鸡AMPD1基因多态性及其与肌苷酸含量关系的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国地方畜禽品种素以肉质细嫩、肉味香浓等特性而著称于世。在过去的几十年中,家禽育种工作取得了巨大成就,尤其是肉鸡的生长速度得到了前所未有的提高。同时随着人民生活水平的提高,对肌肉品质的要求也越来越高。目前世界上已有不少国家以肌苷酸(inosine monophosphate,IMP)含量作为肉质风味及新鲜程度的衡量指标。传统的育种手段难以使产肉量和肉质均得以提高,因此育种工作者努力寻找影响肉质性状的主效基因及QTLs。候选基因法是研究动物数量性状遗传机制的方法之一。本研究选用五个地方品种鸡泰和乌骨鸡、北京油鸡、崇仁麻鸡、鹿苑鸡、霞烟鸡和一个引进肉用型品种AA鸡共448个个体作为供试群体,采用PCR-RF-SSCP技术对肌苷酸含量的候选基因AMPD1(adenosine monophosphate deaminase 1,腺苷一磷酸脱氨酶1)基因进行研究,同时对其等位基因进行克隆测序,并分析了AMPD1的不同基因型与北京油鸡IMP含量的关系,目的是为确定影响肌肉肌苷酸含量的主效基因或与其紧密连锁的遗传标记奠定基础。
     利用PCR-RF-SSCP技术研究肌肉风味物质IMP的潜在候选基因AMPD1。在供试的六个鸡品种中发现,AMPD1基因有3个等位基因A、B、C,6个基因型AA、AB、AC、BB、BC、CC。各基因型在品种间分布差异显著(P<0.01)。等位基因A、B、C除泰和乌骨鸡无A基因外,在其它5个品种中都存在,其中B基因在北京油鸡、AA鸡、鹿苑鸡、霞烟鸡为优势基因(频率分别为0.6597,0.5750,0.7051,0.7250),而C基因在泰和乌骨鸡中为优势基因(0.6625)。通过Hardy-Weinberg平衡检验表明泰和乌骨鸡、AA鸡严重偏离遗传平衡(P<0.01),其余4个品种符合处于遗传平衡(P>0.05)。崇仁麻鸡的多态信息含量(PIC)为0.5916,即高度多态,其它品种均属于中度多态。
     对AMPD1等位基因A、B、C进行克隆测序发现(因无注册的鸡的AMPD1基因序列,以A为标准),等位基因B和等位基因A只有一个碱基之差,即C→T(402),
    
    而等位基因C与等位基因A不同之处多达11个,它们有的缺失,有的替换.这
    11处突变位点分别为G、T(361)、A缺失(373)、T缺失(404)、G*T(420)、
    C一T(434)、G*A(456)、A一G(469)、G一A(473)、G,A(486)、G一A(491)、
    G一A(493).
     方差分析表明,A栩叨1不同基因型对IMP含量影响不显著(P)0.05),
    不同基因型与肌普酸含量关系的最小二乘均值分析表明,基因型AC所对应的
    肌等酸含量最高(3.7470),BB型次之(3.1700),AC、BB对应的肌普酸含量
    显著高于基因型AA(2 .4145)(P(0.05).肌普酸含量在月树叨了其余基因型
    之间没有显著差异(P>0.05).
     在后续工作中,需要更大的群体规模以及泰和乌骨鸡、AA鸡、崇仁麻鸡、
    鹿苑鸡、霞烟鸡的肌普酸含量记录,结合更多相关的候选基因或DNA标记进
    行分析,寻求与IMP含量紧密连锁的遗传标记,以便应用于标记辅助选择
    (MAS)中.
Chinese native chicken breeds are famous for their tender and flavor. During the last years, the improvement has been made by traditional breeding methods. As the living conditions improved, the needs not only for meat production but also for meat quality are also increased. At present, more and more countries use IMP (inosine monophosphate) content as the criterion of meat flavor and freshness. But it is difficult to improve both the quantity and quality of meat by the traditional breeding methods. Therefore, the major genes and QTLs affecting meat quality are studied. Candidate gene method is one of the approaches used to study quantitative trait in animals. In this study, DNA samples from 448 chickens including five Chinese native chicken breeds: Taihe silky fowl, Beijing oil chicken, Chongren Ma chicken, Luyuan chicken, Xiayan chicken and one imported meat breed: Arbor Acres were analyzed. AMPD1 gene was studied by PCR-RF-SSCP. Meanwhile the alleles of AMPD1 gene were cloned and sequenced. The effect of different genotypes on IMP content was analyzed. The aim of this study was to determine the major gene affecting IMP content or the genetic markers tightly linked with it.
    Three alleles and six genotypes for AMPD1 locus in the six chicken breeds by PCR-RF-SSCP were found. The genotype frequency was significantly different (P < 0.01) among breeds. Allele A was not found in Taihe silky fow, alleles A, B and C were all found in other five chicken breeds. Allele B was the superior gene for Beijing oil chicken, Arbor Acres, Luyuan chicken, Xiayan chicken (allele frequencies were 0.6597, 0.5750, 0.7051, 0.7250 respectively). The test of Hardy-Weinberg equilibrium showed that Taihe silky fowl and Arbor Acres much diverged from the genetic equilibrium (P < 0.01). Study on polymorphic information content for AMPDl showed that Chongren Ma had highly polymorphic (0.5916) and the other five chicken breeds had moderately polymorphic.
    Cloning and sequencing of AMPD1 alleles A, B, C showed that allele B had only one base difference with allele A with C-->T(402), while allele C had eleven mutations with some base lost and others substituted: G-->T (361), the lost of A (373), the lost of T (404), G -->T (420), C-->T (434), G-->A (456), A-->G (469), G-->A (473), G-->A (486), G-->A (491), G-->A (493) (Because no sequence of AMPDl gene for chicken was enrolled in GeneBank, allele A was used as the criterion)
    Analysis of variance indicated that AMPD1 genotypes didn't significantly influence the IMP content (P>0.05). Least squares means of IMP content for AC and BB (3.7470, 3.1700) were higher than that for AA (2.4145)(P<0.05), and that for other genotypes not significant (P>0.05).
    It is necessary to have records of other five chicken breeds for further exploring genetic marker linked with major gene affecting IMP content by using more animals and combining
    
    
    
    more related candidate genes. It is certain that genetic marker will play more important role in marker assisted selection of animal breeding practice.
引文
1.陈国宏,候水生,吴信生,王克华,陈宽维,李建凡.中国鸡品种肌肉肌苷酸含量研究.畜牧兽医学报,2000,31(3):211~215
    2.陈国宏,李慧芳,陈宽维,张学余,吴信生,王克华,常国斌.泰和乌骨鸡肌肉肌苷酸含量变化规律研究.第三届优质鸡的改良生产暨发展研讨会论文集,2001,11:239~244
    3.陈国宏,吴信生,李碧春.中国部分鸡种肌肉的肌苷酸含量比较研究.1991,中国畜产与食品,1991,4(5)增刊:75~77
    4.陈继兰,赵桂苹,郑麦青,文杰.快速与慢速肉鸡脂肪生长与肌苷酸含量比较.中国家禽,2002,(8):16~18
    5.丁耐克.食品风味化学.北京:中国轻工业出版社,1996,252~261
    6.傅伟龙,陈鹭江.泰和公鸡外周血浆睾酮含量的变化.中国畜牧杂志,1998,(5):24~25
    7.管镇,陈明朗,陈宏生.六个鸡种群体遗传结构的探讨.优质黄羽鸡品系选育和配套研究论文集.中国农业科技出版社,1995,242~249
    8.胡慰望,谢笔钧.食品化学.北京:科学出版社,1992
    9.黄梅丽,江小梅编.食品化学.中国人民大学出版社.1986
    10.黄梅南,孙树侠,郭丹滨,张智勇,张纯,刘静明.我国优质黄羽鸡风味理化特性研究(综述).中国农业科学院畜牧研究所主编,优质黄羽鸡品系选育和配套研究论文集.北京:中国农业科技出版社,1996,198~206
    11.李慧芳,陈国宏,吴信生,杨凤萍.动物肌肉肌苷酸研究进展.动物科学与动物医学,1999,16(4):6~7
    12.李家胜,陈民利.高效液相色谱法测定畜禽肌肉中的肌苷酸含量.浙江农业大学学报,1998,24(3):295~296
    13.李建凡,黄梅南.不同品种鸡胸肌肉中肌苷酸含量比较.见中国农科院畜牧研究所主编,优质黄羽鸡品系选育和配套研究论文集.北京:中国农业科技出版社,1995,287~290
    14.刘望夷,竺来发,翁志发,沈洪民.肉用鸡肌肉中肌苷酸含量的比较.中国农业科学,1980,(4):79~83
    15.《食品生物化学》.无锡轻工业学院、天津轻工业学院合编.中国轻工业出版社.1981:151~171
    16.《食物成分表》中国预防医学科学院营养与食品卫生研究所编。人民卫生出版社,1982
    17.苏淑贞,朱汉炎,刘建梁,李民.鹌鹁、鸡、鸽子肌肉中的肌苷酸含量的比较.家禽,1987,(2):32~33
    18.苏淑贞,吕志强,庞新位,岳振银,李同洲.不同品种猪肉肌苷酸含量的测定.中国畜
    
    牧杂志,1989,(6):13~15
    19.孙玉民,罗明主编.畜禽肉品学.山东科技出版社,1991
    20.徐日福.肉用型鸡血浆激素含量与肉质指标关系的研究。第九次全国动物遗传育种学讨论会论文集.1997,北京:中国农业科技出版社,340~343
    21.杨勇,朱庆.我国地方畜禽品种肉质特性的研究。黑龙江畜牧兽医,1999,(8):11~12
    22.岳永生,唐辉.优质肉鸡定量标准的探讨.第九次全国动物遗传育种学术讨论会论文集,343~348
    23.张德祥,张细权,宋焕禄.优质鸡育种.中国家禽,2001,23(23):15~17
    24. Ashby B, Frieden C. Adenylate deaminase-kinetic and binding studies on the rabbit muscle enzyme. J Biol Chem,1978,253(24):8728~8735
    25. Awrie RA. Chemical changes in meat due to processing—a review. J Sci Food Agric, 1968, 19(5): 233~240
    26. Berta P, Hawkins JR, Sinclair AH. Genetic evidence equating SRY and the test-determining factor. Nature, 1990, 348: 448~453
    27. Boosman A, Chilson OP. Subunit structure of AMP-deaminase from chicken and rabbit skeletal muscle. J Biol Chem,1976, 251(7): 1847~1852
    28. Botstein D, White RL, Skolnick M, Davis RW. Construction of a genetic linkage map in man using restriction fragment length polymorphisms. Am J Hum Genet, 1980, 32(3): 314~331
    29. Chilson OP, Kelly-Chilson AE, Siegel NR. AMP-deaminases from chicken and rabbit muscle: partial primary sequences of homologous 17-kDa CNBr fragments: autorecognition by rabbit anti-[chicken AMPD]. Comp Biochem Physiol B Biochem Mol Bio. 1997, 116(3): 371~377
    30. Coffee C J, Solano C. Rat muscle 5'-adenylic acid aminohydrolase. Role of K+ and adenylate energy charge in expression of kinetic and regulatory properties. J Biol Chem,1977,252(5): 1606~1612
    31. Davidek J, Khan AW. Estimation of inosinic acid in chicken muscle and its formation and degradation during post-mortem aging. Journal of Food Science, 1967,32:155
    32. Dubois,GE & Lee, JF. A simple technique for the evaluation of temporal taste properties. Chemical Senses, 1983,7(3): 237~247
    33. Fishbein W N, Armbrustmacher V W, Griffin J L. Myoadenylate deficiency: a new disease of muscle. Science, 1978, 200: 545~548
    34. Forrest J C, et al. Principle of Meat Science. W. H. Freeman & Company, USA, 1978
    35. Fuke S, Konosu S. Taste-active components in some food. A review of Japanese research physiol Behav, 1991, 40(5):863~868
    36. Fukuoka S, lnoue T, Miyao A, Monna L, Zhong HS, Sasaki T, Minobe Y.Mapping of sequence-tagged sites in rice by single strand conformation polymorphism. DNA
    
    Research. 1994,1(6): 271~277
    37. Genetta T, Morisaki H, Morisaki T, Holmes EW. A novel bipartite intronic splicing enhancer promotes the inclusion of a mini-exon in the AMP deaminase 1 gene. J Biol Chem, 2001,276(27):25589~25597
    38. Gross M, Morisaki H, Morisaki T, Holmes EW. Identification of functional domains in AMPD1 by mutational analysis. Biochem. Biophys. Res. Commun, 1994,205 (2): 1010~1017
    39. Hayashi K. PCR-SSCP: a method for detection of mutations. Genet Anal Tech Appl 1992, 9(3): 73~79
    40. Heath H, Gary Reineccius. Flavor Chemistry And Technology. Kluwer Academic Publishers, July 1986, 442 pp
    41. Hisatome I, Morisaki T, Kamma H, Sugama T, Morisaki H, Ohtahara A, Holmes EW. Control of AMP deaminase 1 binding to myosin heavy chain. Am J Physiol, 1998,275(3 Pt 1):870~881
    42. Hoshino S, Kimura A, Fukuda Y, Dohi K, Sasazuki T. Polymerase chain reaction-single-strand conformation polymorphism analysis of polymorphism in DPA1 and DPB1 genes: a simple, economical, and rapid method for histocompatibility testing. Hum Immunol, 1992, 33(2): 98~107
    43. Jack HM, Beck-Engeser G, Lee G, Wofsy D, Wabl M. Tumorigenesis mediated by an antigen receptor. Proc Natl Acad Sci U S A, 1992,89(18): 8482~8486
    44. Kauppinen R, Mustajoki S, Pihlaja H, Peltonen L, Mustajoki P. Acute intermittent porphyria in Finland: 19 mutations in the porphobilinogen deaminase gene. Hum Mol Genet, 1995, 4(2): 215~222
    45. Khan AW, Davide K J, Lentz C P. Degradation of inosinic acid in chicken muscle during aseptic storage and its possible use as an index of quality. Journal of Food Science, 1968, 33: 25~27
    46. Koretz JF, Frieden C. Adenylate deaminase binding to synthetic thick filaments of myosin. Proc. Natl. Acad. Sci USA, 1980,77(2): 7186~7188
    47. Koretz JF, Irving TC, Wang K. Filamentous aggregates of native titin and binding of c-protein and AMP-deaminase.Arch. Biochem. Biophys, 1993, 304 (2): 305~309
    48. Kovar H, Jug G, Auer H, Skern T, Blaas D. Two dimensional single-strand conformation polymorphism analysis: a useful tool for the detection of mutations in long DNA fragments. Nucleic Acids Res, 1991, 19(13): 3507~3510
    49. Labeit S, Kolmerer B. Titins: giant proteins in charge of muscle ultrastructure and elasticity. Science, 1995, 270(5234): 293~296
    50. Liu Q, Sommer SS. Restriction endonuclease fingerprinting (REF): a sensitive method for screening mutations in long, contiguous segments of DNA. Biotechniques, 1995,18(3): 470~477
    
    
    51. Mahnke-Zizelman DK, D'cunha J, Wojnar JM, Brogley MA, Sabina RL. Regulation of rat AMP deaminase 3 (isoform C) by development and skeletal muscle fibre type. Biochem J, 1997,326(Pt2):521~529
    52. Manoba T, Hasegawa K. Sensory changes in umami taste of inosine 5'-monophosphate solution after heating. Journal of Food Science, 1991, 56(5): 1429~1432.
    53. Marquetant R, Sabina RL, and Holmes EW. Identification of a noncataiytie domain in AMP deaminase that influences binding to myosin. Biochemistry, 1989,28 (22): 8744~8749
    54. Merkler D J, Schramm VL. Catalytic mechanism of yeast adenosine 5'-monophosphate deaminase, Zinc content, substrate specificity, pH studies, and solvent isotope effects. Biochemistry, 1993, 32(22): 5792~5799
    55. Mineo I, Holmes EW. Exon recognition and nueleocytoplasmic partitioning determine AMPD1 alternative transcript production. Mol Cell Biol, 1991, 11(10): 5356~5363
    56. Mineo I, Clarke PR, Sabina RL, Holmes EW. A novel pathway for alternative splicing: identification of an RNA intermediate that generates an alternative 5' splice donor site not present in the primary transcript of AMPD1. Mol Cell Biol, 1990, 10(10): 5271~5278
    57. Morisaki H, Morisaki T, Kariko K, Genetta T, Holmes EW. Positive and negative elements mediate control of alternative splicing in the AMPD1 gene. Gene, 2000, 246(1-2): 365~372
    58. Morisaki H, Morisaki T, Newby LK, Holmes EW. Alternative splicing: a mechanism for phenotypic rescue of a common inherited defect. J. Clin. Invest, 1993, 91(5): 2275~2280
    59. Morisaki T, Sabina RL, Holmes EW. Adenylate deaminase. A multigene family in humans and rats. J Biol Chem, 1990, 265(20): 11482~11486
    60. Morisaki T, Sabina RL, Holmes EW. AMP deaminase: a multigene family in man and rat. J. Biol. Chem, 1990,265 (20): 11482~11486
    61. Morisaki T, Gross M, Morisaki H,Pongratz D, Zllner N, Holmes EW. Molecular basis of AMP deaminase deficiency in skeletal muscle. Proc. Natl. Acad. Sci, USA, 1992,89(14): 6457~6461
    62. Noumi T, Mosher ME, Natori S, Futai M, Kanazawa H. A phenylalanine for serine substitution in the beta subunit of Escherichia coli F_1-ATPase affects dependence of its activity on divalent cations. J Biol Chem, 1984, 259(16): 10071~10075
    63. Online Mendelian Inheritance in man O.M.I.M.(1999) world wide web. U.R.L. http://www.ncbi.nih.gov/omim/.
    64. Orita M, Sekiya T, Hayashi K. DNA sequence polymorphisms in Alu repeats. Genomics, 1990, 8(2): 271~278
    65. Orita M, Iwahana H, Kanazawa H, Hayashi K, Sekiya T. Detection of polymorph- isms of human DNA by gel electrophoresis as single strand conformation polymorphisms. Proc
    
    Natl Acad Sci USA, 1989, 86(8): 2766~2770
    66. Ronca F, Ranieri-Raggi M, Brown PE, Moir AJ, Raggi A. Evidence of a species-differentiated regulatory domain within the N-terminal region of skeletal muscle AMP deaminase. Biochim Biophys Acta, 1994, 1209(1): 123~129
    67. Ronca-Testoni S, Ronca G. Muscle 5'-adenylic acid aminohydrolase. Kinetic properties of rat muscle enzyme treated with pyridoxal 5'-phosphate. J Biol Chem, 1974,249(24): 7723~7728
    68. Rundell KW, Tullson PC, Terjung RL. Altered kinetics of AMP deaminase by myosin binding. Am J Physiol, 1992, 263(2 Pt 1): 294~299
    69. Rundell KW, Tullson PC, Terjung RL. AMP deaminase binding in contracting rat skeletal muscle. Am J Physiol, 1992, 263(2 Pt 1):287~293
    70. Sabina RL, Fishbein WN, Pezeshkpour G, Clarke PR, Holmes EW. Molecular analysis of the myoadenylate deaminase deficiencies. Neurology, 1992, 42(1): 170~179
    71. Sabina RL, Marquetant R, Desai NM, Kaletha M, Holmes and EW. Cloning and sequence of rat myoadenylate deaminase cDNA: evidence for tissue-specific and developmental regulation. J Biol Chem, 1987, 262(26): 12397~12400
    72. Sabina RL, Morisaki T, Clarke P, Eddy R, Shows TB, Morton CC, Holmes EW. Characterization of the human and rat myoadenylate deaminase genes. J Biol Chem, 1990, 265(16): 9423~9433
    73. Schiffman,SS. Recent developments in taste enhancement. Food Technology. 1987, 41(6): 72~73
    74. Stratil A, Knoll A, Moser G, Kopecny M, Geldermann H. The porcine adenosine monophosphate deaminase 1 (AMPD1) gene maps to chromosome 4. Anim Genet, 2000, 31(2): 147~148
    75. Ushijima T, Hosoya Y, Suzuki T, Sofuni T, Sugimura T, Nagao M. A rapid method for detection of mutations in the lacⅠ gene using PCR-single strand conformation polymorphism analysis: demonstration of its high sensitivity. Mutat Res, 1995,334 (3): 283~292
    76. Wheeler TJ, Lowenstein JM. Adenylate deaminase from rat muscle. Regulation by purine nucleotides and orthophosphate in the presence of 150 mM KCl. J Biol Chem. 1979, 254(18): 8994~8999
    77. Yoshino M, Miyajima E, Tsushima K. Inhibition of AMP deaminase of bovine brain and liver by oil acyl-CoA derivatives. FEBS Lett, 1976,72(1): 143~146