中国东北佳木斯地块及邻区晚中生代岩浆作用和构造意义
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
佳木斯地块位于中国东北,构造上处于华北克拉通和西伯利亚克拉通之间,作为环太平洋构造带的拼贴地块,在早中生代与西部的松辽地块发生陆陆碰撞,成为欧亚大陆的一部分,并开始受到古太平洋板块俯冲的影响。在古太平洋板块俯冲引起的弧后区域构造伸展的背景下,佳木斯地块以及整个欧亚大陆东部广泛分布晚中生代至新生代的岩浆岩。研究这些岩浆岩的年代及岩石学成因,对了解区域晚中生代大地构造演化有着重要意义。
     本论文在中国东北佳木斯地块及邻区选取典型的白垩纪火山岩或次火山岩剖面进行系统的野外地质、岩相学、锆石SHRIMP U-Pb年代学、地球化学、Sr-Nd同位素及锆石Lu-Hf同位素、锆石O同位素研究,精细确定了佳木斯地块晚中生代岩浆活动的年代,反演各岩浆岩的源区性质以及成因机制;并在此基础上,综合区域地质背景及洋壳俯冲的最新研究结果,通过与大兴安岭、松辽盆地及欧亚大陆东缘其他地区的岩浆岩年代学、地球化学特征的对比,归纳了中国东北地区晚中生代岩浆作用的空间迁移规律,并提出岩浆及构造解释模型。
     论文主要成果如下:
     1.佳木斯地块晚中生代岩浆活动集中发生在白垩纪中期104﹣100Ma。其中,穆棱地区伊林组流纹岩和乌拉嘎花岗斑岩锆石SHRIMP年龄均为104±1Ma;鹤岗松木河组玄武岩的年龄约为102﹣101Ma;桦南复合岩墙和其围岩、佳木斯双峰式岩墙均形成于100±2Ma。
     2.佳木斯地块晚中生代岩浆岩地球化学整体上属于高钾钙碱性系列,并具有双峰式特征,富集轻稀土元素和大离子亲石元素,亏损高场强元素,形成于活动大陆边缘板内伸展的构造背景,具有多样的岩石成因类型。
     3.穆棱地区伊林组流纹岩高Sr,高La/Yb,低Yb,高Mg#(~0.57),属于高镁埃达克岩。正的εNd(t)=+0.75、较低的锆石δ~(18)O=5.6﹣6.7、εHf(t)=5.8﹣12.7表明,其形成于受俯冲洋壳脱水交代的地幔橄榄岩的部分熔融。负Eu异常和Ba异常说明源区残留矿物含斜长石,熔融压力相对较小。部分样品Sr含量、Sr同位素比值、Mg#变化范围较大,可能受岩浆-地表水相互作用影响。乌拉嘎金矿岩体有两种花岗斑岩,一种为角闪花岗斑岩,侵入早白垩世宁远村组地层之中,高Sr、La/Yb,低Y、Yb,高Mg#(0.57),亦属于高镁埃达克岩,εNd(t)值为+0.5,与伊林组流纹岩接近。不同的是,锆石δ~(18)O较高(~8.0),Y含量更低(7.5﹣8.3ppm),表明其形成于俯冲洋壳的部分熔融并接受了很少程度的地幔的交代混染,源区残留矿物可能为石榴子石、角闪石和金红石,熔融压力相对较大。另一种花岗斑岩和前者相比,虽位于同一个岩体,但无角闪石、黑云母,侵入到麻山群副变质岩之中,相近的log (Na_2O/MgO)值,但高的铝饱和指数特征表明,其不是源自角闪花岗斑岩的结晶分异,而是属于S型花岗岩类,形成于埃达克质岩浆侵位引发上地壳围岩部分熔融形成的。
     4.松木河组玄武岩具有较高的SiO_2(52.09﹣53.22%),Na_2O含量为4.25﹣4.36%,K_2O含量为1.32﹣1.35%,在TAS图解中位于玄武质碱性安山岩范围。高铝(17.97﹣19.04%)、低镁(3.00﹣3.98%)、低Mg#(0.42﹣0.45)的特征表明岩浆经历过较高程度的结晶分异或地壳混染;没有Eu负异常(Eu/Eu*=0.98﹣1.00),在球粒陨石标准化蛛网图中,除Nb, Ta, P, Ti and Y元素亏损、Pb元素的富集,其他元素按相容性排序递减,以及正的εNd(t)值(+2.9﹣+3.0),表明基性岩浆没有经历显著的地壳混染,源区为亏损地幔。偏高的(~(87)Sr/~(86)Sr)i值(0.70565﹣0.70571)表明地幔源区受到俯冲洋壳中受海水蚀变的玄武岩的影响。在构造判别图中,松木河组玄武岩位于活动大陆边缘弧后板内伸展环境下,代表了佳木斯地块中白垩世玄武质岩浆活动的开始及岩石圈进一步的伸展。
     5.桦南复合岩墙位于佳木斯地块的中部,由各3米宽的安山斑岩的边部和5米宽的流纹斑岩的核部组成,其围岩为含安山岩包体的花岗斑岩。安山岩包体大多呈浑圆状;部分成次棱角状并具暗色矿物反应边,但岩石成分与浑圆状包体相同,它们都形成于因基性岩浆与酸性岩浆温差过大导致的基性岩浆在酸性岩浆中的淬冷作用。复合岩墙安山斑岩、流纹斑岩的锆石中含大量流体包裹体以及针状磷灰石,表明其岩浆也经历了快速的冷却。复合岩墙核部的流纹斑岩与含安山岩包体的花岗斑岩围岩地球化学特征相似,表现为高SiO_2、低MgO和Fe2O3、高Al2O3、LILE和LREE富集、HFSE亏损、Eu、Ba、U、Sr负异常等特征,源区为中上部地壳;安山岩包体无Eu负异常、低硅高镁铁,原始岩浆可能为玄武质;复合岩墙边部安山斑岩的中心位置的SiO_2含量相对最低,εNd(t)最高,最能代表原始玄武质岩浆的成分,可能来自于富集岩石圈地幔;距流纹斑岩岩墙及酸性围岩越近,SiO_2含量增加,εNd(t)值降低,表明受到越多酸性岩浆的混染。桦南复合岩墙及其含安山岩包体花岗斑岩围岩显示了玄武质岩浆和地壳组分不同程度的相互作用,标志着中白垩世100Ma玄武质岩浆的底侵以及快速的构造伸展。
     6.佳木斯双峰式岩墙位于佳木斯地快的西部,岩墙由流纹岩岩墙和辉绿岩岩墙组成。流纹岩SiO_2含量为74.99﹣76.09%,Na_2O含量为2.55﹣4.92%,K_2O含量为2.72﹣6.30%,富集大离子亲石元素和轻稀土元素,高场强元素Nb、Ta、P、Ti亏损,具有显著的Eu、Sr、Ba负异常,εNd(t)=0.49﹣1.66,低Mg#(0.01﹣0.17),具有铁质花岗岩(A型花岗岩)的特征,~(87)Sr/~(86)Sr比值分为两组(0.7045和0.7061),表明铁质流纹岩分别来源于玄武岩的结晶分异和地壳的减压部分熔融。辉绿岩SiO_2含量为47.10﹣53.49%,Na_2O含量为2.44﹣4.58%,K_2O含量为0.74﹣2.89%,在TAS图解中分别位于玄武岩和安山岩范围,属钙碱性系列。较高的Mg#(0.57﹣0.67)、没有或有较弱的Eu负异常(Eu/Eu*=0.85﹣1.02),εNd(t)值为–1~+4,表明辉绿岩来自软流圈地幔与岩石圈地幔不同程度的相互作用。大离子亲石元素富集、高场强元素亏损,偏高的(~(87)Sr/~(86)Sr)i表明源区受到俯冲洋壳中的受海水蚀变的玄武岩或受俯冲作用卷入到地幔深部的陆源沉积物的影响。佳木斯双峰式岩墙辉绿岩及铁质流纹岩标志着区域地壳发生了强烈的减薄与地幔物质上涌,标志着区域构造伸展。
     7.佳木斯地区多样的岩浆类型包括高镁埃达克岩、铁质流纹岩、玄武岩及丰富的玄武质岩浆-壳源酸性岩浆混合及双峰式岩浆作用等等现象,这些现象揭示了洋壳俯冲至地幔转换带脱水、部分熔融;脱水形成的流体及部分熔融形成的熔体交代岩石圈地幔;洋壳脱水引发软流圈地幔及岩石圈地幔的部分熔融、基性岩浆上涌;基性岩浆侵入上地壳引发沉积地壳的部分熔融、形成S型酸性岩浆,基性岩浆与S型酸性岩浆不同程度的混合、混染;基性岩浆底侵到减薄的地壳下部,形成铁质(A型)流纹岩等等过程,这些过程形成的岩浆能够上升到地表或近地表,指示了岩石圈的快速伸展、减薄,与俯冲洋壳后撤引发区域构造伸展有关。
     8.对中国东北地区晚中生代岩浆岩年龄数据的整理表明,岩浆活动的开始时间具有由西向东由老变新的时空分布特征。大兴安岭的岩浆活动起始于160Ma,强烈活动至少持续至120Ma;松辽盆地的岩浆活动主要以营城组火山岩为代表,在120Ma-110Ma;佳木斯地块的岩浆活动则主要发生在110Ma-90Ma。这一规律可以用洋壳俯冲-堆积-后撤的模型来解释,即洋壳低角度俯冲至地幔转换带、俯冲洋壳在地幔转换带中堆积、堆积过程导致继续向地幔转换带俯冲堆积产生阻力、俯冲洋壳后撤,俯冲角度变大,在更换了堆积位置之后开始新的一轮循环。这一模型指出,在洋壳运动速率和方向不发生改变的情况下,通过俯冲-堆积-后撤,同样可以形成板内构造的幕式演化,这对中国东部其他地区的晚中生代板内幕式岩浆活动的解释仍具有借鉴意义。
The Jiamusi Block of NE China is located between the North China and Siberiacratons. It collided with the Songliao Block to the west in the early Mesozoic as one of thecircum-pacific accreted blocks, and formed the unified Eurasian eastern boundary as aresult of subduction of the paleo-Pacific plate. Huge amounts of igneous rocks wereproduced in the whole of eastern Eurasia, including the Jiamusi Block, caused by back-arcintraplate extension triggered by paleo-pacific subduction. Study of the petrogenesis ofthese igneous rocks is important for understanding the nature of the late Mesozoicmagmatism and geodynamic evolution of the Jiamusi block and eastern China.
     For this research, typical late Mesozoic geological sections were selected from theJiamusi Block for field geology, petrographic study, zircon SHRIMP U-Pb geochronology,geochemistry, Sr-Nd isotope, zircon Lu-Hf isotope and zircon O-isotope study, in order toaccurately determine the age of the late Mesozoic igneous rocks and their petrogenesis.This study also summarizes previous research of subduction processes in the region andcompares the geochronological and geochemical results with the igneous rocks in the GreatXing’an Range, the Songliao Basin, and other areas of East Asia. Finally the temporalrelationship of the igneous rocks in NE China is discussed and illustrated by utilizingseveral models.
     The main achievements and conclusions of this thesis are as follows:
     (1) The late Mesozoic magmatism of the Jiamusi Block mainly occurred in themid-Cretaceous between104±1and100±2Ma. Zircon SHIRMP U-Pb dating shows thatthe Yilin Formation rhyolite and Wulaga granite porphyry have the same age of104±1Ma; the Hegang Songmuhe Formation basalt erupted between103±2and100±2Ma;and the Huanan composite dyke and its country rock and the Jiamusi bimodal dykes wereall emplaced at100±2Ma.
     (2) The mid-Cretaceous igneous rocks of the Jiamusi Block belong to the high-Kcalc-alkaline series, with a bimodal signature. They are all rich in LILE and HREE,depleted in HFSE, and formed in an active continental margin or intraplate tectonic setting.
     (3) The Yilin Formation rhyolite is a high-Mg adakite, with geochemical signature ofhigh-Sr and La/Yb, low-Yb and Y, and high Mg#(~0.57). Positive εNd(t)(~+0.75), lowzircon δ~(18)O (5.6-6.7) and positive εHf(t)(5.8-12.7) suggest that the source of the adakite ismantle peridotite metasomatized by slab derived melt/fluid. Negative Eu and Ba anomaliesindicate residual plagioclase in the source and low melting pressure. Some samples have low Sr contents and abnormal~(87)Sr/~(86)Sr values, possibly caused by magma-ground waterinteraction. The Wulaga pluton has two types of granite porphyry. One is hornblendegranite porphyry which invaded into the early Cretaceous Ningyuancun Formationsandstone and tuff. The geochemical features of high Sr (>300ppm), low Y (~8ppm), highMg#(~0.57), positive εHf(t)(6.3-12.7) and εNd(t)(~+0.5) show that the hornblende graniteporphyry is also a high-Mg adakite, similar to the Yilin Formation rhyolite. However, thecrustal zircon δ~(18)O (~8.0) and lower Y content (7.5-8.3ppm) suggest that it was derivedfrom the partial melting of a subducted slab but experienced minor mantle contamination,while the melting pressure was relatively high, with garnet, hornblende and rutile asresidual minerals. The other type of granite porphyry has only minor hornblende. Itinvaded into khondalitic rocks of the pan-African Mashan Complex. Higher aluminumsaturation index but consistent log (Na_2O/MgO) values compared with the hornblendegranite porphyry suggests that it was derived from partial melting of upper continentalcrust triggered by adakitic magma upwelling and emplacement.
     (4) The Hegang Songmuhe Formation basalt has relatively high SiO_2contents(52.1-53.2%), with4.25-4.36%Na_2O and1.32-1.35%K_2O, putting it into the alkalinebasaltic andesite field in the TAS diagram. The high Al2O3(18.0-19.0%) and low MgO(3.0-4.0%) contents and Mg#of0.42-0.45are features indicative of magma thatexperienced high degrees of crystal fractionation. No Eu anomalies (Eu/Eu*=0.98-1.00),high εNd(t) values (2.9-3.0), and flat LILE patterns suggest that crustal contamination wasminor. High εNd(t) and relatively low (~(87)Sr/~(86)Sr)isuggest that the mantle source wasdepleted. The (~(87)Sr/~(86)Sr)iratios (0.70565-0.70571) are higher than expected for normalasthenosphere-derived basalt, indicating that the mantle source was affected by subductedoceanic crust basalt which was altered by sea water. In tectonic discrimination diagrams,the Songmuhe Formation basalt plots in the active continental margin and intraplate field.It represents the beginning of the mafic magmatism in the Jiamusi Block, and extention ofthe lithosphere in the mid-Cretaceous.
     (5) The Huanan composite dyke is located in the centre of the Jiamusi Block. Itconsists of two3m wide andesite porphyry margins and one5m wide rhyolite porphyryinterior. Zircons from the andesite and rhyolite porphyry have abundant acicular apatiteinclusions indicating fast cooling considering the crystalization temperature drop fromapatite to zircon. Both granite porphyry and rhyolite porphyry have high SiO_2and Al2O3,low MgO and Fe2O3, with enrichment of LILE and LREE, and depletion of HFSE, Eu, Ba, U, and Sr; their sources are most possibly upper continental crust. The andesite porphyrywas contaminated invarious degrees by the acidic magma. The Huanan composite dykeand its country rock represent interaction between basaltic magma and upper continentalcrust; it also represents evidence of extension of the Jiamusi Block in the mid-Cretaceous.
     (6) The Jiamusi bimodal dykes section is located in the west of the Jiamusi block. Itconsists of rhyolite and dolerite dykes. The rhyolite is characterized by enrichment in LILEand LREE, and depletion in HFSE. It shows a significant negative Eu anomaly, and hasεNd(t) values ranging from0.49to1.66and two groups of initial~(87)Sr/~(86)Sr ratios at0.7045and0.7061. The rhyolite displays the compositional signature of Peraluminous FerroanGranitoid (A-type), indicating it was derived by either differentiation of basalt or lowpressure partial melting of continental crust. The dolerite is also characterized byenrichment in LILE and LREE, and depletion in HFSE. It has a weak negative Eu anomalyand has εNd(t)=–1.22to+3.26, and (~(87)Sr/~(86)Sr)i=0.7057–0.7074. The dolerite originatedfrom partial melting and mixing of both asthenospheric and lithospheric mantle which wasaffected by residual oceanic slab or sediment, and experienced different amounts oflithospheric and crustal assimilation and contamination. The Jiamusi bimodal dolerite andferroan (A-type) rhyolite dykes indicate lithospheric thinning, mantle upwelling andtectonic extention.
     (7) The igneous rocks of the Jiamusi Block therefore show a range of types, includinghigh-Mg adakite, ferroan rhyolite, basalt and rocks related to mixing between basalticmagma and crustal acid magma. These various types of rocks show a variety of processes,including: dehydration and partial melting of subducted slab; assimilation andcontamination of mantle peridotite by slab fluid and melt; partial melting of bothasthenospheric and lithospheric mantle triggered by fluid; and basalt upwelling andemplaced into the crust forming partial melting of upper continental crust; mixing andmingling of basaltic magma and crustal magma; basalt upwelling and underplating at thebottom of thinned crust forming ferroan (A-type) rhyolite. Magma formed by theseprocesses ascended to the surface or sub-surface, suggesting an extension and thinning ofthe lithosphere, which is most possibly related with oceanic plate subduction and roll back.
     (8) The late Mesozoic igneous rocks in NE China show an eastward temporalmigration, and can be divided into three separate areas, which are from west to east:(1)The Great Xing'an Range~160-120Ma,(2) The Songliao Block~120-110Ma,(3) TheJiamusi area~110-90Ma. This temporal migration can be interpreted by the subduction– accumulation–rollback model of the paleo-Pacific plate. This model indicates that theepisodic evolution of intraplate structural and magmatism evolution can be interpreted bysubduction-accumulation-rollback of subducted slab, with or without the change of rateand direction of subduction. This model is possibly also helpful to interpret the lateMesozoic tectonic evolution of other areas of eastern China.
引文
曹熹,党增欣,张兴洲.佳木斯复合地体[J].长春吉林科学技术出版杜,1992.
    陈江峰,江博明. Nd, Sr, Pb同位素示踪和中国东南大陆地壳演化.见:郑永飞,主编.化学地球动力学.北京:科学出版社,1999.262-287
    高晓峰.2007.东北地区中生代火成岩Sr-Nd-Pb同位素填图及其对区域构造演化的制约.博士学位论文.中国科学院广州地球化学研究所
    黄映聪,张兴洲,熊小松,等.中国东北依兰地区块状蓝片岩的地球化学特征[J].岩石矿物学杂志,2008,27(5):422-428.
    颉颃强,张福勤,苗来成,等.东北牡丹江地区“黑龙江群”中斜长角闪岩与花岗岩的锆石SHRIMP U-Pb定年及其地质学意义[J].岩石学报,2008,24(6):1237-1250.
    刘财,张兴洲,刘洋等,2009东北亚跃进山拼贴带及邻域岩石圈结构特征的地电学证据.地球物理学报.第52卷第4期
    刘国兴,张兴洲,杨宝俊等,2006佳木斯地块及东缘岩石圈电性结构特征.地球物理学报.第49卷第02期
    刘嘉麒.1999.中国火山.北京:科学出版社,13-125
    孟恩.2008.佳木斯地块东缘及东南缘晚古生代火山岩的年代学和岩石地球化学.硕士学位论文.吉林大学.
    秦江锋2010秦岭造山带晚三叠世花岗岩类成因机制及深部动力学背景博士学位论文西北大学
    任留东,王彦斌,杨崇辉,赵子然,郭进京,高洪林.2012.麻山杂岩的两种变质作用及其与花岗岩的关系.岩石学报,28(9):2855-2865
    任留东,王彦斌,杨崇辉等,2010.麻山杂岩的变质-混合岩化作用和花岗质岩浆活动.岩石学报,26(7):2005-2014
    王海龙,黄宝春,乔庆庆等,2011黑龙江东部白垩纪-古近纪古地磁初步结果及其构造意义.地球物理学报.54(3):793-806
    卫管一,张长俊,1994.岩石学简明教程.地质出版社
    吴福元,李献华,杨进辉,等.花岗岩成因研究的若干问题[J]. Acta Petrologica Sinica,2007,23(6):6.
    于介江,张彦龙,葛文春等,2013三江盆地北缘晚白垩世花岗质岩石的年代学、地球化学及其构造意义.岩石学报.第29卷第2期
    张辉煌.2006.东北伊通-大屯和双辽地区晚中生代-新生代玄武岩地球化学特征:岩石圈演化和太平洋再循环洋壳与玄武岩的成因联系.博士学位论文.中国科学院广州地球化学研究所
    张梅生,彭向东.中国东北区古生代构造古地理格局[J].辽宁地质,1998(2):91-96.
    张旗,潘国强,李承东,等.花岗岩构造环境问题:关于花岗岩研究的思考之三[J].岩石学报,2007,23(11):2683-2698.
    张旗,王焰,钱青,等.中国东部燕山期埃达克岩的特征及其构造一成矿意义[J].岩石学报,2001,17(2):236-244.
    张旗,王元龙,金惟俊等,2008.晚中生代的中国东部高原:证据、问题和启示.地质通报.第27卷第9期
    张兴洲.佳木斯地体的早期碰撞史--黑龙江岩系的构造-岩石学证据(博士学位论文)[D].,1992.
    朱占平,刘立,马瑞,等.黑龙江省鸡西盆地基性岩40Ar/39Ar同位素定年及其地质意义[J].吉林大学学报:地球科学版,2009,39(2):238-243.
    Amelin, Y., Lee, D.C., Halliday, A.N., Pidgeon, R.T.,1999. Nature of the Earth'searliest crust from hafnium isotopes in single detrital zircons. Nature399,252-255.
    Asmerom.1999. Th–U fractionation and mantle structure. Earth Planet Sc Lett.166,163–175.
    Atherton M P, Petford N. Plutonism and the growth of Andean crust at9S from100to3Ma[J]. Journal of South American Earth Sciences,1996,9(1):1-9.
    Bebout G E. Metasomatism in subduction zones of subducted oceanic slabs, mantlewedges, and the slab-mantle interface [M]//Metasomatism and the ChemicalTransformation of Rock. Springer Berlin Heidelberg,2013:289-349.
    Bindeman I. Oxygen isotopes in mantle and crustal magmas as revealed by singlecrystal analysis[J]. Reviews in Mineralogy and Geochemistry,2008,69(1):445-478.
    Bindeman,2008. Oxygen Isotopes in Mantle and Crustal Magmas as Revealed bySingle Crystal Analysis. Reviews in Mineralogy&Geochemistry.69,445-478
    Black, L.P., Kamo, S.L., Allen, C.M., Aleinikoff, J.N., Davis, D.W., Korsch, R.J.,Foudoulis, C.,2003. TEMORA1: a new zircon standard for Phanerozoic U-Pbgeochronology. Chemical Geology200,155-170.
    Blichert-Toft J, Albarède F. The Lu-Hf isotope geochemistry of chondrites and theevolution of the mantle-crust system[J]. Earth and Planetary Science Letters,1997,148(1):243-258.
    BlichertToft, J., Albarede, F.,1997. The Lu-Hf isotope geochemistry of chondritesand the evolution of the mantle-crust system. Earth Planet Sc Lett148,243-258.
    Blundy J D, Sparks R S J. Petrogenesis of mafic inclusions in granitoids of theAdamello Massif, Italy[J]. Journal of Petrology,1992,33(5):1039-1104.
    Cantagrel J M, Didier J, Gourgaud A. Magma mixing: origin of intermediate rocksand “enclaves” from volcanism to plutonism[J]. Physics of the earth andplanetary interiors,1984,35(1):63-76.
    Castillo, P.R.,2012. Adakite petrogenesis. Lithos134,304-316.
    Castro A, Moreno-Ventas I, De La Rosa J D. H-type (hybrid) granitoids: a proposedrevision of the granite-type classification and nomenclature[J]. Earth-sciencereviews,1991,31(3):237-253.
    Castro A, Moreno‐Ventas I, De la Rosa J D. Microgranular enclaves as indicatorsof hybridization processes in granitoid rocks, Hercynian Belt, Spain[J].Geological Journal,1990,25(3‐4):391-404.
    Chappel, B.W. and White, A.J.R.1974. Two contrasting granite types. Pacif. Geol.8:173-174
    Chappell, B.W.,1984. Source Rocks of I-Type and S-Type Granites in the LachlanFold Belt, Southeastern Australia. Philos T R Soc A310,693-707.
    Chappell, B.W., White, A.J.R.,1992. I-Type and S-Type Granites in the Lachlan FoldBelt. T Roy Soc Edin-Earth83,1-26.
    Chappell, B.W., White, A.J.R., Williams, I.S., Wyborn, D.,2004. Low-andhigh-temperature granites. Geol S Am S389,125-140.
    Chen B, Jahn B. Genesis of post-collisional granitoids and basement nature of theJunggar Terrane, NW China: Nd–Sr isotope and trace element evidence[J].Journal of Asian Earth Sciences,2004,23(5):691-703.
    Cheng, R.Y., Wu, F.Y., Ge, W.C., Sun, D.Y., Liu, X.M., Yang, J.H.,2006.Emplacement age of the Raohe Complex in eastern Heilongjiang Province andthe tectonic evolution of the eastern part of Northeastern China. ActaPetrologica Sinica22,353-376(In Chinese with English abstract).
    Chiaradia M, Müntener O, Beate B, et al. Adakite-like volcanism of Ecuador: lowercrust magmatic evolution and recycling[J]. Contributions to Mineralogy andPetrology,2009,158(5):563-588.
    Clemens, J.D., Holloway, J.R., White, A.J.R.,1986. Origin of an A-Type Granite:Experimental Constraints. Am Mineral71,317-324.
    Collins W J, Richards S W. Geodynamic significance of S-type granites incircum-Pacific orogens[J]. Geology,2008,36(7):559-562.
    Collins, W.J., Beams, S.D., White, A.J.R., Chappell, B.W.,1982. Nature and Originof A-Type Granites with Particular Reference to Southeastern Australia.Contributions to Mineralogy and Petrology80,189-200.
    Cox, K. G. J.Petrol.1980,21,629-650, A model for flood basalt volcanism
    Creaser, R.A., White, A.J.R.,1991. Yardea Dacite-Large-Volume,High-Temperature Felsic Volcanism from the Middle Proterozoic ofSouth-Australia. Geology19,48-51.
    Defant, M.J., Drummond, M.S.,1990. Derivation of some modern arc magmas bymelting of young subducted lithosphere. Nature347,662–665
    Didier J, Barbarin B. The different types of enclaves in granites-Nomenclature[J].Enclaves and granite petrology,1991,13:19-24.
    Douce A E P. Generation of metaluminous A-type granites by low-pressure meltingof calc-alkaline granitoids[J]. Geology,1997,25(8):743-746.
    Eiler J M, McInnes B, Valley J W, et al. Oxygen isotope evidence for slab-derivedfluids in the sub-arc mantle[J]. Nature,1998,393(6687):777-781.
    Ersoy, Y., Helvaci, C., Sozbilir, H., Erkul, F., Bozkurt, E.,2008. A geochemicalapproach to Neogene-Quaternary volcanic activity of western Anatolia: Anexample of episodic bimodal volcanism within the Selendi Basin, Turkey.Chemical Geology255,265-282.
    Faure, M., Natalin, B.A., Monie, P., Vrublevsky, A.A., Borukaiev, C., Prikhodko, V.,1995. Tectonic Evolution of the Anuy Metamorphic Rocks (Sikhote-Alin,Russia) and Their Place in the Mesozoic Geodynamic Framework of East Asia.Tectonophysics241,279-301.
    Feng, Z.Q., Jia, C.Z., Xie, X.N., Zhang, S., Feng, Z.H., Cross, T.A.,2010.Tectonostratigraphic units and stratigraphic sequences of the nonmarine Songliaobasin, northeast China. Basin Research22,79-95.
    Frost T P, Mahood G A. Field, chemical, and physical constraints on mafic-felsic magmainteraction in the Lamarck Granodiorite, Sierra Nevada, California [J]. GeologicalSociety of America Bulletin,1987,99(2):272-291.
    Frost, B.R., Barnes, C.G., Collins, W.J., Arculus, R.J., Ellis, D.J., Frost, C.D.,2001. Ageochemical classification for granitic rocks. J Petrol42,2033-2048.
    Frost, B.R., Frost, C.D.,2008. A Geochemical Classification for Feldspathic IgneousRocks. J Petrol49,1955-1969.
    Frost, C.D., Frost, B.R.,2011. On Ferroan (A-type) Granitoids: their CompositionalVariability and Modes of Origin. J Petrol52,39-53.
    Frost, T.P., Mahood, G.A.,1987. Field, Chemical, and Physical Constraints onMafic-Felsic Magma Interaction in the Lamarck Granodiorite, Sierra-Nevada,California. Geol Soc Am Bull99,272-291.
    Gao S, Rudnick R L, Xu W L, et al. Recycling deep cratonic lithosphere and generation ofintraplate magmatism in the North China Craton[J]. Earth and Planetary ScienceLetters,2008,270(1):41-53.
    Gao S, Rudnick R L, Yuan H L, et al. Recycling lower continental crust in the North Chinacraton[J]. Nature,2004,432(7019):892-897.
    Ge, W.C., Lin, Q., Sun, D.Y., Wu, F.Y., Li, X.H.,2000. Geochemical research into originsof two types of Mesozoic rhyolites in Daxing'anling. EarthScience–Journal of ChinaUniversity of Geosciences25,2-8(In Chinese with English abstract).
    Ge, X.Y., Li, X.H., Zhou, H.W.,2003. Geochronologic, geochemistry and Sr-Nd isotopesof the Late Cretaceous mafic dike swarms in southern Hainan Island. Geochimica32,10-20(In Chinese with English abstract).
    Genc, S.C., Tuysuz, O.,2010. Tectonic setting of the Jurassic bimodal magmatism in theSakarya Zone (Central and Western Pontides), Northern Turkey: A geochemical andisotopic approach. Lithos118,95-111.
    Gibson I L, Kirkpatrick R J, Emmerman R, et al. The trace element composition of thelavas and dikes from a3‐km vertical section through the lava pile of easternIceland[J]. Journal of Geophysical Research: Solid Earth (1978–2012),1982,87(B8):6532-6546.
    Gibson, I.L., Kirkpatrick, R.J., Emmerman, R., Schmincke, H.U., Pritchard, G., Oakley,P.J., Thorpe, R.S., Marriner, G.F.,1982. The Trace-Element Composition of the Lavasand Dikes from a3-Km Vertical Section through the Lava Pile of Eastern Iceland. JGeophys Res87,6532-6546.
    Goldstein S L, O'nions R K, Hamilton P J. A Sm-Nd isotopic study of atmospheric dustsand particulates from major river systems[J]. Earth and Planetary Science Letters,1984,70(2):221-236.
    Goldstein, S.J. and Jacobsen, S.B.(1988). Nd and Sr Isotopic Systematics of River WaterSuspended Material-Implications for Crustal Evolution. Earth and Planetary ScienceLetters87(3):249-265.
    Goldstein, S.L., Onions, R.K. and Hamilton, P.J.(1984). A Sm-Nd Isotopic Study ofAtmospheric Dusts and Particulates from Major River Systems. Earth and PlanetaryScience Letters70(2):221-236.
    Griffin W L, Belousova E A, Shee S R, et al. Archean crustal evolution in the northernYilgarn Craton: U–Pb and Hf-isotope evidence from detrital zircons[J]. PrecambrianResearch,2004,131(3):231-282.
    Griffin W L, Pearson N J, Belousova E, et al. The Hf isotope composition of cratonicmantle: LAM-MC-ICPMS analysis of zircon megacrysts in kimberlites[J].Geochimica et Cosmochimica Acta,2000,64(1):133-147.
    Griffin, W.L., Pearson, N.J., Belousova, E., Jackson, S.E., van Achterbergh, E., O'Reilly,S.Y., Shee, S.R.,2000. The Hf isotope composition of cratonic mantle:LAM-MC-ICPMS analysis of zircon megacrysts in kimberlites. Geochim CosmochimAc64,133-147.
    Guo F, Nakamuru E, Fan W, et al. Generation of Palaeocene adakitic andesites by magmamixing; Yanji Area, NE China[J]. Journal of Petrology,2007,48(4):661-692.
    Hallberg, A.,2001: Rock classification, magmatic affinity, and hydrothermal alteration atBoliden, Skellefte district, Sweden-a desk-top approach to whole rock geochemistry.In Weihed, P.(ed.): Economic geology research. Vol.1,1999-2000. Uppsala2001.Sveriges geologiska undersokning C833, pp.93-131. ISBN91-7158-665-2
    Hofmann A W. Recycled ocean crust and sediment in Indian Ocean MORB[J]. Earth andPlanetary Science Letters,1997,147(1):93-106.
    Isozaki, Y., Aoki, K., Nakama, T., Yanai, S.,2010. New insight into a subduction-relatedorogen: A reappraisal of the geotectonic framework and evolution of the JapaneseIslands. Gondwana Research18,82-105.
    J. Didier and B. Barbarin.,1991. Enclaves and granite petrology Developments inPetrology, vol.13Elsevier, Amsterdam (1991), p.601p
    Jacobsen S B, Wasserburg G J. Sm-Nd isotopic evolution of chondrites[J]. Earth andPlanetary Science Letters,1980,50(1):139-155.
    Jahn, B.M., Litvinovsky, B.A., Zanvilevich, A.N., Reichow, M.,2009. Peralkalinegranitoid magmatism in the Mongolian-Transbaikalian Belt: Evolution, petrogenesisand tectonic significance. Lithos113,521-539.
    Jarrar, G., Saffarini, G., Baumann, A., Wachendorf, H.,2004. Origin, age and petrogenesisof Neoproterozoic composite dikes from the Arabian-Nubian Shield, SW Jordan.Geological Journal39,157-178.
    Jiang, S.Y., Palmer, M.R., Slack, J.F., Shaw, D.R.,1999. Boron isotope systematics oftourmaline formation in the Sullivan Pb-Zn-Ag deposit, British Columbia, Canada.Chemical Geology158,131-144.
    Katzir, Y., Litvinovsky, B.A., Jahn, B.M., Eyal, M., Zanvilevich, A.N., Valley, J.W., Vapnik,Y., Beeri, Y., Spicuzza, M.J.,2007. Interrelations between coeval mafic and A-typesilicic magmas from composite dykes in a bimodal suite of southern Israel,northernmost Arabian-Nubian Shield: Geochemical and isotope constraints. Lithos97,336-364.
    Kemkin I V, Taketani Y. Structure and age of lower structural unit of Taukha terrane ofLate Jurassic–Early Cretaceous accretionary prism, southern Sikhote–Alin[J]. IslandArc,2008,17(4):517-530.
    Kemkin, I.V.,2008. Structure of terranes in a Jurassic accretionary prism in theSikhote-Alin-Amur area: implications for the Jurassic geodynamic history of theAsian eastern margin. Russian Geology and Geophysics49,759-770.
    Kirillova G L. The late Mesozoic-Cenozoic sedimentary basins at the continental margin ofsoutheastern Russia: Geodynamic evolution and coal and petroleum potential[J].Geotectonics,2005,39(5):389-407.
    Koppers, A.A.P., Morgan, J.P., Morgan, J.W., Staudigel, H.,2001. Testing the fixed hotspothypothesis using (40)Ar/(39)Ar age progressions along seamount trails. Earth andPlanetary Science Letters185,237-252.
    Kotov, A.B., Velikoslavinskii, S.D., Sorokin, A.A., Kotova, L.N., Sorokin, A.P., Larin,A.M., Kovach, V.P., Zagornaya, N.Y., Kurguzova, A.V.,2009. Age of the Amur Groupof the Bureya-Jiamusi Superterrane in the Central Asian Fold Belt: Sm-Nd IsotopeEvidence. Dokl Earth Sci429,1245-1248.
    Kuritani, T., Ohtani, E., Kimura, J.I.,2011. Intensive hydration of the mantle transitionzone beneath China caused by ancient slab stagnation. Nat Geosci4,713-716.
    Lallemand, S., Heuret, A., Boutelier, D.,2005. On the relationships between slab dip,back-arc stress, upper plate absolute motion, and crustal nature in subduction zones.Geochem Geophy Geosy6.
    Lance P. Black,2004. Improved206Pb/238U microprobe geochronology by themonitoring of a trace-element-related matrix effect; SHRIMP, ID–TIMS, ELA–ICP–MS and oxygen isotope documentation for a series of zircon standards ChemicalGeology.205:115–140.
    Le Maitre, R.W.2002. Igneous rocks-a classification and glossary of terms.Recommendations of the IUGS sub-commission on the Systematics of Igneous Rocks.Cambridge: Cambridge University Press,2nd edition.
    Li Xian-Hua, Zheng-Xiang Li, Wu-Xian Li, et al.,2013. Revisiting the “C-type adakites”of the Lower Yangtze River Belt, central eastern China: In-situ zircon Hf-O isotopeand geochemical constraints. Chemical Geology
    Li, C.W., Guo, F., Fan, W.M., Gao, X.F.,2007a. Ar-Ar geochronology of Late Mesozoicvolcanic rocks from the Yanji area, NE China and tectonic implications. Sci China SerD50,505-518(In Chinese with English abstract).
    Li, W.M., Takasu, A., Liu, Y.J., Guo, X.Z.,2010. Newly discovered garnet-barroisiteschists from the Heilongjiang Complex in the Jiamusi Massif, northeastern China. JMiner Petrol Sci105,86-91.
    Li, X.H., Li, W.X., Li, Z.X., Liu, Y.,2008.850-790Ma bimodal volcanic and intrusiverocks in northern Zhejiang, South China: A major episode of continental riftmagmatism during the breakup of Rodinia. Lithos102,341-357.
    Li, X.H., Li, Z.X., Li, W.X., Liu, Y., Yuan, C., Wei, G.J., Qi, C.S.,2007b. U-Pb zircon,geochemical and Sr-Nd-Hf isotopic constraints on age and origin of Jurassic I-andA-type granites from central Guangdong, SE China: A major igneous event inresponse to foundering of a subducted flat-slab? Lithos96,186-204.
    Li, X.H., Long, W.G., Li, Q.L., Liu, Y., Zheng, Y.F., Yang, Y.H., Chamberlain, K.R., Wan,D.F., Guo, C.H., Wang, X.C., Tao, H.,2010. Penglai Zircon Megacrysts: A PotentialNew Working Reference Material for Microbeam Determination of Hf-O Isotopes andU-Pb Age. Geostand Geoanal Res34,117-134.
    Liu, S., Hu, R.Z., Gao, S., Feng, C.X., Qi, L., Zhong, H., Xiao, T.F., Qi, Y.Q., Wang, T.,Coulson, I.M.,2008. Zircon U-Pb geochronology and major, trace elemental andSr-Nd-Pb isotopic geochemistry of mafic dykes in western Shandong Province, eastChina: Constrains on their petrogenesis and geodynamic significance. ChemicalGeology255,329-345.
    Loiselle M C, Wones D R. Characteristics and origin of anorogenic granites[C]//GeologicalSociety of America Abstracts with Programs.1979,11(7):468.
    Louvel, M., Sanchez-Valle, C., Malfait, W.J., Testemale, D., Hazemann, J.L.,2013. Zrcomplexation in high pressure fluids and silicate melts and implications for themobilization of HFSE in subduction zones. Geochim Cosmochim Ac104,281-299.
    Ludwig, K.R.,2001. Squid1.03a user's manual. Berkeley Geochronology Center SpecialPublication No.2.
    Ludwig, K.R.,2003. User's Manual for Isoplot3.0A geochronological toolkit forMicrosoft Excel. Berkeley Geochronology Center Special Publication No.4
    Maruyama, S., Isozaki, Y., Kimura, G., Terabayashi, M.,1997. Paleogeographic maps ofthe Japanese Islands: Plate tectonic synthesis from750Ma to the present. Isl Arc6,121-142.
    Maruyama, S., Okamoto, K.,2007. Water transportation from the subducting slab into themantle transition zone. Gondwana Research11,148-165.
    Matthews, K.J., Seton, M., Muller, R.D.,2012. A global-scale plate reorganization event at105-100Ma. Earth Planet Sc Lett355,283-298.
    Meng, E., Xu, W.L., Pei, F.P., Yang, D.B., Wang, F., Zhang, X.Z.,2011. Permian bimodalvolcanism in the Zhangguangcai Range of eastern Heilongjiang Province, NE China:Zircon U-Pb-Hf isotopes and geochemical evidence. Journal of Asian Earth Sciences41,119-132.
    Meng, Q.R.,2003. What drove late Mesozoic extension of the northern China-Mongoliatract? Tectonophysics369,155-174.
    Mesebede M.,1986. A method of discriminating between different types of mid-oceanridge basslts and continental tholeiites with the Nb-Zr-Y diagram. Chem. Geol.,56,207-218.
    Meyer C, Schellart W P. Three‐dimensional dynamic models of subducting plate‐overriding plate‐upper mantle interaction[J]. Journal of Geophysical Research: SolidEarth,2013.
    Middlemost E.A.K.,1989. Iron oxidation ratios, norms and the classification of volcanicrocks. Chem. Geol.,77,19-26
    Moreno T, Querol X, Castillo S, et al. Geochemical variations in aeolian mineral particlesfrom the Sahara–Sahel Dust Corridor[J]. Chemosphere,2006,65(2):261-270.
    Moyen J F. High Sr/Y and La/Yb ratios: the meaning of the “adakitic signature”[J]. Lithos,2009,112(3):556-574.
    Mullen E.D.,1983, MnO/TiO2/P2O5: a minor element discriminant for basaltic rocks ofoceanic environments and its implications for petrogenesis. Earth Planet. Sci. Lett.,62,53-62.
    Muller, R. D., Mihut, D., Baldwin, S.,1998. A new kinematic model for the formation andevolution of the west and northwest Australian margin. In: Purcell, P.G., Purcell, R.R.(Eds.), The Sedimentary Basins of Western Australia2.Petroleum Exploration Societyof Australia, Perth, pp.55–72.
    Muller, R.D., Sdrolias, M., Gaina, C., Steinberger, B., Heine, C.,2008. Long-termsea-level fluctuations driven by ocean basin dynamics. Science319,1357-1362.
    Nebel, O., van Westrenen, W., Vroon, P.Z., Wille, M., Raith, M.M.,2010. Deep mantlestorage of the Earth's missing niobium in late-stage residual melts from a magmaocean. Geochim Cosmochim Ac74,4392-4404.
    Ohnenstetter, M., Bechon, F., Ohnenstetter, D.,1990. Geochemistry and Mineralogy ofLavas from the Arakapas Fault Belt, Cyprus-Consequences for Magma ChamberEvolution. Miner Petrol41,105-124.
    Okada H. Nature and development of Cretaceous sedimentary basins in East Asia: areview[J]. Geosciences Journal,2000,4(4):271-282.
    Pearce, J.A. and Cann J R.1973. Tectonic setting of basic volcanic rocks determined usingtrace element analyses. Earth Planet. Sci. Lett.,19,339-349
    Pearce, J.A., and Norry M.J.,1979. Petrogenetic implications of Ti, Zr, Y and Nbvariations in volcanic rocks. Contrib. Mineral. Petrol.,69,33-47
    Pearce, J.A., Harris, N.B.W. and Tindle, A.G.1984. Trace element discrimination diagramsfor the tectonic interpretation of granitic rocks. Journal of Petrology25,956-983.
    Perring, C.S., Rock, N.M.S.,1991. Relationships between Calc-Alkaline Acidic and Basic(Mantle-Derived) Magmas in Late Archean Composite Dykes, Kambalda Goldfield,Western-Australia. Precambrian Research52,245-273.
    Qin, S.C., Fan, W.M., Guo, F., Li, C.W., Gao, X.F.,2010. Petrogenesis of Late Mesozoicdiabase dikes in Zhejiang Fujian province: Constraints from Ar-Ar dating andgeochemistry. Acta Petrologica Sinica26,11(In Chinese with English abstract).
    Raczek, I., Jochum, K.P., Hofmann, A.W.,2003. Neodymium and strontium isotope datafor USGS reference materials BCR-1, BCR-2, BHVO-1, BHVO-2, AGV-1, AGV-2FGSP-1, GSP-2and eight MPI-DING reference glasses. Geostandard Newslett27,173-179.
    Rapp R P, Shimizu N, Norman M D, et al. Reaction between slab-derived melts andperidotite in the mantle wedge: experimental constraints at3.8GPa[J]. ChemicalGeology,1999,160(4):335-356.
    Rapp R P, Shimizu N, Norman M D. Growth of early continental crust by partial meltingof eclogite[J]. Nature,2003,425(6958):605-609.
    Rapp R P, Shimizu N, Norman M D. Growth of early continental crust by partial meltingof eclogite[J]. Nature,2003,425(6958):605-609.
    Rapp R P, Watson E B, Miller C F. Partial melting of amphibolite/eclogite and the origin ofArchean trondhjemites and tonalites[J]. Precambrian Research,1991,51(1):1-25.
    Rapp R P, Watson E B. Dehydration melting of metabasalt at8–32kbar: implications forcontinental growth and crust-mantle recycling[J]. Journal of Petrology,1995,36(4):891-931.
    Rehk mper M, Hofmann A W. Trace Element Anomalies and Correlation in Indian OceanMORB[J]. Earth Planet. Sci. Lett,1997,147:93-106.
    Robin Gill.2010. Igneous rocks and Processes: a practical guide. Wiley-Blackwell
    Rudnick and Gao,2004Composition of the Continental Crust. In: The Crust: Treatise onGeochemistry[M]. Elsevier Science,2005.
    Seton, M., Gaina, C., Muller, R.D., Heine, C.,2009. Mid-Cretaceous seafloor spreadingpulse: Fact or fiction? Geology37,687-690.
    Seton, M., Muller, R.D., Zahirovic, S., Gaina, C., Torsvik, T., Shephard, G., Talsma, A.,Gurnis, M., Turner, M., Maus, S., Chandler, M.,2012. Global continental and oceanbasin reconstructions since200Ma. Earth-Sci Rev113,212-270.
    Sha J, Hirano H, Yao X, et al. Late Mesozoic transgressions of eastern Heilongjiang andtheir significance in tectonics, and coal and oil accumulation in northeast China[J].Palaeogeography, Palaeoclimatology, Palaeoecology,2008,263(3):119-130.
    Sha J, Matsukawa M, Cai H, et al. The Upper Jurassic–Lower Cretaceous of easternHeilongjiang, northeast China: stratigraphy and regional basin history[J]. CretaceousResearch,2003,24(6):715-728.
    Sliter W V, Brown G R. Shatsky Rise: seismic stratigraphy and sedimentary record ofPacific paleoceanography since the Early Cretaceous[C]//Natland, JH, Storms, MA, etal., Proc. ODP, Sci. Results.1993,132:3-13.
    Snyder D, Crambes C, Tait S, et al. Magma mingling in dikes and sills[J]. The Journal ofGeology,1997:75-86.
    Snyder D, Tait S. Replenishment of magma chambers: comparison of fluid-mechanicexperiments with field relations[J]. Contributions to Mineralogy and Petrology,1995,122(3):230-240.
    S derlund U, Patchett P J, Vervoort J D, et al. The176Lu decay constant determined by Lu–Hf and U–Pb isotope systematics of Precambrian mafic intrusions [J]. Earth andPlanetary Science Letters,2004,219(3):311-324.
    Soderlund, U., Patchett, J.P., Vervoort, J.D., Isachsen, C.E.,2004. The Lu-176decayconstant determined by Lu-Hf and U-Pb isotope systematics of Precambrian maficintrusions. Earth Planet Sc Lett219,311-324.
    Sorokin, A.A., Kotov, A.B., Sal'nikova, E.B., Kudryashov, N.M., Anisimova, I.V.,Yakovleva, S.Z., Fedoseenko, A.M.,2010. Granitoids of the Tyrma-Bureya complexin the northern Bureya-Jiamusi superterrane of the Central Asian fold belt: age andgeodynamic setting. Russian Geology and Geophysics51,563-571.
    Sotnikov, V.I., Ponomarchuk, V.A., Sorokin, A.A., Sorokin, A.P., Gimon, V.O.,2005. Ageboundaries of the formation of porphyry Cu-Mo deposits in framing structures of theMongol-Okhotsk orogenic belt. Dokl Earth Sci403,905-907.
    Spandler C, Pirard C. Element recycling from subducting slabs to arc crust: A review[J].Lithos,2013.
    Sparks R S J, Marshall L A. Thermal and mechanical constraints on mixing between maficand silicic magmas[J]. Journal of Volcanology and Geothermal Research,1986,29(1):99-124.
    Stern2001. A new isotopic and trace-element standard for the ion microprobe: preliminarythermal ionization mass spectrometry (TIMS) U-Pb and electron-microprobe data.Radiogenic Age and Isotopic Studies: Report14, Geological Survey of Canada,Current Research2001-F1,7p.
    Stern, R.A., Hanson, G.N., Shirey, S.B.,1989. Petrogenesis of Mantle-Derived,Lile-Enriched Archean Monzodiorites and Trachyandesites (Sanukitoids) inSouthwestern Superior Province. Can J Earth Sci26,1688-1712.
    Stern, R.J., Voegeli, D.A.,1987. Geochemistry, Geochronology, and Petrogenesis of a LatePrecambrian (Approximately-590Ma) Composite Dike from the North Eastern Desertof Egypt. Geol Rundsch76,325-341.
    Sun W D, Ling M X, Yang X Y, et al. Ridge subduction and porphyry copper-goldmineralization: An overview[J]. Science China Earth Sciences,2010,53(4):475-484.
    Sun W, Zhang H, Ling M X, et al. The genetic association of adakites and Cu–Au oredeposits[J]. International Geology Review,2011,53(5-6):691-703.
    Sun, J.G., Han, S.J., Zhang, Y., et al.,2012Diagenesis and metallogenetic mechanisms ofthe Tuanjiegou gold deposit from the Lesser Xing’an Range, NE China: Zircon U-Pbgeochronology and Lu-Hf isotopic constraints Journal of Asian Earth Scienceshttp://dx.doi.org/10.1016/j.jseaes.2012.10.021
    Sun, S.S., McDonough, W.F.,1989. Chemical and isotopic systematics of oceanic basalts:implications for mantle composition and processes. In: Saunders, A.D., Norry, M.J.(Eds.), Magmatism in the Ocean Basins. Geological Society Special Publication,London, pp.313–345.
    Sun, W.D., Ding, X., Hu, Y.H., Li, X.H.,2007. The golden transformation of theCretaceous plate subduction in the west Pacific. Earth Planet Sc Lett262,533-542.
    Taylor, T.R., Vogel, T.A., Wilband, J.T.,1980. The Composite Dikes at Mount DesertIsland, Maine-an Example of Coexisting Acidic and Basic Magmas. J Geol88,433-444.
    Topuz G, Altherr R, Schwarz W H, et al. Post-collisional plutonism with adakite-likesignatures: the Eocene Sarayc k granodiorite (Eastern Pontides, Turkey)[J].Contributions to Mineralogy and Petrology,2005,150(4):441-455.
    Valley J W, Kita N T. In situ oxygen isotope geochemistry by ion microprobe[J]. MACshort course: secondary ion mass spectrometry in the earth sciences,2009,41:19-63.
    Valley J W. Oxygen isotopes in zircon[J]. Reviews in mineralogy and geochemistry,2003,53(1):343-385.
    Valley, J.W.,2003. Oxygen isotopes in zircon. Zircon53,343-385.
    Vaughan.1995Circum-Pacific mid-Cretaceous deformation and uplift: Asuperplume-related event? Geology. v.23; no.6; p.491-494
    Veevers, J.J.,1984. Phanerozoic Earth History of Australia. Oxford University Press, NewYork.
    Veevers, J.J.,1986. Breakup of Australia and Antarctica Estimated as Midcretaceous(95+/-5ma) from Magnetic and Seismic Data at the Continental-Margin. Earth PlanetSc Lett77,91-99.
    Veevers, J.J.,2000. Change of tectono-stratigraphic regime in the Australian plate duringthe99Ma (mid-Cretaceous) and43Ma (mid-Eocene) swerves of the Pacific. Geology28,47-50.
    Vernon R H. Microgranitoid enclaves in granites—globules of hybrid magma quenched ina plutonic environment[J]. Nature,1984,309(5967):438-439.
    Wade, J., Wood, B.J.,2001. The Earth's 'missing' niobium may be in the core. Nature409,75-78.
    Wan, Y.S., Li, R.W., Wilde, S.A., Liu, D.Y., Chen, Z.Y., Yan, L., Song, T.R., Yin, X.Y.,2005. UHP metamorphism and exhumation of the Dabie Orogen, China: Evidencefrom SHRIMP dating of zircon and monazite from a UHP granitic gneiss cobble fromthe Hefei Basin. Geochim Cosmochim Ac69,4333-4348.
    Wang Pujun, Xiao'an X, Frank M, et al. The Cretaceous Songliao Basin: volcanogenicsuccession, sedimentary sequence and tectonic evolution, NE China[J]. ActaGeologica Sinica‐E nglish Edition,2007,81(6):1002-1011.
    Wang Q, Li Z X, Chung S L, et al. Late Triassic high-Mg andesite/dacite suites fromnorthern Hohxil, North Tibet: Geochronology, geochemical characteristics,petrogenetic processes and tectonic implications[J]. Lithos,2011,126(1):54-67.
    Wang Q, McDermott F, Xu J, et al. Cenozoic K-rich adakitic volcanic rocks in the Hohxilarea, northern Tibet: Lower-crustal melting in an intracontinental setting[J]. Geology,2005,33(6):465-468.
    Wang Q, Wyman D A, Xu J F, et al. Petrogenesis of Cretaceous adakitic and shoshoniticigneous rocks in the Luzong area, Anhui Province (eastern China): implications forgeodynamics and Cu–Au mineralization[J]. Lithos,2006,89(3):424-446.
    Wang Q, Wyman D A, Xu J, et al. Triassic Nb-enriched basalts, magnesian andesites, andadakites of the Qiangtang terrane (Central Tibet): evidence for metasomatism byslab-derived melts in the mantle wedge[J]. Contributions to Mineralogy and Petrology,2008,155(4):473-490.
    Wang, F., Zhou, X.H., Zhang, L.C., Ying, J.F., Zhang, Y.T., Wu, F.Y., Zhu, R.X.,2006a.Late mesozoic volcanism in the Great Xing'an range (NE China): Timing andimplications for the dynamic setting of NE Asia. Earth and Planetary Science Letters251,179-198.
    Wang, P.J., Chen, F.K., Chen, S.M., Siebel, W., Satir, M.,2006b. Geochemical andNd-Sr-Pb isotopic composition of Mesozoic volcanic rocks in the Songliao basin, NEChina. Geochemical Journal40,149-159.
    Wang, Q., Z.X. Li, S.L. Chung, D.A. Wyman, Y.L. Sun, Z.H. Zhao, Y.T. Zhu, H.N. Qiu,2011. Late Triassic high-Mg andesite/Dacite suites from northern Hohxil, North Tibet:Geochronology, geochemical characteristics, petrogenetic processes and tectonicimplications. Lithos126,54-67.
    Whalen, J.B., Currie, K.L., Chappell, B.W.,1987. A-type granites-geochemicalcharacteristics, discrimination and petrogenesis. Contributions to Mineralogy andPetrology95,407-419.
    Wiebe R A, Ulrich R. Origin of composite dikes in the Gouldsboro granite, coastalMaine[J]. Lithos,1997,40(2):157-178.
    Wilde, S.A., Dorsett-Bain, H.L., Lennon, R.G.,1999. Geological setting and controls onthe development of graphite, sillimanite and phosphate mineralization within theJiamusi Massif: An exotic fragment of Gondwanaland located in north-eastern China?Gondwana Research2,21-46.
    Wilde, S.A., Wu, F.Y., Zhang, X.Z.,2003. Late Pan-African magmatism in northeasternChina: SHRIMP U-Pb zircon evidence from granitoids in the Jiamusi Massif.Precambrian Research122,311-327.
    Wilde, S.A., Zhang, X.Z., Wu, F.Y.,2000. Extension of a newly identified500Mametamorphic terrane in North East China: further U-Pb SHRIMP dating of theMashan Complex, Heilongjiang Province, China. Tectonophysics328,115-130.
    Williams, I.S.,1998. U-Th-Pb geochronology by ion microprobe. In: McKibben MA,Shanks WCP&Ridley WI (eds), Applications of Microanalytical Techniques toUnderstanding Mineralizing Processes, Reviews in Economic Geology7, Society ofEconomic Geologists,1-35.
    Winther K T, Newton R C. Experimental melting of hydrous low-K tholeiite: evidence onthe origin of Archean cratons[J]. Bull. Geol. Soc. Denmark,1991,39:213-228.
    Wolf M B, Wyllie P J. Dehydration-melting of amphibolite at10kbar: the effects oftemperature and time[J]. Contributions to Mineralogy and Petrology,1994,115(4):369-383.
    Wu, F.Y., Sun, D.Y., Ge, W.C., Zhang, Y.B., Grant, M.L., Wilde, S.A., Jahn, B.M.,2011.Geochronology of the Phanerozoic granitoids in northeastern China. Journal of AsianEarth Sciences41,1-30.
    Wu, F.Y., Yang, J.H., Lo, C.H., Wilde, S.A., Sun, D.Y., Jahn, B.M.,2007. The HeilongjiangGroup: A Jurassic accretionary complex in the Jiamusi Massif at the western Pacificmargin of northeastern China. Island Arc16,156-172.
    Wu, G., Sun, F.Y., Zhao, C.S., Li, Z.T., Zhao, A.L., Pang, Q.B., Li, G.Y.,2005. Discoveryof the Early Paleozoic post-collisional granites in northern margin of the Ergunamassif and its geological significance. Chinese Science Bulletin50,2733-2743.
    Xiao, Y.L., Sun, W.D., Hoefs, J., Simon, K., Zhang, Z.M., Li, S.G., Hofmann, A.W.,2006.Making continental crust through slab melting: Constraints from niobium-tantalumfractionation in UHP metamorphic rutile. Geochim Cosmochim Ac70,4770-4782.
    Xiong X L, Adam J, Green T H. Rutile stability and rutile/melt HFSE partitioning duringpartial melting of hydrous basalt: implications for TTG genesis[J]. Chemical Geology,2005,218(3):339-359.
    Xiong, X.L., Keppler, H., Audetat, A., Ni, H.W., Sun, W.D., Li, Y.A.,2011. Partitioning ofNb and Ta between rutile and felsic melt and the fractionation of Nb/Ta during partialmelting of hydrous metabasalt. Geochim Cosmochim Ac75,1673-1692.
    Xu, Y.G., Zhang H.H., Qiu H.N., Ge W.C., Wu F.Y.,2012Oceanic crust components incontinental basalts from Shuangliao, Northeast China: Derived from the mantletransition zone? Chemical Geology doi:10.1016/j.chemgeo.2012.01.027
    Yan, J., Chen, J.F., Xu, X.S.,2008. Geochemistry of Cretaceous mafic rocks from theLower Yangtze region, eastern China: Characteristics and evolution of the lithosphericmantle. Journal of Asian Earth Sciences33,177-193.
    Yao, W.H., Z.X. Li, W.X. Li, X.C. Wang, X.H. Li, J.H.,2012. Yang Post-kinematiclithospheric delamination of the Wuyi–Yunkai orogen in South China: Evidence fromca.435Ma high-Mg basalts. Lithos154,115-129.
    Ying, J.-F., Zhou, X.-H., Zhang, L.-C., Wang, F.,2010a. Geochronological framework ofMesozoic volcanic rocks in the Great Xing’an Range, NE China, and theirgeodynamic implications. Journal of Asian Earth Sciences,39(6):786-793.
    Ying, J.F., Zhou, X.H., Zhang, L.C., Wang, F., Zhang, Y.T.,2010b. Geochronological andgeochemical investigation of the late Mesozoic volcanic rocks from the NorthernGreat Xing'an Range and their tectonic implications. International Journal of EarthSciences99,357-378.
    Yu S Y, Xu Y G, Ma J L, et al. Remnants of oceanic lower crust in the subcontinentallithospheric mantle: trace element and Sr–Nd–O isotope evidence from aluminousgarnet pyroxenite xenoliths from Jiaohe, Northeast China[J]. Earth and PlanetaryScience Letters,2010,297(3):413-422.
    Yu SY, Xu YG, Huang XL, Ge W C and Cheng J.2007.Comparison of composition andthermal state of the upper mantle beneath northeast and north China: Implications forlithospheric thinning in eastern China. Acta Petrologica Sinica,23(6):1252-1268
    Yu, X., Xiao, J., Chen, H.L., Zhang, F.Q., Xu, Y., Dong, C.W., Pang, Y.M.,2008.Phanerozoic magmatic events in the basement of Songliao basin: SHRIMP dating ofcaptured zircons from Ying Clemens Formation volcanic rocks. Acta PetrologicaSinica24,1123-1130(In Chinese with English abstract).
    Zhang L E I, HAN B, CHEN J, et al. Sr–Nd isotopic characteristics of the Late CretaceousShuangyashan suite: evidence for enriched mantle2in Northeast China[J]. GeologicalMagazine,2012,149(4):645.
    Zhang, F.Q., Chen, H.L., Cao, R.C., Meng, Q.A., Zhu, D.F., Wang, Z.G.,2010a. Discoveryof Late Paleozoic adakite front the basement of the Hailaer Basin in NE China and itsgeological implication. Acta Petrologica Sinica26,633-641(In Chinese with Englishabstract).
    Zhang, F.Q., Chen, H.L., Yu, X., Dong, C.W., Yang, S.F., Pang, Y.M., Batt, G.E.,2011a.Early Cretaceous volcanism in the northern Songliao Basin, NE China, and itsgeodynamic implication. Gondwana Research19,163-176.
    Zhang, G.S., Wen, H.J., Hu, R.Z., Qiu, Y.Z., Xu, C.,2007. Genesis and dynamic setting ofmafic dikes in southeastern Fujian: evidence from Sr-Nd isotopic and major and traceelement geochemistry. Acta Petrologica Sinica23,793-804.
    Zhang, J.H., Gao, S., Ge, W.C., Wu, F.Y., Yang, J.H., Wilde, S.A., Li, M.,2010b.Geochronology of the Mesozoic volcanic rocks in the Great Xing'an Range,northeastern China: Implications for subduction-induced delamination. ChemicalGeology276,144-165.
    Zhang, J.H., Ge, W.C., Wu, F.Y., Wilde, S.A., Yang, J.H., Liu, X.M.,2008a. Large-scaleearly cretaceous volcanic events in the northern Great Xing'an Range, northeasternChina. Lithos102,138-157.
    Zhang, K.J., Tang, X.C., Wang, Y., Zhang, Y.X.,2011b. Geochronology, geochemistry, andNd isotopes of early Mesozoic bimodal volcanism in northern Tibet, western China:Constraints on the exhumation of the central Qiangtang metamorphic belt. Lithos121,167-175.
    Zhang, L., Han, B.F., Zhu, Y.F., Xu, Z., Chen, J.F., Song, B.,2009. Geochronology,mineralogy, crystallization process and tectonic implications of the Shuangyashanmonzogabbro in eastern Heilongjiang Province. Acta Petrologica Sinica25,577-587(In Chinese with English abstract).
    Zhang, L.C., Zhou, X.H., Ying, J.F., Wang, F., Guo, F., Wan, B., Chen, Z.G.,2008b.Geochemistry and Sr-Nd-Pb-Hf isotopes of Early Cretaceous basalts from the GreatXinggan Range, NE China: Implications for their origin and mantle sourcecharacteristics. Chemical Geology256,12-23.
    Zhang, M.P.,2010. Analysis of Stratum and Structural Setting of Meifeng formationVolcanic Rocks in Wuyiling area. Dissertation for Master Degree, Chang'anUniversity28-29(In Chinese with English abstract).
    Zhang, Q., Wang, Y., Li, C.D., Jin, W.J., Jia, X.Q.,2006. Granite classification on the basisof Sr and Yb contents and its implications. Acta Petrol Sin22,2249-2269.
    Zhao, D.P.,2004. Global tomographic images of mantle plumes and subducting slabs:insight into deep Earth dynamics. Phys Earth Planet In146,3-34.
    Zhao, D.P., Maruyama, S., Omori, S.,2007. Mantle dynamics of Western Pacific and EastAsia: Insight from seismic tomography and mineral physics. Gondwana Research11,120-131.
    Zhao, D.P., Pirajno, F., Dobretsov, N.L., Liu, L.,2010. Mantle structure and dynamicsunder East Russia and adjacent regions. Russ Geol Geophys+51,925-938.
    Zhao, D.P., Tian, Y., Lei, J.S., Liu, L.C., Zheng, S.H.,2009. Seismic image and origin ofthe Changbai intraplate volcano in East Asia: Role of big mantle wedge above thestagnant Pacific slab. Phys Earth Planet In173,197-206.
    Zhou, J.B., Wilde, S.A., Zhang, X.Z., Ren, S.M., Zheng, C.Q.,2011. Early Paleozoicmetamorphic rocks of the Erguna block in the Great Xing'an Range, NE China:Evidence for the timing of magmatic and metamorphic events and their tectonicimplications. Tectonophysics499,105-117.
    Zhou, J.B., Wilde, S.A., Zhang, X.Z., Zhao, G.C., Zheng, C.Q., Wang, Y.J., Zhang, X.H.,2009. The onset of Pacific margin accretion in NE China: Evidence from theHeilongjiang high-pressure metamorphic belt. Tectonophysics478,230-246.
    Zhou, J.B., Wilde, S.A., Zhao, G.C., Zhang, X.Z., Zheng, C.Q., Wang, H., Zeng, W.S.,2010. Pan-African metamorphic and magmatic rocks of the Khanka Massif, NE China:further evidence regarding their affinity. Geological Magazine147,737-749.
    Zhou, X.H., Ying, J.F., Wang, F., Zhang, L.C., Wilde, S.A., Badamgarav, J., Badarch, G.,2006. Late mesozoic volcanism across E, Mongolia and Da Hinggan Mts, NE China:Timing constraint on the closure of Mongol-Okhotsk sea. Geochim Cosmochim Ac70,A753-A753.
    Zhu, Z.P., Liu, L., Ma, R., Qiu, Z.K., Ma, S.H.,2009.40Ar/39Ar Isotopic Dating andGeological Significance of Mafic Rocks from the Jixi Basin, Heilongjiang Province.Journal of Jilin University (Earth Science Edition)39,238-243(In Chinese withEnglish abstract).
    Zorina, S.O., Dzyuba, O.S., Shurygin, B.N., Ruban, D.A.,2008. How global are theJurassic-Cretaceous unconformities? Terra Nova20,341-346.
    Zorpi M J, Coulon C, Orsini J B. Hybridization between felsic and mafic magmas incalc-alkaline granitoids—a case study in northern Sardinia, Italy[J]. Chemical geology,1991,92(1):45-86.