水热法处理生活垃圾焚烧飞灰中重金属和二恶英的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
垃圾焚烧具有减容、减量和能源回收等显著优点,成为我国生活垃圾无害化处理的主流方式之一,但是垃圾焚烧过程中二恶英和重金属等污染物排放问题引起了社会广泛关注。垃圾焚烧飞灰中富集了高浓度的重金属和二恶英等有毒污染化合物,被划为危险废弃物,需要无害化处理才能填埋或资源化利用。针对目前水热法稳定重金属或降解二恶英的过程中存在能耗高、设备要求高、二次环境污染、污染物处理单一和缺乏理论指导等问题,本文依托国家重点基础研究发展计划(973计划,No2011CB201500),开展了水热法处理生活垃圾焚烧飞灰中重金属和二恶英的实验和理论研究。本文研究的主要内容和结论如下:
     1).开展了垃圾焚烧系统不同部位飞灰中重金属浸出特性和二恶英分布规律的研究,为我国典型垃圾焚烧飞灰的选取提供依据。结果表明:布袋除尘器飞灰中重金属浸出浓度最高,并且二恶英含量较高,属于危险废弃物。不同部位飞灰中二恶英同系物的指纹特征具有明显差别,而有毒异构体和I-TEQ的指纹特征具有相似性,并且二恶英的I-TEQ值和总浓度,单个有毒异构体均存在关联性;
     2).根据我国主流垃圾焚烧技术和烟气净化工艺,选取流化床和机械炉排炉的布袋除尘器飞灰作为典型垃圾焚烧飞灰,开展了水热法处理飞灰中重金属稳定化的研究,并利用修正的BCR多级连续提取法分析了水热法处理前后飞灰中重金属的形态分布规律。结果表明:流化床焚烧飞灰中重金属主要分布于残渣态,并且水热法处理促使了前三种形态的重金属进一步转移到残渣态。然而,炉排炉焚烧飞灰中重金属主要分布于前三种形态,而水热法处理后除了Pb元素之外,其他重金属的形态分布变化不明显。单因子污染指数法和风险评价准则法的结果表明:水热法均有利于降低两种类型飞灰中重金属的环境污染程度,但水热法稳定流化床焚烧飞灰中重金属的效果更加明显。
     3).进一步开展了水热法稳定流化床焚烧飞灰中重金属的主要影响因素及稳定机理研究。结果表明:所有水热法处理后飞灰中重金属的浸出浓度均低于我国填埋标准;在最优工况下,残留液中重金属浓度均达到国家废水排放标准,且重金属的稳定化效率均超过了95%。这归因于水热法处理飞灰后合成了类沸石矿物质(方钠石和地质聚合物)对重金属具有离子吸附、离子交换、沉淀和物理包裹等稳定化作用。
     4).基于飞灰中重金属稳定化的研究,进一步开展了水热法降解飞灰中二恶英的主要影响因素和降解机理的研究。结果表明:二恶英降解效率随着温度升高而增加;氧气气氛条件下自由基的形成显著加速了二恶英降解。比如,有氧气氛的温和水热条件下(150℃)2小时反应后,飞灰中二恶英降解效率达到了88.31%;相同传统水热条件下12小时反应后,飞灰中二恶英降解效率仅为38.45%。同时,纯自然标样OCDD和OCDF的水热法降解结果表明:水热法降解二恶英存在加氢脱氯、PCDDs与PCDFs相互转化和自由基等反应,其中PCBs是二恶英降解的中间产物。
     5).应用量子化学密度泛函理论(DFT)和极化连续介质模型(PCM)开展了水热环境OCDD与羟基自由基反应的降解机理和降解路径的研究;计算了反应物、中间产物、过渡态和反应物各驻点信息。结果表明:OH自由基首先与OCDD形成范德华络合物,再攻击2,3,7,8和1,4,6,9位置C原子使其Cl原子剥离OCDD,最终形成PCDD-OH化合物。同时,OH自由基易与OCDD中C-O键中C原子加成反应,该反应为无垒过程,同时释放112.90kJ/mol能量,之后C-O键断裂,产生苯环自由基化合物。
     总之,水热法有利于飞灰中重金属稳定化和二恶英降解。同时,水热环境中通入氧气显著降低了处理飞灰的反应温度和缩短了反应时间,提高了降解效率,同时降低了反应设备的要求,具有工业化应用前景。并且,水热处理后飞灰可作为吸附性材料和酸性中和剂等环保材料,实现了垃圾焚烧飞灰的无害化和高值化利用。
Municipal solid waste incineration (MSWI) has the advantages of both mass and volume reduction, and energy recovery; Waste-to-energy incineration has been considered as one of mainstream strategies for municipal solid waste (MSW) management in China. However, emissions of toxic hazardous materials from the MSWI, such as persistent organic pollutants (POPs), and heavy metals etc., have attracted wide attention. The majority of those hazardous compounds are usually enriched in fly ash, so it has been classified as a hazardous waste due to its high heavy metal contents and significant traces of toxic polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans (PCDD/Fs). Therefore, MSWI fly ash must be treated before disposal in landfills, or secondary utilization. This dissertation was funded by national basic research program of China (973program, No2011CB201500), and launched a series of fundamental experiment and theoretic studies in the issue of hydrothermal treatment, such as high energy consumption, high demand of equipment, secondary environmental pollution, and single pollutant treatment, as well as lacking of theoretical direction. The objectives of the current research involved as follows:
     1). In order to provide the basis for typical MSWI fly ash choices, characteristics of fly ash which collected from different locations of the incineration system were studied, including studying on toxicity characteristic leaching procedure (TCLP) of heavy metals and distributions of dioxins in the fly ash samples. The results indicate that the maximum leaching concentrations of heavy metals occur at bag filters (BFs) fly ash samples, which also content high levels of dioxins. In addition, BF fly ash was identified as hazardous waste based on the standards of landfill and identification of hazardous waste. Moreover, there are similar congener and I-TEQ fingerprint profiles of PCDD/Fs in fly ash samples collected from different locations. However, PCDD/F homologue fingerprint profiles are significant different. In addition, Individual congener concentration has good correlation both with I-TEQ and total dioxin concentration, based on linear curve fit.
     2). Two types of fly ash samples are choosed based on the mainsteam MSW incineration and air pollution control devices (APCDs). And then hydtrothermal stabilization of heavy metals in the two typical fly ash collected from circulating fluidized bed (CFB) incineration and stoker incineration plants which have different incineration technologies is investigated. In addition, the speciation distributions of heavy metals in MSWI fly ash before and after the hydrothermal process evaluated using a modified Bureau Communautaire de Reference (BCR) sequential extraction procedure. The resuts indicate that the dominant fraction of heavy metals in CFB original fly ash is residual, and hydrothermal process further improve heavy metals in the ash to transform from the first three steps into the residue fraction. Conversely, the dominant fraction of heavy metals in stoker original fly ash is the first three fractions. The sepeciation distributions of heavy metals except for Pb element have no obvious change after treatment. In addition, the analysis results of contamination factors (ICFs) and risk assessments (RACs) reveal that hydrothermal process is benefit to stabilize heavy metals both in two types of MSWI fly ash, especially for CFB fly ash.
     3). Fly ash collected from CFB plant was furtherly treated by the hydrothermal processes under different conditions, in order to better investigate the major effect factors and stabilization mechanism of hydrothermal process. The results show that the concentrations of treated fly ash in all TCLP leachates are far below the regulatory limits under all experimental conditions. Especially, the stabilization efficiency of heavy metals exceeds95%, and the qualities of remaining water meet the national wastewater discharge standards under optimal conditions. Zeolite-like minerals, including sodalite and geopolymer, are synthesized during the hydrothermal treatment. Stabilization of heavy metals could be attributed to absorption on and ion exchange with zeolite-like minerals synthesized from MSWI fly ash, while precipitation and physical encapsulation simultaneously promote heavy metal stabilization.
     4). The distribution and degradation mechanism of PCDD/F decomposition by hydrothermal process were furtherly investigated according to the results of hydrothermal stabilization of heavy metals in MSWI fly ash. The results indicate that the degradation efficiency of PCDD/Fs is accelerated by oxidative degradation and with temperature increasing; for example,88.31%of the total PCDD/F was removed at mild temperature150℃in2h under oxidative condition, while only38.45%was destroyed at the same temperature in12h under non-oxidative condition. The results shows that aerating oxygen is benefit to the formation of OH radical and OH radical can accelerate the degradation of PCDD/Fs during hydrothermal process. Moreover, the formation of low chlorinated PCDDs and PCDF isomers and PCB isomers during the OCDD and OCDF hydrothermal degradation, suggesting that there were coexisting hydrodechlorination reactions, reciprocal transformation between PCDDs and PCDFs, and PCBs isomers are intermediates during hydrothermal degradation of PCDD/Fs.
     5). Reaction mechanisms of OCDD with OH radical under hydrothermal environment have been studied using density functional theory (DFT) and polarized continuum mode (PCM). Additionally, the information of the stationary points including the reactants, intermediates, transition states and products are calculated. The reaction pathway of OH radical and OCDD is following, firstly, the complex compounds of OH radical and OCDD are formed, and then OH attack the C atoms at the position of2,3,7,8and1,4,6,9separating Cl atoms from OCDD. In addition, OH radical can easily attack the C atom near to the O atom in dioxin ring to from OH radical adduct, and this reaction is no barrier reaction, releasing112.90kJ/mol free energy of activation, and then decompose to the substituted phenoxy radical P3by the fused-ring C-O bond cleavage.
     Overall, results of this study indicate that the hydrothermal technique is a promising and seemingly effective way for stabilizating heavy metals and degradation dioxins in MSWI fly ash. Aerating oxygen during the hydrothermal process could decrease reaction temperature and time, and improve reaction efficiency significantly, as well as reduce the demands of hydrothermal equipements. Therefore, hydrothermal treatment of MSWI fly ash shows a good application in industry. In addition, the treated MSWI fly ash could be used as environmental materials, such as adsorbent and acid neutralizer. The harmless disposal and higher value application of MSWI fly ash are realized in the study.
引文
[1]中华人民共和国国家统计局,中国统计年鉴[M],北京:中国统计出版社(2004)p438-439.
    [2]中华人民共和国国家统计局,中国统计年鉴[M],北京:中国统计出版社(2005)p411-412.
    [3]中华人民共和国国家统计局,中国统计年鉴[M],北京:中国统计出版社(2006)p428-429.
    [4]中华人民共和国国家统计局,中国统计年鉴[M],北京:中国统计出版社(2007)p428-429.
    [5]中华人民共和国国家统计局,中国统计年鉴[M],北京:中国统计出版社(2008)p409-410.
    [6]中华人民共和国国家统计局,中国统计年鉴[M],北京:中国统计出版社(2009)p411-412.
    [7]中华人民共和国国家统计局,中国统计年鉴[M],北京:中国统计出版社(2010)p435-436.
    [8]中华人民共和国国家统计局,中国统计年鉴[M],北京:中国统计出版社(2011)p423-424.
    [9]Y.S.C. Kyung Jin Shin, Characterization of polychlorinated dibenzo-p-dioxins, dibenzofurans, biphenyls, and heavy metals in fly ash produced from Korean municipal solid waste incinerators, Chemosphere,38 (1999) 2655-2666.
    [10]M. Cobo, A. Galvez, J.A. Conesa, C.M. de Correa, Characterization of fly ash from a hazardous waste incinerator in Medellin, Colombia, J Hazard Mater,150 (2009)510-514.
    [11]P.S. Kulkarni, J.G. Crespo, C.A. Afonso, Dioxins sources and current remediation technologies--a review, Environ Int,34 (2008) 139-153.
    [12]S. Houot, C. Verge-Leviel, M. Poitrenaud, Potential Mineralization of Various Organic Pollutants During Composting, Pedosphere,22 (2012) 536-543.
    [13]S. Jansson, L. Lundin, R. Grabic, Characterisation and fingerprinting of PCBs in flue gas and ash from waste incineration and in technical mixtures, Chemosphere,85 (2011) 509-515.
    [14]C.F. Shen, X.J. Tang, J. Yao, D.Z. Shi, J. Fang, M.I. Khan, S.A. Cheema, Y.X. Chen, Levels and patterns of polycyclic aromatic hydrocarbons and polychlorinated biphenyls in municipal waste incinerator bottom ash in Zhejiang province, China, J Hazard Mater,179 (2010) 197-202.
    [15]陆胜勇,李晓东,严建华等,异重介质循环流化床焚烧炉多环芳烃排放特性的测定,中国电机工程学报,22(2002)130-135.
    [16]P. He, H. Zhang, C. Zhang, D. Lee, Characteristics of air pollution control residues of MSW incineration plant in Shanghai, J Hazard Mater,46 (2004) 365-373.
    [17]生活垃圾焚烧污染控制标准,环境保护部,国家质量监督检验检疫总局发布,GB18485-2001.
    [18]中华人民共和国环境保护部,《生活垃圾填埋场污染控制标准》GB 16889-2008.
    [19]ISWA (Internaltional solid waste association), Working Group on thermal treatment of waste, subgroup on APC residues from W-t-E plant, Management of APC residues from W-t-E Plants:an overview of management options and treatment methods, Second edition, (2008).
    [20]T. Sabbas, A. Polettini, R. Pomi, T. Astrup, O. Hjelmar, P. Mostbauer, G. Cappai, G. Magel, S. Salhofer, C. Speiser, S. Heuss-Assbichler, R. Klein, P. Lechner, Management of municipal solid waste incineration residues, Waste Manage,23 (2003) 61-88.
    [21]E.U. Directive 2000/76/EC of the European Parliament and of the Council of 4 December 2000 on the incineration of waste. The Council of European Union, (2000).
    [22]IAWG (International ash working group), Municipal solid waste incinerator residues, Studies in Environmental Science,67 (1997).
    [23]M. Li, S. Hu, J. Xiang, L. Sun, P. Li, S. Su, X. Sun, Characterization of Fly Ashes from Two Chinese Municipal Solid Waste Incinerators, Energ Fuel,17 (2003) 1487-1491.
    [24]P. Piantone, F. Bodenan, R. Derie, G. Depelsenaire, Monitoring the stabilization of municipal solid waste incineration fly ash by phosphation:mineralogical, and balance approach, Waste Manage,23 (2003) 225-243.
    [25]G.J. Song, K.H. Kim, Y.C. Seo, S.C. Kim, Characteristics of ashes from different locations at the MSW incinerator equipped with various air pollution control devices, Waste Manage,24 (2004) 99-106.
    [26]T.W. Cheng, Y.S. Chen, Characterisation of glass ceramics made from incinerator fly ash, Ceram Int,30 (2004) 343-349.
    [27]J.M. Kim, H.S. Kim, Glass-ceramic produced from a municipal waste incinerator fly ash with high Cl content, J Eur Ceram Soc,24 (2004) 2373-2382.
    [28]李建新,垃圾焚烧过程重金属污染物迁移机理及稳定化处理技术研究,浙江大学博士论文,(2004).
    [29]M.J. Quina, J.C. Bordado, R.M. Quinta-Ferreira, Treatment and use of air pollution control residues from MSW incineration:An overview. Waste Manage, 21 (2008)313-323.
    [30]Y.C. Zhao, L.J. Song, G.J. Li, Chemical stabilization of MSW incinerator fly ashes, J Hazard Mater,95 (2002) 47-63.
    [31]K. Olie, P.L. Vermeulen, O. Hutzinger, Chlorodibenzo-p-dioxins and chlorodibenzofurans are trace components of fly ash and flue gas of some municipal incinerators in The Netherlands, Chemosphere,6 (1977) 455-459.
    [32]Environment Australia, Incineration and dioxins:review of formation processes, consultancy report prepared by Environmental and Safety Services for Environment Australia, Commonwealth Department of the Environmental and Heritage:Canberra, Australia. (1999).
    [33]M.B. Chang, T.F. Huang, The effects of temperature and oxygen content on the PCDD/PCDFs formation in MSW fly ash, Chemosphere,40 (2000) 159-164.
    [34]B.R. Stanmore, Modeling the formation of PCDD/F in solid waste incinerators, Chemosphere,47 (2002) 565-573.
    [35]K. Tuppurainen, A. Asikainen, P. Ruokojarvi, J. Ruuskanen, Perspectives on the formation of polychlorinated dibenzo-p-dioxins and dibenzofurans during municipal solid waste (MSW) incineration and other combustion processes, Accounts Chem Res,36 (2003) 652-658.
    [36]S.P. Ryan, E.R. Altwicker, Understanding the Role of Iron Chlorides in the De Novo Synthesis of Polychlorinated Dibenzo-p-dioxins/Dibenzofurans, Environ Sci Technol,38 (2004) 1708-1717.
    [37]J. Ryu, J.A. Mulholland, J.E. Dunn, F. lino, B.K. Gullett, Potential Role of Chlorination Pathways in PCDD/F Formation in a Municipal Waste Incinerator, Environ Sci Technol,38 (2004) 5112-5119.
    [38]J. Ryu, J.A. Mulholland, D.H. Kim, M. Takeuchi, Homologue and Isomer Patterns of Polychlorinated Dibenzo-p-dioxins and Dibenzofurans from Phenol Precursors:□Comparison with Municipal Waste Incinerator Data, Environ Sci Technol,39 (2005) 4398-4406.
    [39]陈彤,城市生活垃圾焚烧过程中二恶英的形成机理及控制技术研究,浙江大学博士论文,(2006).
    [40]L. Lundin, S. Marklund, Distribution of mono to octa-chlorinated PCDD/Fs in fly ash from a municipal solid-waste incinerator, Environ Sci Technol,42 (2008) 1245-1250.
    [41]K. Everaert, J. Baeyens, The formation and emission of dioxins in large scale thermal processes, Chemosphere,46 (2002) 439-448.
    [42]WTE, Waste To Energy, a technical review of municipal solid waste thermal treatment pratices, Final report, (2011).
    [43]T. Chen, J.H. Yan, S.Y. Lu, X.D. Li, Y.L. Gu, H.F. Dai, M.J. Ni, K.F. Cen, Characteristic of polychlorinated dibenzo-p-dioxins and dibenzofurans in fly ash from incinerators in China, J Hazard Mater,150 (2008) 510-514.
    [44]H.C. Hsi, T.H. Yu, Evaluation of the leachability of polychlorinated dibenzo-p-dioxins and dibenzofurans in raw and solidified air pollution control residues from municipal waste incinerators, Chemosphere,67 (2007) 1434-1443.
    [45]C.H.C.C. Ling, A Taiwanese study of 2,3,7,8-substituted PCDD/DFs and coplanar PCBs in fly ashes from incinerators, J Hazard Mater,58 (1998) 83-91.
    [46]S. Sakai, M. Hiraoka, Municipal solid waste incinerator residue recycling by thermal processes, Waste Manage,20 (2000) 249-258.
    [47]A. Yasuhara, T. Katami, Leaching behavior of polychlorinated dibenzo-p-dioxins and furans from the fly ash and bottom ash of a municipal solid waste incinerator, Waste Manage,27 (2007) 439-447.
    [48]O. Hjelmar, J. B. Hansen, A one stage treatment process for imporving the leaching characteristics of APC residues from MSW incinerators. In: processdings of WASCON, sixth international conference on the environmental and technical implications of construction with alternative materials science and engineering of recycling for environmental protection, (2006).
    [49]D. Amutha Rani, A.R. Boccaccini, D. Deegan, C.R. Cheeseman, Air pollution control residues from waste incineration:Current UK situation and assessment of alternative technologies, Waste Manage,28 (2008) 2279-2292.
    [50]Lundtorp, Treatment of waste incinerator air-pollution-control residues with FeSO4:Concept and product characterisation,2002.
    [51]D.L. Jensen, T.H. Christensen, K. Lundtorp, Treatment of waste incinerator air-pollution-control residues with FeSO4:laboratory investigation of design parameters, Waste Manage Res,20 (2002) 80-90.
    [52]金剑,水热法垃圾焚烧飞灰重金属稳定化处理及同步去除废水中重金属,浙江大学博士论文,(2009).
    [53]R. Siddique, Use of municipal solid waste ash in concrete, Resources, Conservation and Recycling,55 (2010) 83-91.
    [54]J. Yvon, D. Antenucci, E. Jdid, G. Lorenzi, V. Dutre, D. Leclerq, P. Nielsen, M. Veschkens, Long-term stability in landfills of Municipal Solid Waste Incineration fly ashes solidified/stabilized by hydraulic binders, J Geochem Explor,23 (2006) 631-640.
    [55]S.Y. Ham, Y.J. Kim, D.H. Lee, Leaching characteristics of PCDDs/DFs and dioxin-like PCBs from landfills containing municipal solid waste and incineration residues, Chemosphere,70 (2008) 1685-1693.
    [56]H.C. Hsi, L.C. Wang, T.H. Yu, Effects of injected activated carbon and solidification treatment on the leachability of polychlorinated dibenzo-p-dioxins and dibenzofurans from air pollution control residues of municipal waste incineration, Chemosphere,67 (2007) 1394-1402.
    [57]Y.J. Kim, D.H. Lee, M. Osako, Effect of dissolved humic matters on the leachability of PCDD/F from-fly ash-Laboratory experiment using Aldrich humic acid, Chemosphere,47 (2002) 599-605.
    [58]http://www.tetronics.com/pdf/plasma_vitrification_fact_sheet.pdf.
    [59]E. Kalogirou, Fly Ash Characteristics From Waste-to-Energy Facilities and Processes For Ash Stabilization, http://isinn.jinr.ru/18/pdf/Akkurt.pdf.
    [60]H. Ecke, H. Sakanakura, T. Matsuto, N. Tanaka, A. Lagerkvist, State-of-the-art treatment processes for municipal solid waste incineration residues in Japan, Waste Manage Res,18 (2000) 41-51.
    [61]M.J. Quina, Treatment processes and valorization of APC residues-Municipal solid waste incineration, PhD thesis, University of Coimbra, Portugal, (2005).
    [62]K.H. Kim, Y.C. Seo, H. Nam, H.T. Joung, J.C. You, D.J. Kim, Y.C. Seo, Characteristics of major dioxin/furan congeners in melted slag of ash from municipal solid waste incinerators, Microchem J,80 (2005) 171-181.
    [63]L. Lundin, S. Marklund, Thermal degradation of PCDD/F, PCB and HCB in municipal solid waste ash, Chemosphere,67 (2007) 474-481.
    [64]L. Lundin, S. Marklund, Thermal degradation of PCDD/F in municipal solid waste ashes in sealed glass ampules, Environ Sci Technol,39 (2005) 3872-3877.
    [65]G.J. Song, S.H. Kim, Y.C. Seo, S.C. Kim, Dechlorination and destruction of PCDDs/PCDFs in fly ashes from municipal solid waste incinerators by low temperature thermal treatment, Chemosphere,71 (2008) 248-257.
    [66]I.H. Nam, Y.M. Kim, K. Murugesan, J.R. Jeon, Y.Y. Chang, Y.S. Chang, Bioremediation of PCDD/Fs-contaminated municipal solid waste incinerator fly ash by a potent microbial biocatalyst D-3282-2009, J Hazard Mater,157 (2008) 114-121.
    [67]Y.X. Zhou, P. Yan, Z.X. Cheng, M. Nifuku, X.D. Liang, Z.C. Guan, Application of non-thermal plasmas on toxic removal of dioxin-contained fly ash. Powder Technol,135 (2003) 345-353.
    [68]J.H. Yan, Z. Peng, S.Y. Lu, X.D. Li, M.J. Ni, K.F. Cen, H.F. Dai, Degradation of PCDD/Fs by mechanochemical treatment of fly ash from medical waste incineration, J Hazard Mater,147 (2007) 652-657.
    [69]Y. Mitoma, H. Miyata, N. Egashira, A.M. Simion, M. Kakeda, C. Simion, Mechanochemical degradation of chlorinated contaminants in fly ash with a calcium-based degradation reagent, Chemosphere,83 (2011) 1326-1330.
    [70]O. Senneca, P. Salatino, R. Chirone, L. Cortese, R. Solimene, Mechanochemical activation of high-carbon fly ash for enhanced carbon reburning, Proceedings of the combustion institue,33 (2011) 2743-2753.
    [71]J.F. Niu, J.W. Chen, X. Quan, F.L. Yang, B. Henkelmann, K.W. Schramm, Effects of UV-B on photochemical behavior of fly ash particle-associated PCDD/Fs A-5489-2012, B Environ Contam Tox,73 (2004) 717-724.
    [72]W. Choi, S.J. Hong, Y.S. Chang, Y. Cho, Photocatalytic degradation of polychlorinated dibenzo-p-dioxins on TiO2 film under UV or solar light irradiation, Environ Sci Technol,34 (2000) 4810-4815.
    [73]Y. Mitoma, T. Uda, N. Egashira, C. Simion, H. Tashiro, M. Tashiro, X. Fan, Approach to Highly Efficient Dechlorination of PCDDs, PCDFs, and Coplanar PCBs Using Metallic Calcium in Ethanol under Atmospheric Pressure at Room Temperature, Environ Sci Technol,38 (2004) 1216-1220.
    [74]W. Zhou, G. Anitescu, P.A. Rice, L.L. Tavlarides, Supercritical fluid extraction-oxidation technology to remediate PCB-contaminated soils/sediments: An economic analysis, Environ Prog,23 (2004) 222-231.
    [75]B. Prabowo, B. Veriansyah, J.D. Kim, Hydrothermal decomposition of pentachlorophenol in subcritical and supercritical water with sodium hydroxide addition E-7393-2010, Journal of environmental sciences-China,19 (2007) 663-666.
    [76]P.T. Williams, J.A. Onwudili, Destruction of environmental organic pollutants by supercritical water oxidation, Environ Technol,27 (2006) 823-834.
    [77]J.A. Onwudili, P.T. Williams, Hydrothermal oxidation of di-n-butylphthalate: Product distribution and reaction mechanisms, Energ Fuel,21 (2007) 1528-1533.
    [78]J.A. Onwudili, P.T. Williams, Reaction mechanisms for the hydrothermal oxidation of petroleum derived aromatic and aliphatic hydrocarbons, J Supercrit Fluid,43 (2007) 81-90.
    [79]J.A. Onwudili, P.T. Williams, Hydrothermal catalytic gasification of municipal solid waste, Energ Fuel,21 (2007) 3676-3683.
    [80]H. Vogg, L. Stieglitz, Thermal-behavior of PCDD/PCDF in fly-ash from municipal incinerators, Chemosphere,15 (1986) 1373-1378.
    [81]S. Jansson, L. Lundin, R. Grabic, Characterisation and fingerprinting of PCBs in flue gas and ash from waste incineration and in technical mixtures, Chemosphere,85 (2011) 509-515.
    [82]L. Lundin, J. Aurell, S. Marklund, The behavior of PCDD and PCDF during thermal treatment of waste incineration ash, Chemosphere,84 (2011) 305-310.
    [83]G. Brunner, Near critical and supercritical water. Part I. Hydrolytic and hydrothermal processes, The Journal of Supercritical Fluids,47 (2009) 373-381.
    [84]G. Brunner, Near and supercritical water. Part Ⅱ:Oxidative processes, The Journal of Supercritical Fluids,47 (2009) 382-390.
    [85]金剑,李晓东,池涌,严建华,水热-碳酸钠法稳定化医疗废物焚烧炉飞灰中重金属的研究,环境科学,(2010)1101-1107.
    [86]J. Jin,X.L. LI, Y. Chi, J.H. Yan, heavy metals stabilitztion in medical waste incinerator fly ash using alkaline assisted supercritical water technology, Waste Manag Res, (2010)1-10.
    [87]J. Jin,X.L. LI, Y. Chi, J.H. Yan, Co-disposal of Heavy Metals Containing Waste Water and Medical Waste Incinerator Fly Ash by Hydrothermal Process with Addition of Sodium Carbonate:A Case Study on Cu(II) Removal, Water, Air,& Soil Pollution, (2010) 391-400.
    [88]王宇峰,李晓东,金剑,严建华,水热法降解医疗废物焚烧飞灰中二恶英的研究,中国电机工程学报,(2010)56-61.
    [89]王磊,金剑,李晓东,池涌,严建华,碱性水热法同步稳定城市垃圾/医疗废物焚烧飞灰与废水中重金属的研究,环境科学,(2010)1973-1980.
    [90]中华人民共和国环境保护行业标准,GB5085.3-2007,固体废物浸出毒性浸出方法硫酸硝酸法(2007).
    [91]中华人民共和国环境保护行业标准,HJ/T299-2007,固体废物浸出毒性浸出方法醋酸缓冲法(2007).
    [92]Method 1311, Toxicity characteristic leaching procedure.
    [93]G. Li, S.H. Guo, S.C. Li, L.Y. Zhang, S.S. Wang, Comparison of approaching and fixed anodes for avoiding the'focusing'effect during electrokinetic remediation of chromium-contaminated soil, Chem Eng J,203 (2012) 231-238.
    [94]B. Gonzalez-Corrochano, J. Alonso-Azcarate, M. Rodas, Effect of thermal treatment on the retention of chemical elements in the structure of lightweight aggregates manufactured from contaminated mine soil and fly ash, Constr Build Mater,35 (2012) 497-507.
    [95]H.H. Ho, R. Swennen, V. Cappuyns, E. Vassilieva, T. Van Gerven, T.V. Tran, Potential release of selected trace elements (As, Cd, Cu, Mn, Pb and Zn) from sediments in Cam River-mouth (Vietnam) under influence of pH and oxidation, Sci Total Environ,435 (2012) 487-498.
    [96]B. Gonzalez-Corrochano, J. Alonso-Azcarate, M. Rodas, Chemical partitioning in lightweight aggregates manufactured from washing aggregate sludge, fly ash and used motor oil, J Environ Manage,109 (2012) 43-53.
    [97]US EPA, Method 1613 B:Tetra through Octa-Chlorinated Dioxins and Furans by Isotope Dilution HRGC/HRMS, US EPA Press, Washington, DC, (1994).
    [98]Z.Q. Liu, Z.H. Liu, X.L. Li, Status and prospect of the application of municipal solid waste incineration in China, Appl Therm Eng,26 (2006) 1193-1197.
    [99]Y. Ni, H. Zhang, S. Fan, X. Zhang, Q. Zhang, J. Chen, Emissions of PCDD/Fs from municipal solid waste incinerators in China, Chemosphere,75 (2009) 1153-1158.
    [100]H.F. Cheng, Y.N. Hu, Curbing dioxin emissions from municipal solid waste incineration in China:re-thinking about management policies and practices, Environ Pollut,158 (2010) 2809-2814.
    [101]UNEP (United Nations Environmental Programme), Standardized toolkit for identification and quantification of dioxin and furan releases, Geneva:UNEP chemicals (2007).
    [102]Y.Y. Park, G.G. Hu, A study on behavior of heavy metals during waste incineration. Journal of Korean Environmental Science Society 5 (1996) 785-799.
    [103]E. R. Altwicker, Formation of PCDDF in municipal solid waste incinerators: laboratory and modeling studies, Journal of Hazardous Materials 47 (1996) 137-161.
    [104]M.B. Chang, T.F. Huang, The effects of temperature and oxygen content on the PCDD/PCDFs formation in MSW fly ash, Chemosphere,40 (2000) 159-164.
    [105]Spray_tower http://en.wikipedia.org/wiki/Spray_tower.
    [106]A. Buekens, H. Huang, Comparative evaluation of techniques for controlling the formation and emission of chlorinated dioxins/furans in municipal waste incineration, J Hazard Mater,62 (1998) 1-33.
    [107]M.S. Wang, S.J. Chen, Y.C. Lai, K.L. Huang, G.P. Chang-Chien, Characterization of Persistent Organic Pollutants in Ash Collected from Different Facilities of a Municipal Solid Waste Incinerator, Aerosol and air quality research,10(2010)391-402.
    [108]H. Govers, H.B. Krop, Partition constants of chlorinated dibenzofurans and dibenzo-p-dioxins, Chemosphere,37 (1998) 2139-2152.
    [109]M. Kato, K. Urano, Convenient substitute indices to toxic equivalent quantity for controlling and monitoring dioxins in stack gas from waste incineration facilities, Waste Manage.21 (2001) 55-62.
    [110]Y.M. Chang, W.P. Fan, W.C. Dai, H.C. Hsi, C.H. Wu, C.H. Chen, Characteristics of PCDD/F content in fly ash discharged from municipal solid waste incinerators, J Hazard Mater,192 (2011) 521-529.
    [111]Y.S. Lin, K.S. Chen, Y.C. Lin, C.H. Hung, G.P. Chang-Chien, Polychlorinated dibenzo-p-dioxins/dibenzofurans distributions in ash from different units in a municipal solid waste incinerator, J Hazard Mater,154 (2008) 954-962.
    [112]N. Murayama, H. Yamamoto, J. Shibata, Mechanism of zeolite synthesis from coal fly ash by alkali hydrothermal reaction, Int J Miner Process,84 (2002) 1482-1486.
    [113]X. Querol, N. Moreno, J.C. UmaQa, A. Alastuey, E. HernAndez, A. LSpez-Soler, F. Plana, Synthesis of zeolites from coal fly ash:an overview, Int J Coal Geol,160 (2002) 148-153.
    [114]H. Tanaka, A. Fujii, Effect of stirring on the dissolution of coal fly ash and synthesis of pure-form Na-A and-X zeolites by two-step process, Adv Powder Technol,37 (2009) 1873-1884.
    [115]H. Tanaka, A. Fujii, S. Fujimoto, Y. Tanaka, Microwave-Assisted Two-Step Process for the Synthesis of a Single-Phase Na-A Zeolite from Coal Fly Ash, Adv Powder Technol,37 (2008) 1873-1884.
    [116]H. Tanaka, H. Eguchi, S. Fujimoto, R. Hino, Two-step process for synthesis of a single phase Na-A zeolite from coal fly ash by dialysis, Fuel,15 (2006) 736-742.
    [117]H. Tanaka, Y. Sakai, R. Hino, Formation of Na-A and-X zeolites from waste solutions in conversion of coal fly ash to zeolites, Mater Res Bull,20 (2002) 473-479.
    [118]X.J. Ma, X.G. Jiang, Y.Q. Jin, H.M. Liu, X.D. Li, J.H. Yan, Hydrothermal stabilization of fly ash from a fluidized bed incinerator co-firing and coal, Fresen Environ Bull,21 (2012) 586-592.
    [119]A.P. Bayuseno, W.W. Schmahl, T. Mullejans, Hydrothermal processing of MSWI fly ash--towards new stable minerals and fixation of heavy metals, J Hazard Mater,167 (2009) 250-259.
    [120]Y. Fan, F. Zhang, J. Zhu, Z. Liu, Effective utilization of waste ash from MSW and coal co-combustion power plant-Zeolite synthesis, J Hazard Mater,13 (2008)831-842.
    [121]Y. Fan, F. Zhang, Y. Feng, An effective adsorbent developed from municipal solid waste and coal co-combustion ash for As(V) removal from aqueous solution, J Hazard Mater,29 (2008) 2051-2058.
    [122]F. Zhang, H. Itoh, Extraction of metals from municipal solid waste incinerator fly ash by hydrothermal process, J Hazard Mater,1 (2006) 178-185.
    [123]D. Bo, F.S. Zhang, L. Zhao, Influence of supercritical water treatment on heavy metals in medical waste incinerator fly ash, J Hazard Mater,170 (2009) 66-71.
    [124]C. Gleyzes, S. Tellier, M. Astruc, Fractionation studies of trace elements in contaminated soils and sediments:a review of sequential extraction procedures, Trac-Trend Anal Chem,21 (2002) 451-467.
    [125]E. Soco, J. Kalembkiewicz, Investigations on Cr mobility from coal fly ash, Fuel,88(2009)1513-1519.
    [126]E. Soco, J. Kalembkiewicz, Investigations of chemical fraction of Co and Ni in industrial fly ash and mobility of metals in environmental conditions. Chemosphere,67 (2007) 359-364.
    [127]J.D. Chou, M.Y. Wey, S.H. Chang, Evaluation of the distribution patterns of Pb, Cu and Cd from MSWI fly ash during thermal treatment by sequential extraction procedure, J Hazard Mater,162 (2009) 1000-1006.
    [128]A.M. Ure, P.H. Quevauviller, H. Muntau, B. Griepink, Speciation of heavy metals in solids and harmonization of extraction techniques undertaken under the auspices of the BCR of the Commission of the European Communities. International Journal of Environmental Analytical Chemistry,51 (1993) 135.
    [129]L. Wang, Y. Jin, Y. Nie, Investigation of accelerated and natural carbonation of MSWI fly ash with a high content of Ca, J Hazard Mater,174 (2010) 334-343.
    [130]K. Nemati, N.K. Abu Bakar, M.R. Abas, Investigation of heavy metals mobility in shrimp aquaculture sludge-Comparison of two sequential extraction procedures, Microchem J,91 (2009) 227-231.
    [131]A. Tessier, P.G.C. Campbell, M. Bisson, Sequential extraction procedure for the speciation of particulate trace metals,analytical chemistry,51 (1979).
    [132]G.C.C. Yang, T. Yang, Synthesis of zeolites from municipal incinerator fly ash, J Hazard Mater,58 (1998) 103-120.
    [133]R. Perez-Lopez, R. Saez, A.M. Alvarez-Valero, J.M. Nieto, G. Pace, Combination of sequential chemical extraction and modelling of dam-break wave propagation to aid assessment of risk related to the possible collapse of a roasted sulphide tailings dam, Sci Total Environ,407 (2009) 5761-5771.
    [134]A. Naji, A. Ismail, A.R. Ismail, Chemical speciation and contamination assessment of Zn and Cd by sequential extraction in surface sediment of Klang River, Malaysia, Microchem J,95 (2010) 285-292.
    [135]K. Nemati, N.K.A. Bakar, M.R. Abas, E. Sobhanzadeh, Speciation of heavy metals by modified BCR sequential extraction procedure in different depths of sediments from Sungai Buloh, Selangor, Malaysia, J Hazard Mater,192 (2011) 402-410.
    [136]S.K. Sundaray, B.B. Nayak, S. Lin, D. Bhatta, Geochemical speciation and risk assessment of heavy metals in the river estuarine sediments-A case study: Mahanadi basin, India, J Hazard Mater,186 (2011) 1837-1846.
    [137]G.B. Yu, Y. Liu, S. Yu, S.C. Wu, A.O.W. Leung, X.S. Luo, B. Xu, H.B. Li, M.H. Wong, Inconsistency and comprehensiveness of risk assessments for heavy metals in urban surface sediments, Chemosphere,85 (2011) 1080-1087.
    [138]C.K. Jain, Metal fractionation study on bed sediments of River Yamuna, India, Water Res,38 (2004) 569-578.
    [139]N. Murayama, T. Takahashi, K. Shuku, H. Lee, J. Shibata, Effect of reaction temperature on hydrothermal syntheses of potassium type zeolites from coal fly ash, Int J Miner Process,158 (2008) 616-622.
    [140]V. Somerset, L. Petrik, E. Iwuoha, Alkaline hydrothermal conversion of fly ash precipitates into zeolites 3:The removal of mercury and lead ions from wastewater, J Environ Manage,84 (2008) 2324-2329.
    [141]V.S. Somerset, L.F. Petrik, R.A. White, M.J. Klink, D. Key, E.I. Iwuoha, Alkaline hydrothermal zeolites synthesized from high SiO2 and Al2O3 co-disposal fly ash filtrates, Fuel,76 (2005) 793-799.
    [142]V.S. Somerset, L.F. Petrik, R.A. White, M.J. Klink, D. Key, E. Iwuoha, The use of X-ray fluorescence (XRF) analysis in predicting the alkaline hydrothermal conversion of fly ash precipitates into zeolites, Talanta,101 (2004) 146-150.
    [143]R. Weber, Relevance of PCDD/PCDF formation for the evaluation of POPs destruction technologies-Review on current status and assessment gaps, Chemosphere,67 (2007) S109-S117.
    [144]R. Weber, S. Yoshida, K. Miwa, PCB destruction in subcritical and supercritical water-Evaluation of PCDF formation and initial steps of degradation mechanisms, Environ Sci Technol,36 (2002) 1839-1844.
    [145]S. Ahmed, S. Chughtai, M.A. Keane, The removal of cadmium and lead from aqueous solution by ion exchange with Na-Y zeolite, Sep Purif Technol,13 (1998)57-64.
    [146]A. Langella, M. Pansini, P. Cappelletti, B. de Gennaro, M. De'Gennaro, C. Colella, NH4+, Cu2+, Zn2+, Cd2+and Pb2+ exchange for Na+in a sedimentary clinoptilolite, North Sardinia, Italy, Micropor Mesopor Mat,37 (2000) 337-343.
    [147]W. Qiu, Y. Zheng, Removal of lead, copper, nickel, cobalt, and zinc from water by a cancrinite-type zeolite synthesized from fly ash, Chem Eng J,322 (2009) 13-21.
    [148]C.A. Rios, C.D. Williams, C.L. Roberts, A comparative study of two methods for the synthesis of fly ash-based sodium and potassium type zeolites, Fuel,88 (2009)1403-1416.
    [149]J.W. Phair, J.S.J. Van Deventer, Effect of silicate activator pH on the leaching and material characteristics of waste-based inorganic polymers, Miner Eng,28 (2001)416-423.
    [150]J.L. Provis, G.C. Lukey, J. van Deventer, Do geopolymers actually contain nanocrystalline zeolites? A reexamination of existing results, Chem Mater,17 (2005)3075-3085.
    [151]J. Zhang, J.L. Provis, D. Feng, J.S.J. van Deventer, Geopolymers for immobilization of Cr6+, Cd2+, and Pb2+, J Hazard Mater,160 (2008) 148-153.
    [152]J. Zhang, J.L. Provis, D. Feng, J.S.J. van Deventer, The role of sulfide in the immobilization of Cr(VI) in fly ash geopolymers. Cement Concrete Res,157 (2008) 587-598.
    [153]L. Zheng, W. Wang, Y. Shi, The effects of alkaline dosage and Si/Al ratio on the immobilization of heavy metals in municipal solid waste incineration fly ash-based geopolymer, Chemosphere,29 (2010) 2494-2499.
    [154]M.D. Turan, H.S. Altundogan, F. Tumen, Recovery of zinc and lead from zinc plant residue, Hydrometallurgy,75 (2004) 169-176.
    [155]A. Rusen, A.S. Sunkar, Y.A. Topkaya, Zinc and lead extraction from Cinkur leach residues by using hydrometallurgical method, Hydrometallurgy,93 (2008) 45-50.
    [156]D. Sinadinovic, Z. Kamberovic, A. Sutic, Leaching kinetics of lead from lead (II) sulphate in aqueous calcium chloride and magnesium chloride solutions, Hydrometallurgy,47 (1997) 137-147.
    [157]中国人民共和国环境保护行业标准,GB8978-96污水综合排放标准,GB8978-1996.
    [158]薛云龙,飞灰水热法处理后对废水中锌、铅离子吸附性能研究,浙江大学硕士论文,(2012).
    [159]Jens Weitkamp, Zeolites and catalysis, Solid State Ionics 131 (2000) 175-188.
    [160]G.H. Zhang, X.S. Liu, J.K. Thomas, Radiation induced physical and chemical processes in zeolite materials, Radiat Phys Chem,51 (1998) 135-152.
    [161]V. Marulanda, G. Bolanos, Supercritical water oxidation of a heavily PCB-contaminated mineral transformer oil:Laboratory-scale data and economic assessment, J Supercrit Fluid,54 (2010) 258-265.
    [162]K. Nose, S. Hashimoto, S. Takahashi, Y. Noma, S. Sakai, Degradation pathways of decabromodiphenyl ether during hydrothermal treatment, Chemosphere,68 (2007) 120-125.
    [163]C.P. O'Brien, M.C. Thies, D.A. Bruce, Supercritical water oxidation of the PCB congener 2-chlorobiphenyl in methanol solutions:a kinetic analysis, Environ Sci Technol,39 (2005) 6839-6844.
    [164]S. Hashimoto, K. Watanabe, K. Nose, M. Morita, Remediation of soil contaminated with dioxins by subcritical water extraction, Chemosphere,54 (2004) 89-96.
    [165]N. Kluyev, A. Cheleptchikov, E. Brodsky, V. Soyfer, V. Zhilnikov, Reductive dechlorination of polychlorinated dibenzo-p-dioxins by zerovalent iron in subcritical water, Chemosphere,46 (2002) 1293-1296.
    [166]S.B. Wang, Application of solid ash based catalysts in heterogeneous catalysis, Environ Sci Technol,42 (2008) 7055-7063.
    [167]G. Lee, T. Nunoura, Y. Matsumura, K. Yamamoto, Comparison of the effects of the addition of NaOH on the decomposition of 2-chlorophenol and phenol in supercritical water and under supercritical water oxidation conditions, J Supercrit Fluid,24 (2002) 239-250.
    [168]Z. Fang, S.K. Xu, R.L. Smith, K. Arai, J.A. Kozinski, Destruction of deca-chlorobiphenyl in supercritical water under oxidizing conditions with and without Na2CO3, J Supercrit Fluid,33 (2005) 247-258.
    [169]Z.R. Sun, F. Takahashi, Y. Odaka, K. Fukushi, Y. Oshima, K. Yamamoto, Effects of potassium alkalis and sodium alkalis on the dechlorination of o-chlorophenol in supercritical water, Chemosphere,66 (2007) 151-157.
    [170]H. Yamaguchi, E. Shibuya, Y. Kanamaru, K. Uyama, M. Nishioka, N. Yamasaki, Hydrothermal decomposition of PCDDs/PCDFs in MSWI fly ash, Chemosphere,32 (1996) 203-208.
    [171]J.L. Xie, Y.Y. Hu, D.Z. Chen, B. Zhou, Hydrothermal treatment of MSWI fly ash for simultaneous dioxins decomposition and heavy metal stabilization, Frontiers of Environmental Science and Engineering in China,4 (2010) 108-115.
    [172]Y.Y. Hu, P.F. Zhang, D.Z. Chen, B. Zhou, J.Y. Li, X.W. Li, Hydrothermal treatment of municipal solid waste incineration fly ash for dioxin decomposition, J Hazard Mater,207 (2012) 79-85.
    [173]H. Fueno, K. Tanaka, S. Sugawa, Theoretical study of the dechlorination reaction pathways of octachlorodibenzo-p-dioxin, Chemosphere,48 (2002) 771-778.
    [174]C.H. Wu, H.Y. Ng, Photodegradation of polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans:direct photolysis and photocatalysis processes, J Hazard Mater,151 (2008) 507-514.
    [175]Li, L. X.; Chen, P. S.; Gloyna, E. F., Generalized kinetic model for wet oxidation of organic compounds. AIChE Jornal,11 (1991) 1687-1697.
    [176]H.M. Liu, S.Y. Lu, A.G. Buekens, T. Chen, X.D. Li, J.H. Yan, X.J. Ma, K.F. Cen, Baseline soil levels of PCDD/Fs established prior to the construction of municipal solid waste incinerators in China, Chemosphere,86 (2012) 300-307.
    [177]J.R. Kastner, R. Ganagavaram, P. Kolar, A. Teja, C.B. Xu, Catalytic ozonation of propanal using wood fly ash and metal oxide nanoparticle impregnated carbon, Environ Sci Technol,42 (2008) 556-562.
    [178]J.R. Kastner, K.C. Das, Q. Buquoi, N.D. Melear, Low temperature catalytic oxidation of hydrogen sulfide and methanethiol using wood and coal fly ash, Environ Sci Technol,37 (2003) 2568-2574.
    [179]E. Auer, A. Freund, J. Pietsch, T. Tacke, Carbons as supports for industrial precious metal catalysts, Applied Catalysis A:General,173 (1998) 259-271.
    [180]Y. Mino, Y. Moriyama, Y. Nakatake, Degradation of 2,7-dichlorodibenzo-p-dioxin by Fe3+-H2O2 mixed reagent, Chemosphere,57 (2004)365-372.
    [181]H. Katsumata, S. Kaneco, T. Suzuki, K. Ohta, Y. Yobiko, Degradation of polychlorinated dibenzo-p-dioxins in aqueous solution by Fe(Ⅱ)/H2O2/UV system, Chemosphere,63 (2006) 592-599.
    [182]魏东洋,高级氧化技术降解六氯苯效果及机理研究.中山大学博士毕业论文,(2007).
    [183]戴启洲,湿式电催化氧化处理难降解有机污染物的研究,浙江大学环境博士论文,(2008).
    [184]马承愚,彭英利,高浓度难降解有机废水的治理与控制,第二版,化学工业出版社,北京,(2010).
    [185]张乃东,郑威,羟基自由基OH·在水处理中的应用,哈尔滨商业大学学报,17(2001)22-24.
    [186]S. Esplugas, J. Gimenez, S. Contreras, E. Pascual, M. Rodriguez, Comparison of different advanced oxidation processes for phenol degradation, Water Res,36 (2002) 1034-1042.
    [187]李灵香玉,马香娟,羟基自由基OH·的特性及其在光化学氧化中的反应机理,化工技术与开发,38(2006)27-29.
    [188]M. Pera-Titus, V. Garcia-Molina, M.A. Banos, J. Gimenez, S. Esplugas, Degradation of chlorophenols by means of advanced oxidation processes:a general review, Appl Catal B-Environ,47 (2004) 219-256.
    [189]I. Sires, J.A. Garrido, R.M. Rodriguez, E. Brillas, N. Oturan, M.A. Oturan, Catalytic behavior of the Fe3+/Fe2+system in the electro-Fenton degradation of the antimicrobial chlorophene, Appl Catal B-Environ,72 (2007) 382-394.
    [190]J.E. Duffy, M.R. Anderson, C.G. Hill, W.A. Zeltner, Wet peroxide oxidation of sediments contaminated with PCBs, Environ Sci Technol,34 (2000) 3199-3204.
    [191]S.K. Bhargava, J. Tardio, J. Prasad, K. Foger, D.B. Akolekar, S.C. Grocott, Wet Oxidation and Catalytic Wet Oxidation, Ind Eng Chem Res,45 (2006) 1221-1258.
    [192]M. Shih, W. Lee, G. Chang-Chien, L. Wang, C. Hung, K. Lin, Dry deposition of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) in ambient air, Chemosphere,62 (2006) 411-416.
    [193]K.T. Valsaraj, L.J. Thibodeaux, On the Physicochemical Aspects of the Global Fate and Long-Range Atmospheric Transport of Persistent Organic Pollutants, The Journal of Physical Chemistry Letters,1 (2010) 1694-1700.
    [194]E.S.C. Kwok, R. Atkinson, J. Arey, Rate Constants for the Gas-Phase Reactions of the OH Radical with Dichlorobiphenyls,1-Chlorodibenzo-p-dioxin, 1,2-Dimethoxybenzene, and Diphenyl Ether:Estimation of OH Radical Reaction Rate Constants for PCBs, PCDDs, and PCDFs, Environ Sci Technol,29 (1995) 1591-1598.
    [195]R. Atkinson, Atmospheric Chemistry of PCBs, PCDDs and PCDFs. Issues in. Environmental Science and Technology 6, Royal Society of Chemistry,Cambridge, United Kingdom, (1996).
    [196]S. Sinkkonen, J. Paasivirta, Degradation half-life times of PCDDs, PCDFs and PCBs for environmental fate modeling, Chemosphere,40 (2000) 943-949.
    [197]V.H. Uc, I. Garcia-Cruz, A. Hernandez-Laguna, A. Vivier-Bunge, New Channels in the Reaction Mechanism of the Atmospheric Oxidation of Toluene, The Journal of Physical Chemistry A,104 (2000) 7847-7855.
    [198]J. Fan, R. Zhang, Atmospheric Oxidation Mechanism of p-Xylene:A Density Functional Theory Study, The Journal of Physical Chemistry A,110 (2006) 7728-7737.
    [199]W.W. Brubaker, R.A. Hites, OH Reaction Kinetics of Polycyclic Aromatic Hydrocarbons and Polychlorinated Dibenzo-p-dioxins and Dibenzofurans, The Journal of Physical Chemistry A,102 (1998) 915-921.
    [200]W.W. Brubaker, R.A. Hites, Polychlorinated Dibenzo-p-dioxins and Dibenzofurans:□Gas-Phase Hydroxyl Radical Reactions and Related Atmospheric Removal, Environ Sci Technol,31 (1997) 1805-1810.
    [201]P.H. Taylor, T. Yamada, A. Neuforth, Kinetics of OH radical reactions with dibenzo-p-dioxin and selected chlorinated dibenzo-p-dioxins, Chemosphere,58 (2005)243-252.
    [202]J.E. Lee, W. Choi, B.J. Mhin, K. Balasubramanian, Theoretical Study on the Reaction of OH Radicals with Polychlorinated Dibenzo-p-dioxins, The Journal of Physical Chemistry A,108 (2003) 607-614.
    [203]J.G. Calvert, R. Atkinson, K.H. Bechker, R.M. Kamens, J.H. Seinfeld, T.J. Wallington, G. Yarwood, The Mechanisms of Atmospheric Oxidation of the Aromatic Hydrocarbons, OXford University Press, (2002).
    [204]C. Zhang, T. Sun, X. Sun, Mechanism for OH-Initiated Degradation of 2,3,7,8-Tetrachlorinated Dibenzo-p-Dioxins in the Presence of O2 and NO/H2O, Environ Sci Technol,45 (2011) 4756-4762.
    [205]C. Zhang, Y. Zhao, J. Bai, C. Gong, X. Sun, Mechanism and kinetic study on the OH-initiated degradation of 2,3,7,8-tetrachlorinated dibenzofuran in atmosphere, Sci Total Environ,435-436 (2012) 53-60.
    [206]L.M. Wang, A.L. Tang, Atmospheric oxidation mechanisms of polychlorinated dibenzo-p-dioxins are different from those of benzene and dibenzofuran:A theoretical prediction, Chemosphere,82 (2011) 782-785.
    [207]L.M. Wang, A.L. Tang, The oxidation mechanism of polychlorinated dibenzo-p-dioxins under the atmospheric conditions-A theoretical study, Chemosphere,89 (2012) 950-956.
    [208]P. Hohenberg and W. Kohn, Inhomogeneous Electron Gas, Phys.Rev.B.136 (1964) 864.
    [209]http://www.chem.wayne.edu/-hbs/chm6440/PES.html.
    [210]J. Tomasi, B. Mennucci, R. Cammi, Quantum Mechanical Continuum Solvation Models, Chem Rev,105 (2005) 2999-3094.
    [211]G. Scalmani, M.J. Frisch, Continuous surface charge polarizable continuum models of solvation. I. General formalism, J Chem Phys,132 (2010).
    [212]D.M. York, M. Karplus, A Smooth Solvation Potential Based on the Conductor-Like Screening Model, The Journal of Physical Chemistry A,103 (1999)11060-11079.
    [213]A.D. Becke, Density-functional thermochemistry 4. A new dynamical correlation functional and implications for exact-exchange mixing, J Chem Phys, 104(1996) 1040-1046.
    [214]C. Gonzalez, H.B. Schlegel, Reaction-path following in mass-weighted internal coordinates, Journal of Physical Chemical,94 (1990) 5523-5527.
    [215]C. Gonzalez, H.B. Schlegel, An improved algorithm for reaction-path following, Journal of Chemcal Physics,90 (1989) 2154-2161.