生物质木材的离子液体液化及其产物的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
论文的目标是:首先合成出烷基咪唑型、烯丙基咪唑型离子液体,以它们作为木材液化剂,考察木材原料特性和液化反应条件,探讨离子液体液化木材的机理、离子液体结构与木材液化性能的关系,从而建立离子液体液化木材的方法;然后以该方法液化产物为原料,经磺化、缩合制备出一种悬浮剂,研究其在种衣剂中的悬浮性能及配方应用,以期获得木材液化产物进一步应用的理论和实验依据。
     主要创新工作如下:
     1、以1-甲基咪唑与1,2-二氯乙烷为原料,合成出双(1-甲基氯化咪唑)乙烷盐离子液体(Ⅰ);再与三氯化铝反应,制得三氯化铝双(1-甲基氯化咪唑)乙烷盐离子液体(Ⅱ),经GC-MS分析和FT-IR分析确认产物结构。以所得离子液体为液化剂,液化未经任何预处理的木材,建立了离子液体液化木材的方法,并与传统的苯酚液化方法进行了对比。在液比8:1、反应温度110-120℃、反应时间25min及金属卤化物配比N=0.67条件下,离子液体液化性能明显优于苯酚液化剂,且离子液体可回收并重用于液化反应。
     2、从金寨、霍山和舒城三个杉木产区取样,考察杉木的化学组成、材性及液化特性。杉木的化学组成受地域影响不大,其中纤维素含量较高,半纤维素和木质素含量接近中等水平。纤维素是最难液化的组分,较木质素需要更高的反应温度和更长的反应时间,显著影响杉木的液化性能。杉木材的纤维素、半纤维素含量高于杉木树皮,而灰分、抽提物含量相对较低,相同条件下液化效率较低,而残渣量较少。
     3、为降低液化反应温度,以1-丁基咪唑、1-甲基咪唑分别与3-氯丙烯反应,合成出1-丁基-3-烯丙基咪唑氯化物离子液体([BAIM][Cl])和1-甲基-3-烯丙基咪唑氯化物离子液体([MAIM][Cl]),再与三氯化铝混合成盐,经GC-MS分析和FT-IR分析确认产物结构。[BAIM][Cl/AlCl3]和[MAIM][Cl/AlCl3]液化率均优于相应的[BAIM][Cl]和[MAIM][Cl],特别是[BAIM][Cl/AlCl3]在80℃时的残渣率降低到10%左右,相当于离子液体(Ⅱ)在100℃的水平,有效液化温度显著降低。偏光显微镜观察[BAIM][Cl/AlCl3]液化杉木粉发现,60℃时纤维素晶区被部分地破坏,随着反应温度升高及反应时间延长,纤维素结晶逐步消失,此时[BAIM][Cl]主要表现为对木粉表层的润胀,而苯酚则无明显作用。
     4、以红外光谱吡啶探针法研究了离子液体的酸性与催化性能、离子液体结构与木材液化性能的关系。吡啶探针显示,[Cl/AlCl3]随N值变化而产生不同酸性,当N=0.50-0.67时显Lewis酸性,当N>0.67时则出现Br(?)nsted酸性,这种酸性结构对木材液化具有高催化性能。SnCl2和FeCl3等金属卤化物与前驱体阴离子结合可得到类似于[Cl/AlCl3]的配位结构,对液化反应也具有这种催化作用。
     依据液化过程中各阶段产物组成,[BAIM][Cl/AlCl3]液化木材机理可认为是纤维素首先发生降解,该步骤是液化的关键,其次是半纤维素和木质素,各步反应速率有较大变化。在离子液体结构与性能上,阴离子[Cl]及金属离子M以及阳离子咪唑环上的烷基、烯丙基有利于木材液化反应;[BPy][Cl]、[BMIM][BF4]和[BMIM][PF6]等中性离子液体基本没有液化性。
     5、以木材液化产物为原料,确定磺化、缩合及中和的合成路线,制备出一种木材液化物悬浮剂(WLS)。所得较佳反应条件为,磺化、缩合反应温度85℃和90℃,磺化、缩合反应时间2.5h和3.0h,中和反应温度70-80℃,在此条件下产物悬浮率平均达91.1%。
     研究WLS在4种作物的种衣剂悬浮液中的悬浮性能结果表明:WLS具有一定表面活性,但浓度-表面张力关系曲线上没有明显的转折点,与Tween80混合在Attapulgite中显示出助膨胀性;在二元、三元混合体系中,WLS具有良好配伍性,与非离子表面活性剂等组分产生协同效应,且在室温、高温条件下悬浮性能优良,粘度变化小。三元体系Attapulgite/WLS/Tween80对4种作物的种衣剂悬浮率均达90%以上,优于二元体系和单一组分。
     经过组分筛选和配方设计,确定悬浮种衣剂的配方组成和用量,制备出一种20%福·克悬浮种衣剂。包衣实验结果表明,配方的各项质量控制指标测定结果均达到质量标准,悬浮性能较为突出;在发芽势、发芽率、发芽指数和活力指数4项指标上较未包衣种子更优,田间播种较为可靠。
The objective of this paper is to obtain the following results. First, alkyl imidazole ionic liquids and allyl imidazole ionic liquids are synthesized. By using them as wood liquefacients, the wood raw material characteristics and liquefaction conditions are studied, and the wood liquefaction mechanisms by ionic liquids and the relationship between structures of ionic liquids and properties of wood liquefaction are discussed, thereby the method of wood liquefaction by ionic liquids is established. Secondly, a kind of suspending agent is prepared by sulfonation and condensation using liquefaction products with this method as materials. And its suspension properties and formulation applications in suspending seed coating agent are studied in order to obtain the theoretical and experimental data for the further application of wood liquefaction products.
     The main innovative works are as follows.
     1. The bis (1-methylimidazole) ethyl chloride ionic liquid (I) by1-methylimidazole and1,2-dichloroethane, and bis (1-methylimidazole) ethyl chloride aluminum trichloride ionic liquid (II) by ionic liquid (I) and aluminum trichloride were synthesized and confirmed by GC-MS and FT-IR. The method of wood liquefaction by ionic liquids was established by liquefying wood without any pretreatment in ionic liquids liquefacients, contrasting to the traditional liquefaction method of phenol. Under the conditions of liquid/wood ratio20:1,110-120℃,25min and metal halide ratio0.67, the properties of ionic liquids were much more better than those of phenol liquefacient, and the ionic liquid could be recycled and re-used in the liquefaction.
     2. The chemical composition, properties and liquefaction characteristics of Chinese fir were studied, sampling from the Jinzhai, Huoshan and Shuchen, three Chinese fir-producing areas. The chemical composition of Chinese fir had been less affected by geographic area, wherein, the cellulose content was higher, and hemicellulose and lignin content were close to the middle level. Cellulose was the most difficult to be liquefied in all components, needed higher reaction temperature and longer reaction time than lignin, markedly affecting properties of Chinese fir liquefaction. The cellulose and hemicellulose contents of Chinese fir were higher than those of fir bark, the ash and extractives contents of it were relatively low, the liquefaction efficiency of it was lower, and the amount of residue of it was less under the same conditions.
     3. In order to reduce the temperature of the liquefaction reaction,1-butyl-3-allyl imidazolium chloride ionic liquid ([BAIM][Cl]) and1-methyl-3-allyl imidazolium chloride ionic liquid ([MAIM][Cl]) were synthesized by1-butylimidazole,1-methylimidazole reacting respectively with3-chloropropene, mixed into salts with aluminum trichloride, and confirmed by GC-MS and FT-IR. The liquefaction rates of [BAIM][Cl/AlC13] and [MAIM][Cl/AlCl3] were better than corresponding [BAIM][Cl] and [MAIM][Cl]. Especially the residue rate of [BAIM][Cl/AlCl3] reduced to about10%at80℃, corresponding to the level of the ionic liquid (Ⅱ) at100℃, and the effective liquefaction temperature was reduced significantly. It was shown that during the course of the observation by polarizing microscope for fir powder liquefaction in [BAIM][Cl/AlCl3], cellulose crystalline region was partially destroyed at60℃and disappeared gradually with the rise of the reaction temperature and the extension of reaction time, the fir powder was mainly swelled in the surface by [BAIM][Cl] at this time, but not significant effect by phenol.
     4. The acidic and catalytic properties of ionic liquids and the relationship between structures of ionic liquids and properties of wood liquefaction were studied by infrared spectroscopy with pyridine probe. Based on the pyridine probe, it was shown that [Cl/AlCl3] had different acidity with the changes of N, the Lewis acidity was indicated when N was0.50-0.67, the Br(?)nsted acidity was indicated when N was greater than0.67, and this acidic structure for wood liquefaction with high catalytic property. The coordination structure similar to [Cl/AlCl3] could be obtained by the metal halide such as SnCl2and FeCl3combining with the precursor anion, also had such catalysis for liquefaction.
     According to product composition in various liquefaction stages, the mechanism of wood liquefaction by [BAIM][Cl/AlCl3] could be considered that cellulose was degraded first of all, which was the key of liquefaction, followed by hemicellulose and lignin, and the reaction rate in each step had more changes. The anions [Cl], metal ions M, and alkyl or allyl in the ring of cationic imidazole were in favor of wood liquefaction in the structure and properties of ionic liquids. The neutral ionic liquids such as [BPy][Cl],[BMIM][BF4] and [BMIM][PF6] had basically no liquefaction property.
     5. A kind of suspending agent, wood liquefaction sulfonation (WLS), had been prepared by the synthetic route of sulfonation, condensation and neutralization with the product of wood liquefaction. The optimum conditions for the reaction were obtained, reaction temperature of sulfonation and condensation were at85℃and90℃, reaction time of sulfonation and condensation were for2.5h and3.0h, reaction temperature of neutralization were at85℃and90℃, under these conditions the average suspension rate of the product was91.1%.
     The results of WLS suspension properties in seed coating suspension agents of the four kinds of crops showed that, WLS had a certain surface activity, but no apparent turning point on the curve of concentration-surface tension, and produced auxiliary swelling property in Attapulgite system when mixed with Tween80. In the binary and ternary mixtures, WLS had good compatibility, which produced synergistic effect with other components such as non-ionic surfactant, and showed excellent suspension property and little change in viscosity at room or high temperature. The suspension rates of the ternary system Attapulgite/WLS/Tween80to seed coating agent of4crops were more than90%, which were better than those of the binary system and a single component.
     After component selection and formulation design, the composition and dosage of suspended seed coating formulation had been determined, and then a kind of20%thiram/carbofuran suspended seed coating agent had been prepared. The coating application showed that the measurement results of each quality control index of the formulation could meet quality standards, the suspension properties were more prominent, the samples were better than uncoated seeds in the four indicators including germination potential, germination rate, germination index and vigor index, and field germination was more reliable.
引文
[1]Tikhomirov A.A., Ushakova S.A., and Manukovsky N.S. Synthesis of biomass and utilization of plants wastes in a physical model of biological life-support system. Acta Astronautica,2003,53 (4,10):249-257.
    [2]Fierz, H.E. Chemistry of wood utilization. Chemistry and Industry Review,1925,44:942.
    [3]Appell, H.R., Wender, I., and Miller, R.D. Converting organic wastes to oil. Bureau of Mines Report of Investigations,1971:7560-7568.
    [4]Fu, S.J. and Shiraishi, N. Liquefaction of wood. Abstracts of the 37th Annual Meeting of the Japan Wood Research Society,1987:239.
    [5]Shiraishi, N. Liquefactioin of wood and its several applications. Journal of Japan Oil Chemists' Society,1997,46 (10):1227-1236.
    [6]Lee, S.H., Shiraishi, N., and Yoshioka, M. Preparation and properties of phenolated corn bran (CB)/phenol/formaldehyde cocondensed resin. Journal of Applied Polymer Science,2000a,77 (13):2901-2907.
    [7]Lee, S.H., Shiraishi, N., and Yoshioka, M. Liquefaction and product identification of corn bran (CB) in phenol. Journal of Applied Polymer Science,2000b,78 (2):311-318.
    [8]Lin, L., Yao, Y., and Yoshioka, M. Liquefaction mechanism of in the presence of phenolate at elevated temperature without catalysts. Structural characterization of the action products. Holzforschung,1997,51:316-324.
    [9]Lin, L., Yoshioka, M., and Yao, Y. Liquefaction of wood in the presence of phenol using phosphoric acid as a catalyst and the flow properties of the liquefied wood. Journal of Applied Polymer Science,1994,52:1629-1636.
    [10]Lin, L., Yao, Y., and Shiraishi, N. Liquefaction mechanism of P-O-4 lignin model compound in the presence of phenol under acid catalysts. Identification of the action products. Holzforschung, 2000,55:617-624.
    [11]Alma, M.H., Yoshioka, M., Yao, Y., et al. Some characterizations of hydrochloric acid catalyzed phenolated wood-based materials. Mokuzai Gakkaishi,1995a,41:741-748
    [12]Alma, M.H., Yoshioka, M., Yao, Y., et al. Preparation of oxalic acid-catalyzed resinified phenolated wood and its characterization. Mokuzai Gakkaishi,1995b,41:1122-1131
    [13]Alma, M.H., Yoshioka, M., Yao, Y., et al. Phenolation of wood using oxalic acid as a catalyst. The effects of temperature and hydrochloric acid addition. Journal of Applied Polymer Science, 1995c,61:675-683
    [14]Alma, M.H., Yoshioka, M., Yao, Y, et al. The preparation and flow properties of HCl-catalyzed phenolated wood and its blend with commercial novolak resin. Holzforschung,1996,50:85-90
    [15]张求慧,赵广杰.木材的苯酚及多羟基醇液化.北京林业大学学报,2003,25(6):71-76.
    [16]张求慧,赵广杰,陈金鹏.酸性催化剂对木材苯酚液化能力的影响.北京林业大学学报,2004,26(5):66-70.
    [17]张求慧,赵广杰,何静.三倍体毛白杨及杉木苯酚液化物的结构分析.北京林业大学学报,2006,28(3):139-144.
    [18]崔立东,张晶,高华,等.苯酚液化落叶松树皮的工艺研究.林业科技,2009,34(2):55-56.
    [19]Yamata T., Ono H., Ohara S., et al. Characterization of the products resulting from direct-liquefaction of cellulose I-identification of intermediates and the relevant mechanism indirect phenol liquefaction of cellulose in the presence of water. Mokuai Gakkaishi,1996,42 (11): 1098-1104.
    [20]Yao Y, Yoshioka M., Shiraishi N. Soluble properties of liquefied biomass prepared in organic solvents I--The soluble behavior of liquefied biomass in various diluents. Mokuai Gakkaishi, 1994,40 (2):176-184.
    [21]Tatsuhiko Y, Hirokuni O. Characterization of the products resulting from ethylene glycol liquefaction of cellulose. Journal of Wood Science,2001,47:458-464.
    [22]Edita J., Matjaz K., and Matija S. Cellulose liquefaction in acidified ethylene glycol. Cellulose, 2009,16:393-405.
    [23]Masahiko K., Toshiyuki A., Mikio K., et al. Analysis on residue formation during wood liquefaction with polyhydric alcohol. Journal of Wood Science,2004,50:407-414.
    [24]Kobayashi, M., Asano T., Kajiyama M. et al. Effect of ozone treatment of wood on its liquefaction. J. Wood Sci.2005,51:348-356.
    [25]程发,王东华,魏玉萍,等.苯甲基化木材溶液代替聚醚多元醇使用的研究.高分子学报,2002,(3):349-353.
    [26]程发,魏玉萍,王东华,等.苯甲基化木材溶液相对分子质量及其分布.天津大学学报:自然科学与工程技术版,2003,36(5):635-638.
    [27]余权英,谭向华.羧甲基化木材制备木材—热固性酚醛树脂粘合剂.粘接,1996,17(1):1-4.
    [28]余权英,谭向华.木材羧甲基化改性及其溶解性研究.林产化学与工业,1997,17(3):33-39.
    [29]余权英,谭向华.木材氰乙基化改性研究(Ⅱ).林产化学与工业,1995,15(4):31-38.
    [30]万东北,郭国瑞,罗序中.微波辐射作用下木材氰乙基化改性研究.赣南师范学院学报,2003,(6):32-34.
    [31]万东北,尹波,罗序中.微波辐射作用下氰乙基化木材的制备.生物质化学工程,2006,40(1):5-8.
    [32]Morita M., Yamawaki Y, Shigematsu M., et al. Preparation and properties of a cyanoethylated wood latex. Mokuai Gakkaishi,1990,36 (8):659-664.
    [33]李改云,秦特夫,黄洛华.酸催化下苯酚液化木材的制备与表征.木材工业,2005,19(2):28-31.
    [34]李改云,任海青,秦特夫,等.木材液化产物制备热塑性树脂的研究.林产化学与工业,2008,28(4):7-12.
    [35]李改云,秦特夫,任海青,等.液化木基热塑性酚醛树脂的固化反应动力学.林产化学与工业,2009,29(1):7-12.
    [36]罗蓓,秦特夫,李改云.人工林木材的苯酚液化及树脂化研究Ⅰ.液比和催化剂对液化反应的影响.木材工业,2005,19(6):15-18.
    [37]秦特夫,罗蓓,李改云.人工林木材的苯酚液化及树脂化研究Ⅱ.液化木基酚醛树脂的制备和性能表征.木材工业,2006,20(5):8-10.
    [38]张玉苍,迟青山,孙岩峰.木材液化及其在聚氨酯胶黏剂上的应用研究.林产化学与工业,2007,27(5):73-77.
    [39]程发,戚红卷,李厚萍,等.苯甲基化木材溶液制备聚氨酯树脂工艺条件的研究.林产化学与工业,2004,24(2):39-42.
    [40]程发,李厚萍,魏玉萍.固化剂用量对苯甲基化木材制得的聚氨酯树脂微相分离的影响.精细化工,2005,22(3):237-240.
    [41]付贤树,程发,李厚萍,等.固化温度对苯甲基化木材制备的聚氨酯树脂微相分离的影响.化学工业与工程,2005,22(4):267-270,315.
    [42]王东华,程发,冯建新,等.相转移催化剂对苯甲基化木材制备的影响.天津大学学报:自然科学与工程技术版,2000,33(6):806-810.
    [43]魏玉萍,程发,李厚萍.木材溶液中羟基与异氰酸酯反应的研究.高分子学报,2004,(2):263-267.
    [44]马晓军,赵广杰.木材苯酚液化产物制备碳纤维的初步探讨.林产化学与工业,2007,27(2):29-32.
    [45]马晓军,赵广杰.木材苯酚液化物碳纤维原丝的力学性能.北京林业大学学报,2008,30(2):133-137.
    [46]Lee, S.H., Ohkita T. Rapid wood liquefaction by supercritical phenol. Wood Sci Technol,2003, 37(1):29-38.
    [47]Yamata T., Ono H. Rapid liquefaction of lignocellulosic waste by using ethylene carbonate. Bioresource Technology,1999,70 (1):61-67.
    [48]Krzan, A., and Kunaver, M. Microwave heating in wood liquefaction. Journal of Applied Polymer Science,2006,101 (2):1051-1056.
    [49]李改云,秦特夫.木质纤维成分的乙酸分离方法及表征.林业研究(英文版),2006,17(1):62-64.
    [50]方桂珍.20种树种木材化学组成分析.中国造纸,2002,21(6):79-80.
    [51]王宗德,范国荣,彭锦云.江西杉木木材纤维形态及化学成分研究(Ⅰ).江西农业大学学报,2001,23(1):112-115.
    [52]周建斌,邓丛静,张齐生.杉木炭化前后化学成分变化的研究.林产化学与工业,2008,28(3):105-107.
    [53]郭小军,李贤伟,张健,等.巨桉纸浆原料林木材的主要化学成分变异研究.四川农业大学学报,2005,23(3):305-312,334.
    [54]李莉,王昌命.工业林木荷木材化学成分及其变异的研究.山东林业科技,2008,38(2):5-7.
    [55]林敏,黄宗安,郑生洲,等.拉氏栲木纤维形态特征和化学成分的研究.福建林业科技,2002,29(4):13-14,43.
    [56]Xie, H.L. and Shi, T.J. Wood liquefaction by ionic liquids. Holzforschung,2006,60 (5): 509-512.
    [57]Marczak W., Verevkin S. P., Heintz A. Enthalpies of Solution of Organic Solutes in the Ionic Liquid 1-Methyl-3-ethyl-imidazolium Bis-(trifluoromethyl-sulfonyl) Amide. Journal of Solution Chemistry,2003,32 (6):519-526.
    [58]Moret, M.E., Chaplin, A.B., Adrien, K.L., Synthesis and characterization of organometallic ionic liquids and a heterometallic carbene complex containing the chromium tricarbonyl fragment. Organometallics,2005,24:4039-4048.
    [59]Paulechka, Y.U., Zaitsau, D.H., Kabo, G.J. Vapor pressure and thermal stability of ionic liquid 1-butyl-3-methylimidazolium Bis(trifluoromethylsulfonyl)amide. Thermochimica Acta,2005, 439:158-160.
    [60]Paulsson, H., Kloo, L., Hagfeldt, A.,et al. Electron transport and recombination in dye-sensitized solar cells with ionic liquid electrolytes. J. Electroanalytical Chemistry,2006, 586:56-61.
    [61]Silva S.M., Suarez P.A.Z., Souza R.F., et al. Selective linear dimerization of 1,3-butadiene by palladium compounds immobilized into 1-n-butyl-3-methyl imidazolium ionic liquids. Polymer Bulletin,1998,40 (4):401-405.
    [62]Spivak, A. Y., Knyshenko, O. V., Ivanova, O. V., et al. Combination of ionic liquid [bmim] PF6 with boron trifluoride etherate as an efficient catalytic system for the glycosylation of a-tocopherol and naphthotocopherol. Russian Chemical Bulletin,2007,56 (12):2487-2490.
    [63]Tubbs J. D. Hoffmann M. M. Ion-Pair Formation of the Ionic Liquid 1-Ethyl-3-methylimidazolium bis(trifyl)imide in Low Dielectric Media. Journal of Solution Chemistry,2004,33 (4):381-394.
    [64]Carda-Broch S., Berthod A., Armstrong D. W. Solvent properties of the 1-butyl-3-methylimidazolium hexafluorophosphate ionic liquid. Analytical and Bioanalytical Chemistry,2003,375 (2):191-199.
    [65]Berthod A., Carda-Broch S. Use of the ionic liquid 1-butyl-3-methylimidazolium hexafluorophosphate in countercurrent chromatography. Analytical and Bioanalytical Chemistry, 2004,380 (1):168-177.
    [66]Formentin P., Garcia H. Ionic Liquids as Exceedingly Convenient Solvents for the Friedel-Crafts Monoalkylation of Electron-Rich Arenes with Paraformaldehyde Using HCl as Catalyst. Catalysis Letters,2002,78 (1):115-118.
    [67]Alma M.H., Shiraishi N. Preparation of polyurethane-like foams from NaOH-catalyzed liquefied wood. European Journal of Wood and Wood Products,1998,56 (4):245-246.
    [68]Alma, M.H., Yoshioka, M., Yao, Y., et al. Preparation of sulfuric acid-catalyzed phenolated wood resin. Wood Science and Technology,1998,32 (4):297-308.
    [69]Alma M.H., Basturk M. A., Digrak M. New polyurethane-type rigid foams from liquified wood powders. Journal of Materials Science Letters,2003,22 (17):1225-1228.
    [70]谢红璐,王家骅.聚萘磺酸盐体系对种衣剂悬浮性研究.农药,2003a,42(3):21-23.
    [71]谢红璐,王家骅.非离子表面活性剂在种衣剂中的助悬性.种子,2003b,(2):11-12,15.
    [72]谢红璐,王家骅.乳化剂OP对20%福?克种衣剂悬浮性的影响.皖西学院学报,2004,20(2):43-44.
    [73]谢红璐,王家骅.烷氧基化表面活性剂/凹凸棒土体系在福?克悬浮种衣剂中的应用.农药,2007,46(11):740-742.
    [74]Zhao, L.W. and Xie, H.L. Study on the synthetic technology of polyethylene glycol's gemini surfactant and its suspension properties. Journal of Dispersion Science and Technology,2008, 29 (2):284-288.
    [75]Xie, H.L. and Xu, G.M. Suspension property of gemini surfactant in seed coating agent. Journal of Dispersion Science and Technology,2008,29 (4):496-501.
    [76]李运康,陈德芳,李林强,等.悬浮剂型种衣剂的悬浮稳定性和流动性.种子,2000,(2):6-8.
    [77]刘鹏飞,刘西莉,慕康国,等.用作悬浮种衣剂增稠剂的膨润土筛选及效果研究.农药学学报,2000,2(3):62-67.
    [78]常晓春,张云生,黄乐平,等.悬浮种衣剂悬浮稳定性解决途径的研究.现代农药,2007,6(3):16-20,43.
    [79]李子臣,李仁华.种衣剂4号包衣花生种仁增产技术试验.种子世界,1989,(12):12-13.
    [80]邵宝富,阮关海,陈希萍,等.黄红麻种衣剂的应用研究.浙江农业科学,1990,(4):191-194.
    [81]宋昭旺,聂长松,刘瑞玲.种衣剂和生根粉混合包衣效果研究.种子科技,1993,(4):27.
    [82]吴学宏,陆怕芳,王锋,等.种衣剂24号包衣棉种贮藏安全性试验研究.种子,1999,(5):21-22.
    [83]俞旭平,盛束军,王志安,等.种衣剂处理对桔梗种子田间发芽率的影响.中国中药杂志,2001,26(7):495-496.
    [84]陈士林,高山松,鲍恩付,等.种衣剂对玉米种子活力及苗期几个生理指标的影响.中国农学通报,2004,20(4):160-161,238.