct power prediction control as the predictive control is sensitive to filter inductance parameter. Finally, three kinds of predictive controls are done with simulation and experiment.
     (4) In order to improve the reliability and lower the cost for three-phase grid-connected inverters, the control strategy without grid voltage sensors based on phase-locked loop (PLL) and virtual grid flux is proposed. The control strategy without grid voltage sensors is used in vector control and current predictive control and verified by simulated and experimental results.
     (5) For the multiple armature hybrid-excitation generator, a new control that the DC voltage can be switched in parallel or series is proposed and is verified by experimental results. The paper analyzes the current circulation loop and constructs the average state model when the grid-connected inverters are operated in parallel. The circulation currents are inhibited by controlling the operation time for zero vectors at every PWM cycle when the space vector pulse width modulation (SVPWM) algorithm is used.
     (6) The whole experimental platform is constructed in order to do a variety of control strategies.
     (7) The control strategy of maximum wind power tracking is proposed based on the hybrid-excitation generator. The speed of the hybrid-excitation generator can be controlled by controlling the excitation voltage of the hybrid-excitation generator, which makes the wind turbine run at optimum tip speed ratio. Grid voltage orientation, voltage loop and current loop are used for three-phase grid-side inverters. Finally, the mode of the whole system is established in Matlab7.4 and the simulated results verify the control strategy.
引文
[1] Bose B K. Energy, environment, and advances in power electronics[J]. IEEE Transactions on Power Electronic, 2000,15(4):688-701
    [2]江泽民.对中国能源问题的思考[J].上海交通大学学报,2008,42(3):345-359.
    [3]何祚庥,王亦楠.风力发电—我国能源和电力可持续发展战略的最佳选择[J].自然辩证法研究,2004,10:82-85.
    [4]魏然.风电正向我们强劲吹来[J].经济,2009,6:58-60.
    [5]赵群,王永泉,李辉.世界风力发电现状与发展趋势[J].机电工程,2006,23(12):16-18.
    [6]刘琦,许移庆.世界海上风电投资分析[J].电器工业,2009,45-47.
    [7] Esmaili R, Xu L, Nichols D K. A new control method of permanent magnet generator for maximum power tracking in wind turbine application[C]. IEEE Power Engineering Society General Meeting , 2005,3:2090-2095.
    [8] Baroudi J A, Dinavahi V, Knight A M. A review of power converter topologies for wind generators[C]. IEEE Electric Machines and Drives International Conference ,USA,2005:458– 465.
    [9] Takaku T, Homma G, Isober T, Igarashi S, et al. Improved wind power conversion system using magnetic energy recovery switch (MERS)[C]. Industry Applications Conference,2005,3:2007-2012.
    [10] Chinchilla M, Arnaltes S, Burgos J C. Control of permanent-magnet generators applied to variable-speed wind-energy systems connected to the grid[J]. IEEE Transactions on Energy conversion,2006,21(1):130-135.
    [11] Senjyu T, Tamaki S, Urasaki N, et al. Wind velocity and position sensorless operation for PMSG wind generator[C]. PEDS Power Electronics and Drive Systems, 2003,1:787-792.
    [12] Chen Z, Spooner E. A solid-state synchronous voltage source with low harmonic distortion[C].Opportunities and Advances in International Electric Power Generation, England,1996:158-163.
    [13] Chen Z , Spooner E. Grid interface options for variable-speed, permanent-magnet generators[J]. IEE Proc Electric Power Applications,1998,145(4):273-283.
    [14] Malesani L, Rossetto L, Tenti P, et al. AC/DC/AC PWM converter with reduced energy storage in the DC link[J]. IEEE Transactions on Industry Applications,1995,31(2):287-292.
    [15] Kim J S, Sul S K. New control scheme for AC-DC-AC converter without DC link electrolytic capacitor[C]. Power Electronics Specialists Conference ,1993:300-306.
    [16]唐任远.稀土永磁电机的现状与发展[C].第十届中国小电机技术研讨会论文集, 2005,1-4.
    [17] Tapia J A, Leonardi F, Lipo T A. Consequent pole permanent magnet machine with field weakening capability[C]. IEEE International Electric Machines and Drives Conference, USA, 2001: 126-131
    [18] Cheng Ming, Sun Qiang, Zhou E. New self-tuning fuzzy PI control of a novel doubly salient permanent magnet motor drive[J]. IEEE Transactions on Industrial Electronics, 2006, 53(3): 814-821.
    [19]张宏杰,唐任远.混合励磁永磁同步发电机原理及参数计算[J].沈阳工业大学学报, 2000, 22(5): 393-395.
    [20] Tapia J A, Leonardi F, Lipo T A. Consequent-pole permanent magnet machine with field weakening capability[J]. IEEE Transactions on Industry Applications,2003, 39(1): 1704-1709.
    [21] Hsu J S. Direct control of air-gap flux in permanent-magnet machines[J]. IEEE Transactions on Energy Conversion, 2000,15(4):361-365.
    [22] Amara Y, Lucidarme J, Gabsi M. A new topology of hybrid synchronous machine[J]. IEEE Transactions on Industry Applications, 2001, 37(5): 1273-1281.
    [23]唐任远.现代永磁电机理论与设计[M].北京:机械工业出版社,1997.
    [24] Fan Ying, Chau K T, Cheng Ming. A new three-phase doubly salient permanent magnet machine for wind power generation[J]. IEEE Transactions on Industry Applications, 2006, 42(1): 53-60.
    [25] Zhu Xiaoyong, Cheng Ming. Design and analysis of a new hybrid excited doubly salient machine capable of field control[C]. The 41th IEEE Industry Applications Society Annual Meeting, USA, 2006:2382-2389.
    [26]黄苏融,张琪,谢国栋,阮毅.《多重电枢混合励磁直驱式风力发电系统》中国发明专利申请,2007年3月10日.
    [27]朱孝勇,程明,赵文祥,等.混合励磁电机技术综述与发展展望[J].电工技术学报,2008,23(1):30-37.
    [28] Patin N, Vido L, Monmasson E, et al. Control of a DC generator based on a Hybrid Excitation Synchronous Machine connected to a PWM rectifier[C]. IEEE International Symposium on Industrial Electronics, Canada, 2006:2229-2234.
    [29] Patin N, Vido L, Monmasson E, et al. Control of a Hybrid Excitation Synchronous Generator for Aicraft Applications[J]. IEEE Transactions on Industry Electronics, 2006,1-10.
    [30]宋文祥,陈国呈,武慧,等.一种具有中点电位平衡功能的三电平空间矢量调制方法及其实现[J].中国电机工程学报,2006,26(12):95-100.
    [31] Zhou Dongsheng.A self-balancing space vector switching modulator for three-level motor drives[J].IEEE Trans.Power Electronics,2002,17(6):1024-1031.
    [32] S Alepuz, S Busquets-Monge, J Bordonau, et al. Interfacing renewable energy sources to the utility grid using a three-level inverter[J]. IEEE Transactions on Industrial Electronics, 2006, 53( 5) : 1504- 1511.
    [33]温春雪,张利宏,李建林,等.三电平PWM整流器用于直驱风力发电系统[J].高电压技术, 2008, 34(1):191-195.
    [34]张华强,王立国,徐殿国,等.矩阵式电力变换器的控制策略综述[J].电机与控制学报, 2004, 8(3): 237-241
    [35] Nielsen P, Blaabjerg F, Pedersen J K. New protection issues of a matrix converter: design considerations for adjustable-speed drives[J] . IEEE Transactions on Industry Applications, 1999,35(5):1150-1161.
    [36] Casadei D, Serra G., Tani A. Reduction of the input current harmonic content in matrix converters under input/output unbalance[J]. IEEE Transactions on Industrial Electronics, 1998, 45( 3) :401- 411.
    [37] Blaabjerg F, Casadei D, Klumpner C, et al. Comparison of two current modulation strategies for matrix converters under unbalanced input voltage conditions[J]. IEEE Transactions on Industrial Electronics, 2006, 53( 5) : 1504- 1511.
    [38] She Hongwu, Lin Hua, Wang Xingwei, et al. Space vector modulated matrix converter under abnormal input voltage conditions[C]. IEEE 6th International Power Electronics and Motion Control Conference, China, 2009:1723-1727.
    [39]许春雨,陈国呈,孙承波,等. ZVT软开关三相PWM逆变器控制策略研究[J].电工技术学报, 2004, 19(11): 36-41.
    [40]屈克庆,陈国呈,孙承波.基于幅相控制方式的零电压软开关三相PWM变流器[J].电工技术学报, 2004, 19(5): 15-20.
    [41] Wu R, Dewan S B, Slemon G R. Analysis of an AC-to-DC voltage source converter using PWM with phase and amplitude control[J]. IEEE Transactions on Power Electronics,1991,27(2):355-364.
    [42]张纯江,顾和荣,王宝诚.基于新型相位幅值控制PWM整流器数学模型[J]中国电机工程学报,2003,23(7):28-31.
    [43]张纯江,郭忠南,王芹,等.基于新型相位幅值控制的三相PWM整流器双向工作状态分析[J].中国电机工程学报,2006,26(11):167-171.
    [44]尹明,李庚银,张建成,等.直驱式永磁同步风力发电机组建模及其控制策略.电网技术,2007,31(15):61-65.
    [45] Kazmierkowski M P,Malesani L. Current control techniques for three-phase voltage-source PWM converters: a survey[J]. IEEE Transactions on Industrial Electronics,1998,45(5):691-703.
    [46] Kazmierkowski M P, Krishnam R, Blaabjerg F. Control in power electronics[M]. London: U K Academic,2002.
    [47]陈伯时.电力拖动自动控制系统—运动控制系统[M].北京:机械工业出版社,2003.
    [48]阮毅陈维钧.运动控制系统[M].北京:清华大学出版社,2006.
    [49]张崇巍张兴. PWM整流器及其控制[M].北京:机械工业出版社,2002.
    [50]陈国呈. PWM逆变技术及其应用[M].北京:中国电力出版社,2007.
    [51]伍小杰,罗悦华,乔树通.三相电压型PWM整流器控制技术综述[J].电工技术学报,2005, 20 (12):7-11.
    [52] Malinowski M, Kazmierkowski M P, Trzynadlowski A M. A comparative study of control techniques for PWM rectifiers in AC adjustable speed drives[J]. IEEE Transactions on Industrial Electronics, 2003,18 (6):1390-1396.
    [53] Malinowiski M. Sensorless control strategies for three-phase PWM rectifiers[D].Warsaw:Warsaw University of Technology,2001.
    [54] Malinowski M, Kazmierkowski M, Hansen S, et al.Virtual-flux-based direct power control of three-phase PWM rectifiers[J]. IEEE Transactions On Industry Applications,2001,37(7): 1019-1026.
    [55] Malinowski M, Jasinski M, Kazmierkowski M P. Simple direct power control of three-phase PWM rectifier using space-vector modulation (DPC-SVM)[J]. IEEE Transactions on Industrial Electronics,2004,51(2):447-454.
    [56]赵仁德,贺益康.无电网电压传感器三相PWM整流器虚拟电网磁链定向矢量控制研究[J].中国电机工程学报,2005,25(10):56-61.
    [57]吴凤江,刘大为,孙力,等.基于虚拟磁链直接功率控制的四象限级联型多电平逆变器简化结构[J].中国电机工程学报,2008,28(15):49-54.
    [58] Noguchi T,Tomiki H,Kondo S, et al. Direct power control of PWM converter without power-source voltage sensors[J].IEEE Transactions Industry Applications, 1998,34(3):473-479.
    [59] Kwon B H, Youm J H, Lim J W. A line-voltagesensorless synchronous rectifier[J]. IEEE Transactions on Power Electronics, 1999,14(9): 966–972.
    [60] Lee W C, Hyun D S, Lee T K. A novel control method for three-phase PWM rectifiers using a single current sensor[J]. IEEE Transactions on Power Electronics, 2000,15(9): 861–870.
    [61] Jung-Ik Ha. Voltage Injection Method for Three-Phase Current Reconstruction in PWM Inverters Using a Single Sensor[J] . IEEE Transactions on Power Electronics, 2009,24(3): 767–775.
    [62] Komurcugil H, Kukrer O. Lyapunov-based control strategy for power-factor preregulators[J]. IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications,2003,50(9):1226-1229.
    [63] Kouro S, Cortes P, Vargas R, et al. Model Predictive Control—A Simple and Powerful Method to Control Power Converters[J]. IEEE Transactions on Industrial Electronics, 2009,56 (6):1826-1838.
    [64] Correa P, Rodriguez J, Rivera M, et al. Predictive Control of an Indirect Matrix Converter[J]. IEEE Transactions on Industrial Electronics, 2009,56 (6):1847-1853.
    [65] Cortes P, Ortiz G, Yuz J I, et al. Model Predictive Control of an Inverter With Output $LC$ Filter for UPS Applications[J]. IEEE Transactions on Industrial Electronics, 2009,56 (6):1875-1883.
    [66] Miranda H, Cortes P, Yuz J I, et al. Predictive Torque Control of Induction Machines Based on State-Space Models[J].IEEE Transactions on Industrial Electronics,2009,56 (6):1916-1924.
    [67] Vargas R, Ammann U, Rodriguez J. Predictive Approach to Increase Efficiency and Reduce Switching Losses on Matrix Converters[J]. IEEE Transactions on Industrial Electronics, 2009,24 (4):894-902.
    [68] Correa P, Rodriguez J, Lizama I, et al.A Predictive Control Scheme for Current-Source Rectifiers[J]. IEEE Transactions on Industrial Electronics, 2009,56 (5):1813-1815.
    [69] Cortes P, Kazmierkowski M P, Kennel R M , et al. Predictive Control in Power Electronics and Drives[J]. IEEE Transactions on Industrial Electronics, 2008,55 (12):4312-4324.
    [70]游小杰,李永东,Victor Valouch,等.并联型有源电力滤波器在非理想电源电压下的控制[J].中国电机工程学报, 2004,24(2):55-60.
    [71] Stankovic A V,Lipo T A.A novel control method for input output harmonic elimination of the PWM boost type rectifier under unbalanced operating conditions[J].IEEE Transactions on Power Electronics,2001,16(5):603-611.
    [72] Hong-seok song,Kwanghee Nam.Dual current control scheme for PWM converter under unbalanced input voltage conditions[J]. IEEE Transactions on Industrial Electronics,1999,46(5):953-959.
    [73] Yongsug Suh, Lipo T A. Control scheme in hybrid synchronous stationary frame for PWM AC/DC converter under generalized unbalanced operating conditions[J] . IEEE Transactions on Industry Applications, 2006,42(3):825-835.
    [74] Yongsug Suh, Lipo T A.Modeling and analysis of instantaneous active and reactive power for PWM AC/DC converter under generalized unbalanced network[J] . IEEE Transactions on Power Delivery, 2006,21(3):1530-1540.
    [75]张兴,季建强,张崇巍,等.基于内模控制的三相电压型PWM整流器不平衡控制策略研究[J].中国电机工程学报, 2004,24(2):55-60.
    [76] Alepuz S, Busquets Monge S, Bordonau J, et al. Predictive current control of grid-connected neutral-point-clamped converters to meet low voltage ride-through requirements[C], Power Electronics Specialists Conference, Rhodes,2008,2423-2428.
    [77] Ng C H, Li Ran, Bumby J. Unbalanced-Grid-Fault Ride-Through Control for a Wind Turbine Inverter[J] . IEEE Transactions on Industry Applications, 2008,44(3):845-856.
    [78] Mohamed Y A R I, El-Saadany E F. A Control Scheme for PWM Voltage-Source Distributed-Generation Inverters for Fast Load-Voltage Regulation and Effective Mitigation of Unbalanced Voltage Disturbances[J]. IEEE Transactions on Industrial Electronics,2008,55(5):2072-2084.
    [79] Alepuz S, Busquets Monge S, Bordonau J, et al.Control Strategies Based on Symmetrical Components for Grid-Connected Converters Under Voltage Dips[J]. IEEE Transactions on Industrial Electronics,2009,56(6):2162-2173.
    [80]吴斌.大功率变频器及交流传动[M].北京:机械工业出版社,2007.
    [81] Holtz J. Pulsewidth modulation for electronic power conversion[C]. P roceeding of the IEEE.1994,82(8):1194-1214.
    [82] Blasko V, Kaura V. A new mathematical model and control of a three-phase AC-DC voltage source converter[J]. IEEE Transactions on Power Electronics,1997,12(1):116-123.
    [83] Hava A M, Kerkman R J, Lipo T A. A high-performance generalized discontinuous PWM algorithm[J]. IEEE Transactions On Industry Applications,1999,34(5): 1059-1071.
    [84] Hava A M, Kerkman R J, Lipo T A. Carrier-based PWM-VSI overmodulation strategies: analysis, comparison, and design[J]. IEEE Transactions on Power Electronics,1998,13(4):674-689.
    [85] Hava A M, Kerkman R J, Lipo T A. Simple analytical and graphical methods for carrier-based PWM-VSI drives[J]. IEEE Transactions on Power Electronics,1999,14(1):49-61.
    [86] Shieh J J, Pan C T, Cuey Z J. Modelling and design of a reversible three-phase switching mode rectifier[A]. IEE proceedings, Electric Power Application[J], 1997,144(6): 389—396.
    [87]段大鹏,孙玉坤.基于三相VSI的PWM型SVG的系统仿真[J].电力系统及其自动化学报,2006,18(4):29-34.
    [88]王得利.直驱式风力发电系统变流器拓扑及控制策略研究[D].上海大学硕士论文,2008.
    [89] Zmood D N, Holmes D G, Bode G H. Frequency-domain analysis of three-phase linear current regulators[J]. IEEE Transactions On Industry Applications,2001,37(2): 601-610.
    [90]方宇,裘迅,邢岩,等.三相高功率因数电压型PWM整流器建模和仿真[J].电工技术学报, 2006,21(10): 44-49.
    [91]王久和,李华德,王立明.电压型PWM整流器直接功率控制系统[J].中国电机工程学报,2006,26(18):54-60.
    [92] Keliang Zhou, Wang D. Digital repetitive controlled three-phase PWM rectifier. IEEE Transactions on Power Electronics,2003,18 (1): 309–316.
    [93] Huy L H, Slimani K, Viarouge P. Analysis and implementation of a real-time predictive current controller for permanent-magnet synchronous servo drives[J]. IEEE Transactions on Industrial Electronics, 1994,41 (1):110-117.
    [94] Mossoba J , Lehn P. A controller architecture for high bandwidth active power filters[J]. IEEE Transactions on Power Electronics,2003,18 (1): 317–325.
    [95] Kukrer O. Discrete-time current control of voltage-fed three-phase PWM inverters[J]. IEEE Transactions on Power Electronics,1996,11 (2): 260–269.
    [96]方宇,裘迅,邢岩,等.基于预测电流控制的三相高功率因数PWM整流器研究[J].中国电机工程学报,2006, 26(20): 69-73.
    [97]庄淑瑾,孙玉坤,任明炜,孙运全.静止无功发生器的预测电流控制方法[J].电力自动化设备,2008,28(11):53-56.
    [98] Mohamed Y A R I, El-Saadany E F. An improved deadbeat current control scheme with a novel adaptive self-tuning load model for a three-phase PWM voltage-source inverter[J]. IEEE Transactions on Industrial Electronics, 2007,54 (2):749-759.
    [99] Malesani L, Mattavelli P, and Buso S. Robust dead-beat current controlfor PWM rectifier and active filters[J]. IEEE Transactions On Industry Applications,1999,35(3): 613-620.
    [100] Mattavelli P. An improved deadbeat control for UPS using disturbance[J]. IEEE Transactions on Industrial Electronics, 2005,52 (1):206-212.
    [101]伏祥运,王建赜,纪延超等.静止坐标系下D-STATCOM自适应无差拍控制[J].电力系统自动化,2007,31 (8):41-45.
    [102] Kaura V, Blasko, V. Operation of a phase locked loop system under distorted utility conditions[J]. IEEE Transactions On Industry Applications,1997,33(1): 58-63.
    [103] Se-Kyo Chung. A phase tracking system for three phase utility interfaceinverters[J]. IEEE Transactions on Power Electronics, 2000,15(3): 431-438.
    [104] Ahmed T, Nishida K, Nakaoka M. Advanced control of PWM converter with variable-speed induction generator[J]. IEEE Transactions On Industry Applications,2006,42(4): 934-945.
    [105] W C Lee, D S Hyun, T K Lee. A novel control method for three-phase PWM rectifiers using a single current sensor[J]. IEEE Transactions on Power Electronics, 2000,15(9): 861–870.
    [106] Agirman I,Blasko V.A novel control method of a VSC without AC line voltage sensors[J].IEEE Trans. Industry Applications,2003,39(2):519-524.
    [107] B H Kwon, J H Youm, J W Lim. A line-voltagesensorless synchronous rectifier[J]. IEEE Transactions on Power Electronics, 1999,14(9): 966–972.
    [108] Jun Hu, Bin Wu. New integration algorithms for estimating motor flux over a wide speed range[J]. IEEE Transactions on Power Electronics, 1998,13(5): 969–977.
    [109] Comanescu M, Xu L. An improved flux observer based on PLL frequency estimator for sensorless vector control of induction motors[J]. IEEE Transactions on Industrial Electronics, 2006,53(1):50-56.
    [110] Ching-Tsai Pan, Yi-Hung Liao. Modeling and Coordinate Control of Circulating Currents in Parallel Three-Phase Boost Rectifiers[J] . IEEE Transactions on Industrial Electronics, 2007, 54( 7) : 825- 838.
    [111] Zhihong Ye, Boroyevich D,Jae-Young Choi, Lee, et al. Control of circulating current in two parallel three-phase boost rectifiers[J]. IEEE Transactions on Power Electronics, 2002,17(5): 609–615.
    [112] Xing K, Lee F C, Boroyevich D, et al. Interleaved PWM with discontinuous space-vector modulation[J]. IEEE Transactions on Power Electronics, 1999,14(5): 906–917.
    [113] Sato Y, Kataoka T. Simplified control strategy to improve Ac-input current waveform of parallel-connected current-type PWM rectifiers[J].IEE Proceedings Electric Power Applications,1995,142(4):246-254.
    [114] Matsui K, Murai Y, Watanabe M, et al. A pulsewidth-modulated inverter with parallel-connected transistors using current-sharing reactors[J]. IEEE Transactions on Industrial Electronics,1993,8(2):186-191.
    [115] Mazumder S K. A novel discrete control strategy for independent stabilization of parallel three-phase boost converters by combining spacevector modulation with variable-structure control[J]. IEEE Transactions on Industrial Electronics,2003,18(4):1070-1083.
    [116] Mazumder S K. Continuous and discrete variable-structure controls for parallel three-phase boost rectifier[J]. IEEE Transactions on Industrial Electronics,2005,52(2):340-354.
    [117] Zhe Chen, Guerrero J M, Blaabjerg F. A Review of the State of the Art of Power Electronics for Wind Turbines[J]. IEEE Transactions on Power Electronics, 2009,24(8): 1859–1875.
    [118] Esmaili R, Xu L, Nichols D K. A new control method of permanent magnet generator for maximum power tracking in wind turbine application[C]. Power Engineering Society General Meeting, 2005:2090-2095.
    [119]赵仁德,王永军,张加胜.直驱式永磁同步风力发电系统最大功率追踪控制[J].中国电机工程学报,2009,29(27):106-111.
    [120] Yiguang Chen,Zhiqiang Wang,et al. A control strategy of direct driven permanent magnet synchronous generator for maximum power point tracking in wind turbine application[C]. International Conference on Electrical Machines and Systems, 2008: 3921– 3926.