沉渣厚度超声检测信号处理技术研究及应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
钻孔底部过厚的沉渣是影响钻孔灌注桩质量的主要因素,而目前尚缺乏先进准确的沉渣厚度检测仪器,针对这一现状,本文提出钻孔沉渣厚度的超声测量方法,并围绕其超声信号处理中的滤波、增强和声走时获取等问题展开了一系列的研究工作,主要包括:
     1、分析了超声检测系统的四种工作模式及超声换能器参数与检测指标间的关系,确定了钻孔沉渣厚度超声检测所用超声换能器的特性,并在模拟环境中进行实验,获得了比较清晰的沉渣界面回波。
     2、研究了时域和变换域Gabor滤波。分析了Gabor变换系数的特点,提出了基于首个大类间距概率的阈值选取方法,并给出了详细的处理步骤。基于首个大类间距概率阈值的Gabor变换滤波在仿真信号和实际超声检测信号的处理中都获得了很好的效果。
     3、把迭代被动时间反转镜(PTRM)技术用于超声检测信号的增强,分析了二次迭代PTRM的时变增强原理和增强倍数。实验表明,该增强方法在介质声波传播特性未知的情况下能够实现信号的盲时变增强,同时还具有一定的噪声抑制能力。
     4、把谱减和子带的概念引入到奇异谱熵中,并给出了奇异谱子带的划分方式。提出了谱减子带奇异谱熵并把它用于超声信号的首波检测和定位。试验表明,基于谱减子带奇异谱熵的首波定位精确度高、抗干扰能力强、鲁棒性好。
     5、提出虚拟阵MUSIC时延估计算法,并给出虚拟阵元信号的构造方法和最少虚拟真元个数。在超声信号的时延估计中,虚拟阵MUSIC时延估计算法获得了高精度、高分辨率的时延估计结果。
     6、把以上提出的方法应用到实验获得中的沉渣超声测量信号的处理中,得到获得了比较理想的结果,证实了沉渣厚度超声检测的可行性和所提出处理方法的有效性。
Too thick sediment in the bottom of borehole is a main factor which much affects the quality of the bored pile. So far the advanced and exact instruments to measure the sediments thickness are deficient. Based on this status, a new method to measure the sediments thickness by ultrasonic technology has been proposed and a series of research work about the ultrasonic signal processing as filtering, signal enhancing and sound travel time obtaining has been developed. The major work of this dissertation includes six parts as the following:
     1. The four work modes of ultrasonic detection systems and the relations between the parameters of ultrasonic transducer and detection indexes have been analyzed. According to them, the characteristics of ultrasonic transducer needed in ultrasonic detection system to measure the sediments thickness in borehole has been determined. Using the specially made ultrasonic transducer and necessary instruments such as waveform generator, power amplifier, digital oscillograph and so on, experiments in simulation environments have been carried out and clear echoes of the sediments interfaces have been obtained.
     2. Gabor filtering in time domain and transform domain has been studied. According to the analysis of the features of Gabor expansion coefficients, a new method to select Gabor transform filter's threshold based on the first larger probability in histogram of class separation distance, and its detail process steps have been given. Using the presented threshold, the Gabor transform filter can achieve good effect in processing both the simulation signal and the real ultrasonic detection signal.
     3. The iterative passive time reverse mirror (PTRM) has been used to enhance ultrasonic detection signal. As for iterative PTRM, its principle of time-varying enhancement and the enhancement multiple have been analyzed and deducted. The experiments results have shown that iterative PTRM can enhance signal with a time-varying gain even the characteristics of the ultrasonic transmitting in the media is unknown. In addition, iterative PTRM can de-noise to some extent.
     4. The concepts of band and spectral subtraction have been introduced into singular value spectrum entropy and the way how to plot out the bands has been given. On this base, spectral subtraction band singular value spectrum entropy (SS-B-SVSE) has been proposed and applied to detect and locate the wave head of ultrasonic signal. The experiments have shown SS-B-SVSE is a high precise, strongly anti-interference and robust method for locating wave head in ultrasonic signal.
     5. Virtual matrix MUSIC (VM-MUSIC) has been presented to estimate the time delays of the echoes. Furthermore, the way how to construct the signal of virtual matrix elements and the least matrix elements in virtual matrix have been discussed and determined. In the experiments of the ultrasonic detection signal, VM-MUSIC has gotten high precise and high resolution time delay estimation.
     6. The proposed signal processing algorithms above have been used to process the ultrasonic echoes which are obtained by experimenting in the simulation environments. The satisfied results have verified the feasibility of the method of measuring the sediments thickness in borehole by ultrasonic and the validity of the processing algorithms.
引文
1.王英.混凝土灌注桩工程质量超声波检测理论、方法及应用[D].山东青岛:山东科技大学,2005
    2.王平卫.全套管灌注桩承载性状及施工工艺的研究[D].江苏南京:中南大学,2007
    3.尹春燕.水下钻孔灌注桩施工工艺与质量控制的研究[D].湖北武汉:华中科技大学,2006
    4.曹佳文,彭振斌,张伟,钟林.注浆法在岩溶区桥梁桩基事故处理中的应用[J].土工基础,2008,22(6):6-8
    5.王建军,林伊方,孔唐.钻孔灌注桩质量控制的两个重要问题[J].浙江建筑,2005,22(5):34-35
    6.王敏强,乔金平.影响钻孔灌注桩质量因素的探讨[J].山西建筑,2006,32(22):142-143
    7.李海梁.大直径钻孔灌注桩沉渣检测技术的探索[J].中外公路,2005,25(2).96-98
    8.吴继敏,董志高,董平.钻孔灌注桩桩底沉渣对桩承载性状影响[J].解放军理工大学学报(自然科学版),2008,9(5):546-551
    9.刘俊龙.桩底沉渣对超长大直径钻孔灌注桩承载力影响的试验研究[J].工程勘察,2000(3):8-11
    10.戴洪军,郭纪中,韦华.砂土地层中沉渣对旋挖桩承载力的影响[J],岩土工程技术,2007,21(4):209-213
    11.中国建筑科学研究院编制.工业与民用建筑灌注桩基础设计与施工规程[M],JGJ4-801.1981
    12.修朝英.X-2型沉渣厚度测定仪的研制与应用[J].施工技术,1994.(2):38
    13.胡建国.冲击钻嵌岩灌注桩沉渣厚度测量方法[J].西部探矿工程,2003,(3):130
    14.谢和平,杨玉银,姜凌宇.“侧钻法”在水下深孔灌注桩桩底沉渣厚度检验中的应用[J].四川水力发电,2002,21(2):84-86,89
    15. Schmidt James M..Collecting sediment environmental and geotechnical data using an impact core sampler[C].International Conference on Dredging and Dredged Material Placement,1994,1:279-287
    16. Kristoffersen Yngve,Lien Eldar,Festervoll Kjetil,Ree Sigurd,and etc.. The hydrostatic corer Selcore-a tool for sediment sampling and geophysical site characterization[J].Marine Geology,2006,229(1-2):101-112
    17. Alther G.R,Wyeth R.A test utilizing sediment traps, survey rods, and radiographs to monitor sediment accumulation from a dredging disposal operation[J].Environmental geology New York,1980,3(2):97-105
    18.臧卓,马云龙,刘勇,李晓竹.Bathy2010P浅地层剖面仪在海洋工程中的应用[J].仪器仪表用户,2009,16(3):51-53
    19.周兴华,姜小俊,史永忠.侧扫声纳和浅地层剖面仪在杭州湾海底管线检测中的应用[J].海洋测绘,2007,27(4):64-67
    20.李一保,张玉芬.浅地层剖面仪在海洋工程中的应用[J].工程地球物理学报,2007,4(1):4-9
    21.王继胜.小平台剖面声纳的信号处理技术研究[D].哈尔滨:哈尔滨工程大学,2008
    22.李启虎.数字式声纳设计原理[M].安徽合肥:安徽教育出版社,2002
    23. Monika and Jorg Bialas. A deep-towed multichannel seismic streamer for very high-resolution surveys in full ocean depth[J].Marine seismic,2003,5(9):44-49
    24.张旸,兰从庆.匹配小波滤波在超声信号处理中的应用[J].无损检测,2002,24(12):507-511
    25.李军,侯朝焕.基于多尺度特征的匹配滤波处理[J].声学学报,2004,29(4):313-318
    26.杨挺,季文赞,张叔英.应用匹配滤波法估测水下介质声阻抗的初步研究[J].声学学报,2001,26(3):202-206
    27.秦星,王首勇.基于稳定分布噪声下匹配滤波的信号检测[J].空军雷达学院学报,2007,21(4):270-272
    28.张贤达.现代信号处理[M].北京:清华大学出版社,2002:188-206
    29.郭建中,林书玉.超声检测中维纳逆滤波解卷积方法的改进研究[J].应用声学,2005,24(2):97-102
    30.程建政,超声检测图像分辨率的维纳滤波去卷积研究[J].无损检测,2004,26(5):221-224
    31.邹艳碧,高鹰.自适应滤波算法综述[J].广州大学学报(自然科学版),2002,1(2):44-48
    32.刘剑锋,蒋卓勤,李娟,霍效新.一种基于Lorentzian函数的变步长LMS自适应滤波算法[J].指挥控制与仿真,2009,31(2):42-44
    33.顾向华,郑祥明,雷永平,史耀武,刘哲军.改进的自适应滤波方法及其在粗晶材料超声 检测中的应用[J].无损检测,2003,25(10):504-506
    34. Newhouse VL et al. Flaw-to-Grain echo enhancement[J].Proceedings Ultrasonic Int. Symposium,1979:152-156
    35.陈友兴,王召巴.自适应滤波在多界面超声检测中的应用[J].中国测试技术,2006,32(4):57-58,135
    36.刘镇清.自适应滤波在超声无损检测中的应用[J].无损检测,2001,23(9):399-401
    37. Gitlin R.D,Weinstein S.D.On the design of gradient algorithms for digitally implemented adaptive filters[J].IEEE Trans on CT,1973,(2):125-136
    38. Yasukawa H,Shimada S,Furukrawa I,et al.Acoustic echo canceller with high speech quality[A].ICASSP'87,1987:2125-2128
    39. Gitlin R.D,Weinstein S.D.The effects of large interference on the tracking capability of digitally implemented echo cancellers[J].IEEETrans on COM,1978,(6):833-839
    40. Widrow B,StearnsS.D.Adaptive signal processing[M].Englewood Cliffs,NJ:Prentice Hall, 1985
    41.Kwong R H,Johnston E W.A variable step size LMS algorithm[J].IEEE Trans.Signal Processing,1992,(40):1633-1642
    42.覃景繁,欧阳景正.一种新的变步长自适应滤波算法[J].数据采集与处理,1997,12(3):171-194
    43.吴光弼,祝琳瑜.一种变步长LMS自适应滤波算法[J].电子学报,1994,22(1):55-60
    44.滕军,朱焰煌,周峰,李惠,欧进萍.自适应分解层数的小波域中值滤波振动信号降噪法[J].振动与冲击,2009,28(12):58-62
    45. Lu J,Xu Y S,and Weaver J B,et al..Noise reduction by constrained reconstructions in the wavelet-transform domain [A].Proc.IEEE Signal Processing Society Seventh Workshop on Multidimensional Signal Processing,Lake Placid,New York,Sept.23-25,1991
    46. Hsung T C,Lun DP-K and Siu W-C.Denoising by singularity detection[J].IEEE Trans.on Signal Proc.,1999,47(11):3139-3144
    47. Lu J.Signal recovery and noise reduction with wavelets[D].Dartmouth College,Hanover, NH,1993
    48.覃方君,许江宁,李安,周红进.基于新息自适应卡尔曼滤波的加速度计信号降噪[J].数 据采集与处理,2009,24(2):227-231
    49. Loebis D, Sutton R, Chudley J, et al. Adaptive tuning of a Kalman filter via fuzzy logic for an intelligent AUV navigation system [J]. Control Engineering Practice,2004,12(12): 1531-1539
    50. Mohamed A H, Schwarz K P. Adaptive Kalman filtering for INS/GPS[J].Journal of Geodesy,1999,73 (4):193-203
    51.高羽.多项式预测模型及其滤波算法[J].上海电机学院学报,2009,12(4):279-283
    52.林川,冯全源.基于粒子群优化算法思想的组合自适应滤波算法[J].电子与信息学报,2009,31(5):1245-1248
    53.杨克己.基于神经网络的自适应滤波技术及其在超声检测中的应用[J].仪器仪表学报,2005,26(8):813-817
    54.张恩东.黄文浩.基于小波变换和Kalman滤波的语音增强方法[J].模式识别与人工智能,2009,22(1):28-31
    55.雷正伟,米东,徐章遂,敦怡.基于小波倒谱模型的滤波处理技术及其在超声应力检测中的应用[J].固体火箭技术,2007,30(3):269-271,274
    56.董航,孙洪.一种变阶数自适应滤波算法[J].系统工程与电子技术,2009,31(1):15-17,31
    57.王海洋,钱海月.一种模糊自适应滤波算法的研究与实现[J].宁夏工程技术,2009,8(4):297-299
    58.毛捷,李明轩.子带自适应滤波在层状介质脱粘超声检测中的应用[J].声学学报,2003,28(3):212-216
    59.滕军,朱焰煌,周峰,李惠,欧进萍.自适应分解层数的小波域中值滤波振动信号降噪法[J].振动与冲击,2009,28(12):58-62
    60.徐晓刚,徐冠雷,王孝通,秦绪佳.经验模式分解(EMD)及其应用[J].电子学报,2009,37(3):581-585
    61. Huang N E,Zheng S,Steven R,et al.The empirical mode decomposition and the Hilbert spectrum for nonlinear non-stationary time Series Analysis[A].Proceedings:Mathematical, Physical and Engineering Sciences.London,The Royal Society Press,454(1971), 1998:903-995
    62. Huangne N E, Shen Z, Long S R. A New View of Non-linear Water Waves:The Hilbert Spectrum [J]. Annu Rev Fluid Mech,1999,31:417-457
    63. Kathleen T. Stratospheric and Tropospheric Signals Extracted Using the Empirical Mode Decomposition Method[D].Washington:University of Washington,2003
    64. Gong K. Speech Processing Using the Empirical Mode Decomposition and the Hilbert Transform[D].Montreal:Concordia University,2004
    65. Nunes J C, GUYOT S, DELECHELLE E. Texture Analysis Based on Local Analysis of the Bi-dimensional Empirical Mode Decomposition[J].Machine Vision and Applications, 2005,16 (3):177-188
    66.杨海涛,朱仕军,杨爱国,常智,彭才.S变换时变滤波在去噪处理中的应用研究[J].西南石油大学学报(自然科学版),2009,31(6):56-58
    67.刘国华,吴更石,贾斗南,上官金明,王振江,周汇东.Gabor变换用于核压力容器裂纹楞边超声检测[J].核动力工程,1998,19(6):514-518
    68. Daugman J G.Uncertainty relation for resolution in space,spatial frequeney,and orientation optimized by two-dimensional visual cortical filters[J].J of Optics Society of America A,1985,2(7):1160-1169
    69. Massimo Lazzaroni, Enrico Ragaini. Gabor-like transforms for transient analysis in electrical systems[C]. IEEE Instrumentation and Measurement Technology Conference Brussels. Brussels, Belgium,1996:885-890
    70.邹志农,唐劲松,汪铭东.干涉合成孔径声纳系统中的数据采集[J].数据采集与处理,2007,22(4):501-506
    71.顾春华,陶春辉,张金辉,周建平,周利生,李红星,刘财.超宽频海底剖面仪实时采集显示系统Echo Viewer的设计与实现[J].吉林大学学报(地球科学版),2008,38(3):495-501
    72.阳凡林,刘经南,赵建虎.基于数据融合的侧扫声纳图像预处理[J].武汉大学学报,2004,29(5):402-406
    73.陶锐.冲激脉冲探地雷达接收机技术的研究[D].辽宁大连:大连理工大学,2006
    74. Brihorski J I M.. Ocean acoustics[M]. Beijing:Science Press,1983
    75.李启虎.声纳信号处理引论[M].北京:海洋出版社,2000
    76.田坦,刘国枝,孙大军.声纳技术[M].哈尔滨:哈尔滨工程大学出版社,2000
    77.尤立克R J.水声原理[M],第3版.洪申译.哈尔滨:哈尔滨船舶工程学院出版社, 1990:79-220
    78. Fink M,Prada C,Wu F,Cassereau D.Self focusing in inhomogeneous media with"time reversal"acoustic mirrors,Proc[J].IEEE Ultrason Symp,1989,2:681-686
    79.马敬广,彭会斌,李峰,殷敬伟,生雪莉.自适应干扰抵消应用于二元阵时间反转镜定位研究[J].系统仿真学报,2009.21(1):28-31
    80.殷敬伟,惠俊英.时间反转镜分类研究及其在水声通信中的应用[J].系统仿真学报,2008,20(9):2449-2453
    81.段方英,徐志胜,赵望达.基于超声脉冲法的火灾损伤后混凝土裂纹深度检测[J].中国安全科学学报,2006,16(3):135-139
    82.黄万伟,邵高平,李建新.测井声波首波检测及其相关性校正[J].测井技术,2005,29(2):112-114
    83.丁杰雄,刘凡.LCR波切向应力检测系统的声时测量研究[J].电子科技大学学报,2008,37(1):141-144
    84.陈虹,赵中明.水泥胶结评价中地层波首波能量的提取[J].石油仪器,2005,19(6):46-47
    85.张嘉伟,师奕兵,王志刚,刘西恩.阵列声波测井信号调理与首波提取技术研究[J].中国测试技术.2006,32(4):4,5,100
    86.宋祎,谌海云,陈科贵,刘小红,彭利果,郑琦怡.基于小波变换的偶极声波测井横波首波的提取[J].石油天然气学报,2008,30(5):73-76
    87.雷婧.混凝土结构超声探伤的信号仿真与处理[D].湖北武汉:武汉理工大学,2006
    88.谭晓栋,邱静,刘冠军,曾庆虎,苗强.基于小波能谱熵-隐半马尔可夫模型的故障识别方法及应用[J].机械科学与技术,2009,28(10):1340-1343,1248
    89.黄建人.基于声程差的多通道广义相关时延估计及其DSP实现[J],声学学报,1996,21(3):280-285
    90.郭莹,邱天爽,张艳丽,赵勇,栾连毅.脉冲噪声环境下基于分数低阶循环相关的自适应时延估计方法[J].通信学报,2007,28(3):8-14
    91.孙永梅,李桂林,朱勇.基于ROTH加权的韧性时间延迟估计新方法[J].大连交通大学学报,2007,28(2):38-41
    92.陈华伟,赵俊渭,郭业才,蔡宗义,李桂娟,周士弘.一种维纳加权频域自适应时延估计算法[J].声学学报,2003,28(6):514-517
    93.吴慧娟,文玉梅,杨进,李平.低信噪比下的LMS自适应无偏时延估计[J].电子学报,2009,37(3):500-505
    94.易岷,魏平,肖先赐.未知波形信号的多径时延估计新方法[J].电子与信息学报,2004,26(8):1224-1231
    95. WuY. Time delay estimation of non-Gaussian signal in unknown Gaussian noise using third-order cumulants[J].Electronics Letters,2002,38(16):930-931
    96. Ching P C, et al. Adaptive time delay estimation with constraints[J]. IEEE Trans ASSP, 1988,36(4):599-602
    97.王润田.海底声学探测与底质识别技术的新进展[J].声学技术,2002,21(1-2):96-98
    98.李启虎.数字式声纳设计原理[M].安徽合肥:安徽教育出版社,2002
    99.蔡春麟,张异彪,顾兆峰.参量阵浅地层剖面技术在海底管道检测中的应用[J].海洋地质动态,2007,23(4):38-42
    100.张叔英,华乐荪,胡嘉忠,凌鸿烈,陈克棠.D&Z-1声参量多频海底测绘系统[J].海洋测绘,1996,(1):12-19
    101.褚宏宪,赵铁虎等.参量阵浅地剖面仪测量技术在近岸海洋工程中的应用效果[J].物探与化探,2005,29(6):526-532
    102.王志昌.参量阵浅剖仪信号源理论研究及发射接收电路实现[D].黑龙江哈尔滨:哈尔滨工程大学,2008
    103.Vyas A L,Balaji Raj V S,Gupta R G. Design Considerations of Parametric Arrays[J]. Underwater Technology,1998
    104.浅地层剖面仪研制组.QPY-1型浅地层剖面仪设计指标论证[A].水下浅地层剖面仪专辑,1982,(1):10-15
    105.华乐荪.参量阵和相关技术在海底剖面仪中的应用[J].水下浅地层剖面仪专辑,1982,(1):68-77
    106.王德昭.水声学[M].北京:科学出版社,1981
    107.Gabor D.Theory of Communication[J].Journal of the Institude of Electrical Engineers, 1946,93(26):429-457
    108.龚仁荣,顾建祖,骆英,柳祖亭.Gabor小波时频分析在声发射信号处理中的应用[J].中国测试技术,2006,32(1):76-79
    109.张贤达,保铮.非平衡信号分析与处理[M].北京:国防工业出版社,1998
    110.李云峰.基于Gabor小波变换的人脸识别[D].辽宁大连:大连理工大学,2005
    111.孙农亮,基于机器视觉的体外细胞分割技术研究[D].山东青岛:山东科技大学,2007
    112.张鸿宾,王晴.Gabor小波变换在检测纹理边界及相位展开中的应用[J].计算机学报1998,21(12):1096-1102
    113.刘卫东,刘尚合,王雷.采用Gabor变换的局部放电信号时频分析[J].高电压技术,2007,33(8):40-43
    114.Qian S, Chen D. Optimal biorthogonal analysis window function for discrete Gabor transform[J]. IEEE Trans on Signal Processing,1994,43(3):694-697
    115.张力新,周仲兴,王勇,黄玉玺.基于自适应Gabor小波包的超声心动图像纹理特征提取[J].天津大学学报,2005,38(12):1078-1082
    116.吴剑华.用Gabor展开进行地震数据的滤波[J].电子科学学刊,1999,21(5):713-717
    117.陶伟忠,岳喜才,郑崇勋.离散时间域的Gabor谱分析及其在语音处理中的应用[J].西安交通大学学报,1997,31(6):27-31
    118.张晓军,朱旭东.基于离散GABOR变换的电网瞬态波形噪声迭代滤波算法研究[J].中国电机工程学报,2004,24(11):69-73
    119.邓玉强,郎利影,邢岐荣,曹士英,于靖,徐涛,李健,熊利民,王清月,张志刚.Gabor小波分析太赫兹波时间-频率特性的研究[J].物理学报,2008,57(12):7747-7752
    120.张文超,王岩飞,潘志刚.基于2D实值离散Gabor变换的SAR原始数据压缩[J].电子与信息学报,2008,30(3):569-572
    121.王风华,韩九强.基于2D Log-Gabor滤波器的虹膜识别研究[J].系统仿真学报,2008,20(7):1808-1811
    122.贾天旭,郑南宁,张元亮.Shannon小波包分解自适应Gabor滤波器设计及其在纹理分割中的应用[J].电子学报,1998,26(10):75-80
    123.时宇,张贤达.Gabor原子网络法在雷达目标高分辨距离像识别中的应用[J].清华大学学报(自然科学版),2001,41(9):98-101
    124.田金文,柳健,张天序.变窗Gabor变换理论及其在图像处理中的应用[J].红外与激光工程,1998,27(4):1-5,21
    125.Daubechies I. The wavelet transform, time-frequency localization and signal analysis[J]. IEEE Trans Inform Theory,1990,36(5):962-1005
    126.薛健Gabor变换的理论与应用研究[D].北京:北方交通大学,1996
    127.Bastiaans M J. Gabor's expansion of signal into Gaussion elementary signals[J]. Proc IEEE,1980,68(4):538-539
    128.昌彦君,彭复员,朱光喜,刘应状,胡颖松.基于Gabor展开的水下目标激光探测的信号检测与识别[J].中国激光,2003,30(3):282-284
    129.刘永红,王宏禹.离散Gabor展开双正交条件的Zak变换域表示[J].大连理工大学学报,1996,36(1):83-88
    130.薛健,袁保宗.临界抽样Gabor展开的非局部分析[J].电子学报,1996,24(12):100-103
    131.Morris J M,Xie Hui.Fast algorithm for generalized discrete Gabor expansion[J].Signal Peocessing,1994,39(3):317-331
    132.Fink M,Prada C,Wu F,Cassereau D.Self focusing in inhomogeneous media with"time reversal"acoustic mirrors,Proc[J].IEEE Ultrason Symp,1989,2:681-686
    133.马敬广,李峰,单忠伟,惠俊英,生雪莉.基于时间反转镜的宽带匹配场处理[J].声学技术,2007,26(4):606-610
    134.惠俊英,马敬广,李峰,殷敬伟,生雪莉.二元阵被动时间反转镜定位技术研究[J].哈尔滨工程大学学报,2007,28(11):1247-1251
    135.FISHER R A. Optical phase conjugation[M]. New-York:Academic Press,1983
    136.汪承濒,魏炜.改进的时间反转法用于有界面时超声目标探测的鉴别[J].声学学报,2002,27(3):193-197
    137.张碧星,陆铭慧,汪承濒.用时间反转法在水下波导介质中实现自适应聚焦的研究[J].声学学报,2002,27(6):541-548
    138.Fink M.Time reversal of ultrasonic fields-Part Ⅰ:Basic principles[J].IEEE Trans.Ultrason., Ferroelec, Freq.Contr. (S0885-3010),1992,39(5):555-566
    139.Wu F, Thomas J L, Fink M.Time reversal of ultrasonic fields-Part Ⅱ:Experimental results [J].IEEE Trans.Ultrason., Ferroelec,Freq.Contr.(S0885-3010),1992,39(5):567-578
    140.THOMAS J L, FINK M. Ultrasonic beam focusing through tissue in homogeneities with a time reversal mirror:application to transskull therapy[J]. IEEE Trans UFFC,1996, 43(6):1122-1129
    141.Kuperman W A,Hodgkiss W S,Hee Chun Song,et al.Phase conjugation in the ocean: Experimental demonstration of an acoustic time-reversal mirror[J].J.Acoust.Soc.Am. (S0001-4966),1998,103(1):25-40
    142.时洁,杨德森,刘伯胜.基于虚拟时间反转镜的噪声源近场定位方法研究[J].兵工学报,2008,29(10):1215-1219
    143.Pautet L,Tesei A,Guerrini P,Pouliquen E.Target echo enhancement using a single-element time reversal mirror[J].IEEE J.Oceanic Eng.(S0364-9059),2005,30(4):912-920
    144.Karim G Sabra,Philippe Roux,Hee-Chun Song,et al.Experimental demonstration of iterative time-reversed reverberation focusing in a rough waveguide.Application to target detection[J]. J.Acoust. Soc.Am.(S0001-4966),2006,120(3):1305-1314
    145.马敬广,单忠伟,殷敬伟,李峰,王南.多元阵时间反转镜被动定位技术研究[J].应用声学.2007,26(5):282-286
    146.生雪莉,惠俊英,梁国龙.矢量反转镜时空滤波技术研究[J].声学学报,2005,30(3):271-278
    147.生雪莉,惠俊英,梁国龙.时间反转镜用于被动检测技术的研究[J].应用声学,2005,24(6):351-258
    148.Kim S, Kuperman W A, Hodgkiss W S,et al.Echo-to-reverberation enhancement using a time-reversal mirror[J].J.Acoust.Soc.Am.(S0001-4966),2004,115(4):1525-1531
    149.Song H C, Hodgkiss W S, Kuperman W A,et al.Experimental demonstration of adaptive reverberation nulling using time reversal [J].J.Acoust.Soc.Am.(S0001-4966),2005,118(3): 1382-1387
    150.殷敬伟,惠俊英,王燕,刘洋.虚拟时间反转镜Pattern时延差编码水声通信[J].系统仿真学报,2007,19(17):4033-4036
    151.殷敬伟,王逸林,孙立强.基于时间反转镜的水声通信方案分析[J].华中科技大学学报(自然科学版),2009,37(9):16-20
    152.Yang T C.Temporal resolutions of time-reversal and passive-phase conjugation for underwater acoustic communications[J].IEEE J.Oceanic Eng.(S0364-9059),2003,28(2): 229-245
    153.Paul Hursky,Michael B Porter,Martin Siderius.Point-to-point underwater acoustic communications using spread-spectrum passive phase conjugation[J].J.Acoust.Soc.Am. (S0001-4966),2006,120(1):247-257
    154.殷敬伟,惠娟,惠俊英,生雪莉,姚直象.无源时间反转镜在水声通信中的应用[J].声学学报.2007,32(4):362-368
    155.Rouseff D,Jackson D R,Fox W L J,et al.Underwater acoustic communication by passive phase-conjugation:Theory and experimental results [J]. IEEE J.Oceanic Eng.(S0364-9059), 2001,26(4):821-831
    156.Edelmann G F, Akal T, Hodgkiss W S, et al. An initial demonstration of underwater acoustic communication using time reversal [J].IEEE J Oceanic Eng,2002,27(3):602-609
    157.Stojanovic M. Retrofocusing techniques for high rate acoustic communication [J]. J Acoust Soc Am,2005,117(3):1173-1185
    158.陆铭慧,张碧星,汪承灏.时间反转法在水下通信中的应用[J].声学学报,2005,30(4):349-354
    159.Dowling D R.Acoustic pulse compression using passive phase-conjugate processing[J]. J.Acoust.Soc.Am. (S0001-4966),1994,95(3):1450-1458
    160.殷敬伟,惠俊英.虚拟时间反转镜技术[C].2005年全国水声学学术会议论文集,98-100
    161.付永庆,夏云龙.基于时间反转镜的自适应聚焦仿真研究[J].大连海事大学学报,2007,33(4):14-18
    162.生雪莉,周伟,鲍习中,惠俊英.被动迭代时间反转镜研究[J].声学技术,2008,27(4):588-592
    163.李成,舒勤.RLS算法自适应信道估计的性能分析[J].通信技术,2009,42(07),53-54,71
    164.孙建成,郑崇勋,周亚同,党建武.基于RLS-SVM的OFDM信道估计算法[J].系统仿真学报,2009,21(13):4009-4013,4018
    165.Morelli Michele, Mengali Umberto. A comparision of pilot-aided channel estimation methods for OFDM systems[J]. IEEE Trans Signal Processing,2001,49 (12):3065-3073
    166.Zhou Sheng-li, Giannakis G B. Finite-alphabet based channel estimation for OFDM and related multicarrier systems [J].IEEE Trans on Communication,2001,49 (8):1402-1414
    167.Tse D, Viswanath P. Fundamentals of Wireless Communication 1[M].Cambridge: Cambridge University Press,2004
    168.李晓柏,杨瑞娟,程伟,邵占智基于离散余弦变换的MMSE信道估计算法[J].空军雷达学院学报,2009,23(1):59-61,66
    169.Ho K Y, Leung S H. A generalized semi-blind channel estimation for pilot-aided OFDM systems[J].IEEE Circuits and Systems,2005,6 (5):6086-6089
    170.周洁,赵晓晖,林高三OFDM系统中一种基于LMMSE的半盲信道估计算法[J].吉林大学学报(工学版),2009,39(2):508-513
    171.张建康,陈恩庆,穆晓敏,齐林OFDM系统中一种最大似然信道估计算法[J].兵工学报,2009,30(9):1206-1210
    172.汤晓黎,陈晓光.一种适用于终端移动的OFDM无线局域网的信道估计方法[J].电路与系统学报,2006,11(1):138-142
    173.郭长玉,徐友云,杨峰.基于卡尔曼滤波器的OFDM系统时变信道估计[J].移动通信,2008,(2):82-85
    174.景源,殷福亮.有色噪声下基于Wishart随机矩阵的贝叶斯时变信道估计[J].通信学报,2009,30(2):77-82,88
    175.童峰,许肖梅,方世良.基于有效抽头和进化规划算法的自适应水声信道估计[J],声学技术,2007,26(2):301-306
    176.童峰,许肖梅,刘胜兴.一种水声信道进化估计算法[C].2005年全国水声学学术会议论文集,2005,236-238
    177.Edfors O, Sandell M, Van de Beek J-J, et a.l OFDM channel estimation by singular value decomposition[J].IEEE Transactions on Communications,1998,46(7):931-939
    178.王娴珏,任祖华.MIMO-OFDM系统中的SVD信道估计算法[J].无线通信技术,2009,(1):15-17,22
    179.高杰,吴杨虹.利用维纳滤波进行OFDM信号的信道估计[J].哈尔滨理工大学学报,2005,10(3):107-109
    180.芮赟,李明齐,张小东,易辉跃,胡宏林.两次一维维纳滤波信道估计的一种噪声方差优化方法[J].电子学报,2008,(8):1677-1581
    181.张永怀,孙海信,许芳,王德清.应用于水声OFDM通信系统的基于维纳滤波的信道估计[J].厦门大学学报(自然科学版),2009,48(1):51-54
    182.白宾锋,蔡跃明,徐信.发射分集OFDM系统中的一种维纳LMS信道估计和跟踪算法 [J].通信学报,2006,27(7):66-72
    183.周吟秋,王秀明,陈德华.套管井声波测井中首波幅度衰减研究[J].测井技术,2007,31(4):321-326
    184.黄万伟,邵高平,李建新.测井声波首波检测及其相关性校正[J].测井技术,2005,29(2):112-114
    185.陈虹,赵中明.水泥胶结评价中地层波首波能量的提取[J].石油仪器,2005,19(6):46-47
    186.王学元译,DSI偶极横波成像仪[A].斯仑贝谢公司新一代测井技术(论文集),1997
    187.胡文祥.声波测井资料弱初至波检测新方法[J].江汉石油学院学报,1994,16(12):24-25
    188.方玺.混凝土结构的超声探伤信号处理及二维CT软件设计[D].武汉:武汉理工大学,2006
    189.庞茂,周晓军,胡宏伟,孟庆华.基于解析小波变换的奇异性检测和特征提取[J].浙江大学学报(工学版),2006,40(11):1994-1997
    190.吴跃前,杜明辉.基于奇异性的语音端点检测方法[J].计算机工程与设计,2008,29(10):2591-2594
    191.李庆刚,谭善文.基于Hilbert-Huang变换的信号奇异性检测的比较研究[J],西华大学学报(自然科学版),2008,27(4):1,3-6
    192.WU Bing-fei, WANG Kun-ching. Robust endpoint detection algorithm based on the adaptive band-partitioning spectral entropy in adverse environments[J].IEEE Trans on Speech and Audio Processing,2005,13(5):762-775
    193.刘华平,李听,郑宇,徐柏龄,姜宁.一种改进的自适应子带谱熵语音端点检测方法[J].系统仿真学报,2008,20(5):1366-1371
    194.刘华平,李昕,徐柏龄,姜宁.语音信号端点检测方法综述及展望[J].计算机应用研究.2008,25(8):2278-2283
    195.李晔,张仁智,崔慧娟,等.低信噪比下基于谱熵的语音端点检测算法[J].清华大学学报:自然科学版,2005,45(10):1397-1400
    196.罗亚飞,鲍长春.基于DCT分带谱熵与信号分解的高精度基音检测算法[J],电子学报,2007,35(1):13-22
    197.陶新民,孙丽华,杜宝祥,徐勇.基于小波方差谱熵的轴承故障诊断方法[J].振动与冲击,2009,28(3):18-22,39
    198.印欣运,何永勇,彭志科.小波熵及其在状态趋势分析中的应用[J].振动工程学报,2004,17(2):165-169
    199.杨明玉,赵志强,姚万业.基于小波能谱熵的单端量暂态保护的研究[J].电力系统保护与控制,2009,37(11):10-14
    200.苑宇,马孝江.基于多分量奇异熵的往复式压缩机故障分类[J].大连理工大学学报,2007,47(2):196-200
    201.何正友,符玲,麦瑞坤,钱清泉,张鹏.小波奇异熵及其在高压输电线路故障选相中的应用[J].中国电机工程学报,2007,27(1):31-36
    202.杨文献,姜节胜.机械信号奇异熵研究[J].机械工程学报,2000,36(12):9-13
    203.李睿,于德介,曾威.一种基于奇异谱熵和脉冲响应的结构损伤诊断方法[J].振动工程学报,2006,19(3):331-335
    204.杨文献,任兴民,姜节胜.基于奇异熵的信号降噪技术研究[J].西北工业大学学报2001,19(3):368-371
    205.谢平,刘彬,林洪彬,王霄.多分辨率奇异谱熵及其在振动信号监测中的应用研究[J].传感技术学报,2004,(4):547-550
    206.吴昌意,魏洪增.矩阵理论与方法[M].北京:电子工业出版社,2006
    207.Golub G H, C F Van Loan Matrix Computations (Third Edition) [M].The Johns Hopkins University Press,1996
    208.张贤达.矩阵分析与应用[M].北京:清华大学出版社,2004
    209.鲁铁定,宁津生,周世健,臧德彦.最小二乘配置的SVD分解解法[J].测绘科学,2008,33(3):47-51
    210.William W, Aiming Wu. Nonlinear singular spectrum analysis [J].Neural Networks,2002, 3:2819-2824
    211. SHANNON C E. A mathematical theory of communication[J].Bell System Technical Journa,1948,27:379-423
    212.SHEN J L, HUNG JW, LEE L S. Robust entropy-based endpoint detection for speech recognition in noisy environments[C].Proceeding of International Conference on Spoken Language Processing,1998:232-238
    213.Jia C,Xu B.An Improved Entropy based Endpoint Detection Algorithm[C].ISCSLP (ISBN:0-7803-8678-7).Taipei,Taiwan,2002:96
    214.Boll S F. Suppression of acoustic noise in speech using spectral subtraction[J].IEEE Transaction on Acoustics, Speech and Signal Proc(S0096-3518),1979,27:113-120
    215.Knapp C H, Carter G C. The generalized correlation method for estimation of time delay [J].IEEETrans,1976,ASSP-24(4):320-327
    216.Chen J d,Benesty J, Huang Y. Time delay estimation in room acoustic environments:An overview[J]. Journal on Applied Signal Processing,Vol.2006:1-19
    217.孙进才,朱维杰,肖卉等.基于信号相位匹配原理的广义相关时延估计[J].自然科学进展,2005,15(1):103-109
    218.贾冲,郭明喜,张雄伟.基于M估计变步长自适应仿射投影算法的稳健时延估计[J].电子与信息学报,2008,30(5):1080-1083
    219.唐小明,吴昊,刘志坤.基于广义互相关算法的时延估计研究[J].电声技术,2009,33(8):71
    220.黄建人.基于声程差的多通道广义相关时延估计及其DSP实现[J].声学学报,1996,21(3):280-285
    221.郭莹,邱天爽,张艳丽,赵勇,栾连毅.脉冲噪声环境下基于分数低阶循环相关的自适应时延估计方法[J].通信学报,2007,28(3):8-14
    222.孙永梅,李桂林,朱勇.基于ROTH加权的韧性时间延迟估计新方法[J].大连交通大学学报,2007,28(2):38-41
    223.邱天爽,胡婷婷,刘文红,栾连毅,赵勇.α稳定分布噪声下基于EM算法的多径时延估计算法[J].大连理工大学学报,2008,48(2):277-281
    224.张明瀚.基于时延估计的声源定位系统研究[D].重庆:重庆大学,2009
    225.牛嗣亮.基于时延估计的岸基长线阵阵形估计方法研究[D].长沙:国防科技大学,2006
    226.孙书学,顾晓辉,吕艳新.基于经验模式分解的广义互相关时延估计[J].探测与控制学报,2009,31(2):5-13
    227.杨亦春,马驰州,李晓东,田静.相关峰细化的精确时延估计快速算法研究[J].声学学报,2003,28(2):159-166
    228.陈华伟,赵俊渭,郭业才‘,蔡宗义,许学忠.二次加权频域自适应时延估计算法与应用[J].声学学报,2003,28(1):61-65
    229.邱天爽,王宏禹.带约束的LMS-SCOT自适应时间延迟估计[J].通信学报,1994,15(1): 22-28
    230.吴慧娟,文玉梅,杨进,李平.低信噪比环境下基于γ-LMS算法的修正无偏自适应时延估计方法[J].仪器仪表学报,2009,30(4):774-779
    231.蒋伊琳,司锡才.基于互相关和MUSIC算法的时延估计[J].弹箭与制导学报,2009,29(5):208-211
    232.朱学锋,韩宁.基于互累积量的遥测数据时延估计方法[J].遥测遥控,2009,30(3):65-68
    233.李从英.基于四阶累积量的时延估计研究[D].四川成都:西南交通大学,2006
    234.刘颖,王树勋,王本平.基于四阶累积量的自适应参数型多径时延估计[J].系统仿真学报,2002,14(6):700-703
    235.Hinich M J,et al. Time delay estimation using cross bisspectrum[J].IEEE Trans SP,1992, 40(1):106-113
    236.黄清.相关域双谱时延估计方法[J].声学学报,2003,28(1):57-60
    237.WuY. Time delay estimation of non-Gaussian signal in unknown Gaussian noise using third-order cumulants[J]. Electronics Letters,2002,38(16):930-931
    238.于红旗,黄知涛,周一宇,徐欣.一种不需要特征值分解的MUSIC方法[J].国防科技大学学报,2007,29(4):91-94
    239.陈绍贺,万坚,涂世龙,郑辉PCMA系统中干扰信号时延估计新算法[J].系统仿真学报,2008,20(21):5774-4777
    240.熊秋犇,杨景曙,王江.一种基于遗传算法的自适应时延估计[J].电子对抗,2009,(5):27-31
    241.刘洁,应武.基于互模糊函数的宽带信号时差估计[J].电子对抗技术,2004,19(5):7-13
    242.陈隽永,徐庆,徐继麟.超宽带雷达中基于小波变换的时延估计方法[J].电波科学学报,2001,16(2):245-248
    243.杨德森,时洁,刘伯胜.基于倒谱分析的水声信号被动定位时延估计算法研究[J].系统仿真学报,2009,21(2):610-616
    244.王听,王宗欣.用扩展KALMAN滤波器计算多径下两路间时延[J].复旦学报(自然科学版),2000,39(2):193-200
    245.陈韶华,相敬林,罗建.水声信道多径时延估计的高分辨方法研究[J].系统仿真学报,2005,17(11):2821-2824
    246.刘文红,邱天爽,唐洪.脉冲噪声下基于自适应特征值分解的时延估计新方法[J].大连理工大学学报,2006,46(6):905-909
    247.黄知涛,姜文利,周一宇.多循环频率循环时延估计方法及性能分析[J].电子学报,2004,32(1):102-108
    248.黄知涛,姜文利,周一宇.多循环频率时差-Doppler估计方法及性能分析[J].自然科学进展,2005,15(6):740-746
    249.刘文红,邱天爽,胡婷婷,栾连毅,赵勇.基于分数低阶矩的非整数时间延迟估计方法[J].通信学报,2006,27(12):37-42
    250.Schmidt R O.Multiple Emitter Location and Signal Parameter Estimation[J].IEEE Trans. OnAP,1986,34(3):276-280
    251.王绪虎,田坦.MUSIC算法在矢量水听器阵中的应用研究[J].海洋技术,2006,25(3):82-85
    252.Kumaresan R, Tufts D W.Estimating the angles of arrival of multiple plane waves[J]. IEEE Trans.AES,1983,19:134-139
    253.Reddi S S.Multiple source location:a digital approach[J].IEEE Trans.AES,1979,15:95-105
    254.Li F,Vaccaro J,Tufts D W.Min-norm linear prediction for arbitrary sensor array[J]. International Conference on ASSP,1989:2613-2616
    255.Barabell A J.Improving the resolution performance of eigenstrucure based direction finding algorithms[J].Proc.IEEE ICASSP,1983:336-339
    256.Roy R, Kailath T.ESPRIT-Estimation of signal parameters via rotational invariance techniques[J]. IEEE Trans.ASSP,1989,37:984-995
    257.Roy R, Paulraj A, Kailath T.ESPRIT-A subspace rotation approach to estimation of parameter of cisoids in noise[J].IEEE Trans.ASSP,1986,34:1340-1342
    258.Viberg M, Ottersten B.Sensor array processing based on subspace fitting[J].IEEE Trans. SP,1991,39(5):1110-1121
    259.Ottersten B, Viberg M, Kailath T.Analysis of subspace fitting and ML techniques for parameter estimation from sensor array data[J].IEEE Trans.SP,1992,40(3):590-600
    260.Viberg M, Ottersten B, Kailath T.Detection and estimation in sensor array using weighted subspace[J].IEEE Trans.on SP,1991,39(5):2436-2449
    261.郭跃.超分辨波达方向估计技术的研究[D].武汉:华中科技大学,2007
    262.Bruckstein A M,et al. Resolution of Overlapping Echoes[J]..IEEE Trans.on ASSP, 1985,33(6):1357-1367
    263.刘晟,向敬成.一种低信噪比下线性调频信号回波时延高分辨估计新方法[J].电子学报,1998,26(9):51-54
    264.王文杰,蒋伯峰,殷勤业.非周期扩频系统中频率域多径时延估计[J].西安交通大学学报,2001,35(4):360-364
    265.罗婕,路宏年.火箭发动机包覆层测厚的超声信号处理研究[J].压电与声光,2007,29(4),471-474
    266.雷正伟,刘福,华翔小波高阶统计量的时延估计及在超声应力检测中的应用[J].计算机测量与控制,2008.16(11):1550-1552
    267.Parrilla M, et al. Digital Signal Processing Techniques for High Accuracy Ultrasonic Range Measurements[C].IEEE Transactions On Instrumentation and Measurement, August 1991,40(4):759-763
    268.程晓畅,苏绍景,王跃科,潘仲明,祝琴.超声回波信号解调及其包络相关时延估计算法[J].传感技术学报,2006,19(6):2571-2577
    269.苏绍景,程晓畅,王跃科.基于功率倒谱的超声测距时延估计方法研究[J].传感技术学报,2006,19(3):836-842