稠油组分的结构分析及降粘剂的研制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
稠油是指粘度高、相对密度大的原油,由于流动性差,用常规的石油开采技术难以有效开采。通过添加各类流动性改性剂以辅助解决稠油在开采、集输、炼制等过程中的流动性问题,
     若改进稠油的流动性即降低稠油的粘度,必须对稠油的化学组成及其结构特点进行深入研究。本文通过紫外光谱与荧光光谱的测试,分析了王庄稠油中胶质、沥青质的主要组份。结果表明,稠油中的胶质和沥青质的主要组份是由芳香结构组成的,是由多环状的复杂组份构成。胶质、沥青质主要含有3-4个芳香环,沥青质含有少量5个芳香环。红外光谱分析结果表明,稠油中的沥青质、胶质存在大量的极性基团,如羟基、胺基、羧基、羰基等,这些极性基团的存在,使原油中胶质分子之间、沥青分子之间及二者相互之间产生强烈的氢键作用,具有很强的极性。稠油中的重质组份胶质和沥青质的结构特点决定了王庄稠油的宏观性质,如粘度高,密度大等。
     为了进一步探究王庄稠油粘度大的原因,分别研究了稠油中重金属含量、沥青质含量、胶质含量、温度及稀释剂对稠油粘度的影响。结果表明,重金属V、Ni的含量高是造成王庄原油粘度高的重要因素之一。沥青质的含量对王庄原油的粘度有很大的影响,通过回归分析,稠油的粘度随其中沥青质含量的增加而呈指数函数升高。胶质含量对稠油粘度的影响较为复杂,含量较低时,由于其在原油的胶体结构中具有分散介质的作用,可使稠油的粘度降低,超过50%后,稠油的粘度急剧升高,这是由于胶质本身的粘度对稠油体系起作用,宏观表现为原油的表观粘度急剧增加,说明了胶质的质量分数对稠油粘度有很大的影响。温度对稠油粘度的影响很大,随温度的升高,稠油粘度呈指数函数增大,当升高到一定温度时,如50℃以上时,稠油粘度随温度的升高变化趋缓。所以稠油粘度受温度的变化在一定的范围内较为显著。稀释剂对稠油粘度也有很大的影响,稠油粘度随稀释剂的增加而急剧下降,到一定量时,下降的幅度趋缓。
     对于这种粘度高,密度大的稠油,常规的开采方法难以奏效。通过添加各类流动性改进剂可以降低稠油的粘度,以便于稠油的开采、集输。本文针对胜利油田王庄稠油开采难的问题,首先尝试研制了油溶性降粘剂,通过对其降粘效果的研究,表明油溶性降粘剂对王庄稠油的降粘效果不明显,距离实际应用尚有一定距离。
     乳化降粘剂因其降粘效果好、成本低而在实际生产中应用广泛,本文针对王庄稠油,筛选了乳化降粘剂的主剂,运用均匀设计的方法研制了开采稠油用乳化降粘剂JDLH。通过对其降粘效果的室内实验,表明其具有较强的降粘性能及抗盐性,是一种效果好,使用方便、成本合理的稠油开采用降粘剂。
Heavy crude oil is characterized by their high viscosities and low-degree API gravities. It is difficult to exploit because of its bad fluidity. The fluidity of the heavy crude oil is improved by adding various kinds of flowing remover in the course of its expoliting, transportation and refinery.
    It is necessary to investigate the chemical component and structure of the crude oil deeply if improving the fluidity of the heavy crude oil. The resin and asphaltene in the Wangzhuang heavy crude oil is composed by armotic structure by the analysis of UV and floresence spectrum. The conjugated aromatic rings in unit sheet are mainly three rings or four rings, whose connection is linear order, namely cata-condenesed The difference between asphaltenes and resins is that the resin has mainly less than five aromatic rings in conjugated aromatic unit and the asphaltene has more than five aromatic rings.
    In order to find out the polarity and the distribution of number of the aromatic ring in the asphaltenes and resins the asphaltene and resin in the Shengli viscous crude oil have been studied by FT-IR, UV-VIS spectrophotometry and synchronous fluorescence spectrometry. The results of FT-IR spectrum show that the molecules of the asphaltene and resin include hydroxy, amido, carboxyl, carbonyl which can produce hydrogen bond. It shows that there is the strong hydrongen bond interaction between the molecules of the asphaltene and that of the resin. It is the heavy components(the stucture of the resin and asphaltene)which brings the property of the Wangzhuang crude oil, such as high viscosity and density.
    In order to find out the reasons of the high viscosity of the Wangzhuang crude oil some experiments have been done. The experiments include the following infactors which influence the the viscosity of the crude oil. The infactors are the content of the heavy metal element, the concentration of the resin and asphaltent, temperature and diluent. The result shows that the amount of the heavy metal element V and Ni is the important factor which result in the high viscosity of the Wangzhuang crude oil. The concentration of the asphaltent has a very important inflenence on the viscosity of the crude oil. The viscosity of the crude oil increases with the concentration of the asphaltent. The concentration of the resin has a complex inflenece on the viscosity of the crude oil. When the concentration of the resin is low the resin can reduce the viscosity of the crude oil because of its despersant effect in the micellar structure of the crude oil solution. But the viscosity of the crude oil increase sharply the when the concentratio of the resin is above 50%. The reason is that the viscosity of the resin itself can increase the viscosity of the crude oil. The viscosity of the crude oil increases sharply, it shows that the mass fraction of the resin has a great influence on the viscosity of the crude oil.
    Temperature has a great influence on the viscosity of the crude. The viscosity of the crude oil reduces exponentially with the increase of temperature, but reduces slowly when temperature is above 50°C.
    The diluent has a great inflence on the viscosity of the crude oil, too. It reduces sharply with the diluent increasing, but reduces slowly when the diluent is up to a constant.
    The usual expoition has little effect on this kind of high viscous crude oil. The viscosity can be reduced only when some viscosity reducers are added so that the heavy crude oil can be exploited and trasnported easily. The polymer viscosity reducer is developed to deduce the viscosiy of the Wangzhuang crude oil. But the polymer viscosity reducer has a little inflence on the Wangzhuang heavy crude oil.
    The emulsifying viscosity reducer has been used widely because it has an evident effect on the crude oil. The emulsifying viscosity reducer JDLH has been chosen by the way of uniform design. The viscosity of the Wangzhuang heavy crude oil is reduced when adding JDLH viscosity reducer. It is a kind of the viscosity reducer which is used conveniently and economically.
引文
[1] 刘文章.稠油注蒸汽热采工程[M].北京:石油工业出版社,1998.
    [2] 霍广荣,李献民,张广卿.胜利油田稠油油藏热力开采技术[M].北京:石油工业出版社,1999:3-5.
    [3] 沈平平,卞德智,李薇等.中国石油安全战略要点探析[J].科技进步与对策.2005,22(12):70-72.
    [4] 古宾等,陈祖泽译.高粘高凝原油和成品油管道输送[M].北京:石油工业出版社,1987:145-200.
    [5] 契林盖里等编,俞经方译.沥青,地沥青和沥青砂(石油科学进展7)[M].北京:石油工业出版社,1988:68-154.
    [6] 权忠舆.有关原油流变性与石油化学的讨论[J].油气储运.1994,1(6):20~24.
    [7] Hepler L G, GChuHis,梁文杰等译.AOSTRA油砂,沥青,重质油技术手册[M].东营:石油大学出版社,1992
    [8] 梁文杰.重质油化学[M].东营:石油大学出版社,:149—150.
    [9] Yen T F, Erdman J G, Pollack S S. Investigation of the structure of petroleum asphaltenes by X-ray diffraction[J]. Anal. Chem. 1961, 33: 1587-1594.
    [10] Dickie J P, Yen T F. Macrostructures of the asphaltic fractions by various instrucmental method.[J]. Anal. Chem. 1967, 39(14): 1847-1857.
    [11] Pfeiffer J Ph, Sall R N J. Asphaltic bitumen as colloidal system[J]. J.Phys. Chem. 1940, 44: 139-149.
    [12] Moschopedis S E, Speight J G. Oxygen functions in asphaltenes[J].Fuel. 1976(55): 334.
    [13] Moschopedis S E, Speight J G. Investigation of the carbonyl functions in a resin fraction from Athabasca bitumen Fuel[J]. 1976, 55: 184-189.
    [14] Koots J.A, Speight J G. Relation of petroleum resins to asphaltenes[J]Fuel. 1975, 54: 179-184.
    [15] Maruska H P, et al. Fuel science & Technology Int'l. 1987, 5(2): 119.
    [16] 尉小明,刘喜林,王卫东.稠油降粘方法概述[J].精细石油化工.2002(5):45-48.
    [17] 郭延昌,巩同宇,刘玉显.超长型自控温热电缆加热采油工艺[J].油气地质与采收牢.2003,10(6):75-77.
    [18] 范洪富,刘永建,杨付林.地下水热催化裂化降粘开采稠油新技术研究[J].油田化学.2001,18(1):13~16.
    [19] 刘永建,范洪富,孙守国等.水热裂解开采稠油新技术初探[J].大庆石油学院学报.2001,25(3):56~59.
    [20] Clark P D, Hyne J B, Tyrer J.D, Chemistry of Organo sulfur Compound Type Occurring in heavy oil Sands.l. High Temperature Hydrolysis and Thermolysis of Therahydrothiophene in Relation to Steam Stimulation processes[J]. Fuel. 1983, 62(5): 959~962.
    [21] 赵晓非,刘永建,范洪富等.稠油水热裂解可行性的研究[J].燃料化学学报.2002,30(4):381~385.
    [22] 范洪富.稠油在水蒸汽作用下组成变化研究[J].燃料化学学报.2001,29(3):269~272.
    [23] 刘永建,钟立国,范洪富.稠油的水热裂解反应及其降粘机理[J].大庆石油学院学报.2002,26(3):95~98.
    [24] 陈勇,陈艳玲,朱明.过渡金属的有机酸盐对稠油水热裂解降黏反应的催化作用[J].地质科技情报.2005,24(3):75~79.
    [25] 廖泽文,耿安松.油藏开发中沥青质的研究进展[J].科学通报.1999,44(19):2018~2024.
    [26] 鄢捷年,张金波.微生物降粘提高稠油采收率技术初探[J].钻采工艺.2003,26(4):92~94.
    [27] 张付生,王彪.复合型原油降凝降粘剂EMS的研制[J].油田化学.1995,12(2):117~120.
    [28] 王彪,谢慧专,黄丽坚等.一种含极性基的三元共聚物及含该共聚物的组合物[P] CN1146462A 1997,4.
    [29] 赵秉臣,李栋林.一种复合型高粘原油降粘降凝剂[J].沈阳化工学院学报.1999,13(3):227~230.
    [30] 周风山,赵明方.一种稠油降粘剂的研制与应用[J].西安石油学院学报.2000,15(2):52~54.
    [31] 李建波,梁发书,郭川梅.稠油降粘剂的合成及其作用机理分析[J].西南石油学院学报.2001,23(1):40~42.
    [32] Wilburn B E. Methacryhte pour point depressants and compositions[P]. US 4956111. 1990
    [33] Mishra M K, Raymond G. Pour point depressantsvia anionic polymerization of (meth)acryllcmonomers[P].US 5834408, 1998.
    [34] Fishcher J. Terpolymer of ethylene, vinyl acetate and and isobuylene useful as pour point depressants in crude oils[P]. US 5256166, 1993
    [35] Wi Rtz H, Von H, Fe Us Tel Met al.. New polymers, mixtures thereof with poly(meth)acrylate esters and the use hereof for improving the cold fluidity of crude oil[P]. US 4906702, 1994.
    [36] Wi R H, Von H, Fe U T et al. New polymers, mixtures thereof with poly(meth) acrylate esters and the use thereof for improving the cold fluidity of crude oils [P]. US 05349019, 1994.
    [37] Misharm M K, Saxton R C. New pour depreassant obtained by(meth)acrylic monomer polymerization[P] JP 11302333A2, 1999.
    [38] Mishram M K, Saxton S R C. Novel pour point depressants via anionic polymerization of(meth) acrylicmonomers[P]. EP00911348A3, 2000.
    [39] EL-Camal M, Ghuiba F M, EL-Batanoney M H et al. Synthesis and Evaluation of acrylate polymers for improving flow properties of waxy crude oils[J]. J. Appl. Polym. Sci. 1994, 52(1): 9~19.
    [40] 蒋宏伟,李丰辉,吴忠岿.一种油溶性稠油降粘剂的室内研制[J].大庆石油地质与开发.2006,25(2):81~83.
    [41] 雷呜,黄志宇,惠洪刚等.油溶性ASM稠油降粘剂的研究[J].钻采工艺.2003,26(4):77~79.
    [42] 张勇,许明标等.绥中36-1油田稠油降粘剂HOT-RE室内研究[J].油田化学.2002,19(4):316~318.
    [43] 于洪江,刘祥.油溶性特稠原油降黏剂-PAEH的研制[J].西安石油大学学报(自然科学版).2005(05):63~65.
    [44] 金发扬,蒲万芬,任兆刚等.SZ36-1稠油油溶性降粘剂JN-1的合成及评价[J].精细石油化工进展.2005(11).
    [45] 余跃惠、曹重远.高粘稠原油掺活性水降粘输送技术[J].油田地面工程.1992,11(3):11~12.
    [46] 赵福麟.采油化学[M].山东东营:石油大学出版社,1994:144~145.
    [47] 宋迎来,刘显英编译.井下乳化技术在稠油开采中的应用[J].国外油田工程.1988,4(4)):6~9.
    [48] 刘国然编译.稠油乳化降粘技术[J].特种油气藏.1995,2(1):57~61.
    [49] 佟曼丽.油田化学[M].山东东营:石油大学出版社,1996:241~260.
    [50] 冯涛,吴迪,林森等.原油乳化输送技术的进展[J].油气田地面工程.1999,18(3).5~8
    [51] 刘程.表面活性剂大全[M].北京:北京工业大学出版社,1997:74~90.
    [52] Balzer, Dieter. Process for the transportation of viscous oils[P]. US 4781207, 1988.
    [53] Balzer, Dieter. Process for transporting heavy oils[P].US 4770199, 1988.
    [54] Marcotullio, Armando, Borgarello, et al. Process for moving heavy crude oils with water having a high content of salts[P]. US 5934303, 1999.
    [55] Floumoy, Kenoth H, Alston, et al. Aqueous suffactant solutions and oil-in-water emulsions[P]. US 4192767, 1980
    [56] 李干佐,毛洪志,徐桂英等.高稠原油降粘剂及其制备使用方法[P].CN 1071690A,1993.
    [57] 葛际江,张贵才,孙铭勤,et al.抗盐型稠油降粘剂及其制备方法[P].CN1560178A,2005.
    [58] 彭朴.采油用表面活性剂[M].北京:化学工业出版社,2003.113~130
    [59] Anhom J L. A Carrierfor heavy oil transportation and viscosity mixing rule applicability[J]. Journal of Canadian Petroleum Technology. 1994, 33(4): 17~21.
    [60] Mjamaluddin A K. Controlling sand production during down hole emulsification[J]. Journal of Canadian Petroleum Teehnology. 1995, 34(7): 22~28.
    [61] Browne G E. Downhole emulsification: viscosity reduction increase production[J]. Journal of Canadian Petroleum Technology. 1996, 35(4): 25~31.
    [62] S K. Pipeline transportation of heavy viscous cmde oil as water con tinunous emulsion in North Cambay Basin[C]. New Dehli. India: 1998.
    [63] Chirinos, Marial L, Taylor. Preparation of HIPR emulsions and transportation thereof[P]. US 4934398, 1990.
    [64] Danley D E. Method for improving production of viscous crude oil[P] US 5013462. 1992
    [65] Cregoli A A. Low-temperature pipeline emulsion transportation Enhancement[P]. US 5156652, 1992.
    [66] 秦冰.稠油乳化降粘剂结构与性能关系的研究[D].北京:石油化工科学研究院,2001.
    [67] 葛际江,张贵才,孙铭勤等.高温稠油降粘剂及其制备方法[P].CN1560177A,2005.
    [68] 陈国华.原油高温化学降粘剂[P].CN1204680A,1999.
    [69] 王国瑞,阙军仁.一种降粘剂及其制备方法[P].CN1115778A,1996.
    [70] 李向良,李相远,杨军等.单6东超稠油粘温及流变特征研究[J].油气采收率技术.2000,7(3):12~14.
    [71] 邢义良,朗兆新.稠油流变性的测量和研究[J].西安石油学院学报.1998,13(2):25~27.
    [72] 罗哲鸣,李传宪.原油流变性及测量[M].东营:石油大学出版社,1994.103~137.
    [73] 蒋明,许震芳.齐40块稠油流变特性实验研究[J].断块油气田.1997,14(6):19~22.
    [74] Mcclafin G G. The replacement of hydrcarbon diluent with surfactant and water for the production of heavy, viscous crude oil[J]. Journal of Petroleum Technology. 1982(10)): 2258~2264.
    [75] Jamaluddin A K M. Controlling sand production during downhole emulsification[J]. Journal of Canadian Petroleum technology. 1995, 34(7): 22~28.
    [76] 曲占庆,邢建华,张红玲等.深层稠油掺稀油举升方法研究[J].油气采收率技术.2000,7(3):26~29.
    [77] 王惠敏,王积龙.化学降粘开采技术在小断块稠油油田的应用[J].石油规划设计.1996,(2):307~314.
    [78] 王芳林.稠油掺轻油的室内实验研究[J].油田地面工程[J].1989,8(2):16~21.
    [79] 张付生,王彪.几种原油降及降粘刑作用机理的红外光谱和x射线行射研究[J].油田化学.1995,12(4):347~352.
    [80] 赵福麟.采油化学[M].山东东营:石油大学出版社,1994:149~158.
    [81] 赵国玺.表面活性剂物理化学[M].北京:北京大学出版社,1984:384~388.
    [82] 蒋子铎,樊西惊.胶体与界面化学原理及其应用[M].武汉:湖北科学技术出版社,1994:406~409.
    [83] 陈茂涛,于书平,王满学等.O/W型稠油乳状液流变性研究[J].油田化学.1991,8(2):137~142.
    [84] 李美蓉,向浩,马济飞.特稠油乳化降黏机理研究[J].燃料化学学报.2006,34(2):175~179.
    [85] 陈艳玲,胡江,张巧莲.垦西特稠油化学降粘的研究[J].地球科学.中国地质大学学报.1998,23(6):605~609.
    [86] 梁文杰.重质油化学[M].东营:石油大学出版社,2000:101~112.
    [87] 梁文杰,阙国和,陈月珠.我国原油减压渣油的化学组成与结构Ⅱ减压渣油及其各组份的平均结构[J] 石油学报(石油加工).1991,7(4):1~7.
    [88] 齐邦峰,曹祖宾,陈立仁.紫外吸收光谱研究胜利渣油胶质、沥青质结构特性[J] 石油化工高等学校学报.2001,14(3):14~17.
    [89] Lloyd J B F, Evett I W. Prediction of peak wavelengths and intensities in synchronously excited fluorescence emission spectra[J]. Anal.Chem., 1977, 49(12): 1710~1715
    [90] Vo-Dinh T. Multicomponent analysis of synchronous luminescence spectrometry[J]. Anal Chem,. 1978, 50(3): 396~401
    [91] 何文琪,姚渭溪,谢学鹏等.等能量同步荧光光谱测定多环芳烃[J].光谱学与光谱分析.1996,16(4):100~105.
    [92] 何立芳,林丹丽,李耀群.多环芳烃混合物的快速导数-恒能量同步荧光光谱分析[J.] 应用化学.2004,21(9):937~941.
    [93] 樊虎,盛良全,童红武.二阶导数同步荧光光谱测定卷烟主流烟气中的苯并(a)芘[J].光谱学与光谱分析 2005,25(10):1627~1629.
    [94] 王子军,梁文杰,阙国和等.减压渣油组份中芳环数分布的同步荧光光谱研究[J].石油学报(石油加工),1999,15(4):67~71.
    [95] 中华人民共和国石油天然气行业标准.原油中蜡、胶质、沥青质含量测定法[S].
    [96] 梁文杰,阙国和,陈月珠.我国原油减压渣油的化学组成与结构Ⅰ.减压渣油的化学组成[J].石油学报(石油加工).1991,7(3):1~7.
    [97] Bartle K D, S J A. A high-resolution proton magneticresonance stude of refined tars Ⅱ. High molecular weight fractions (of coal tars)[J]. Fuel. 1967, 46(29~46).
    [98] Ali L H. A method for the calculation of MW of aromatic compounds and its application to petroleum fractions[J]. Fuel, 1971, 50: 298~307.
    [99] Battle K D, Ladner W R, Martin T G, et al. Structural analysis of supercritical-gas extracts of coals[J]. Fuel, 1979, 58: 413~422.
    [100] Snape C E, Ladner W R, Battle K D et al. Structural Characterization of Coal Extracts by NMR. Coal Liquefaction Product[M]. New York: Wiley, 1983.
    [101] Cookson D J, Smith B E. One- and two-dimensional NMR methods for elucidating structral characteristics of aromatic fractions from petroleum and synthetic fuels[Y]. Energy Fuel. 1987, 1: 111~120.
    [102] 杭州大学分析化学教研室.分析化学手册[M],北京:化学工业出版社,1983:553~555.
    [103] 敬加强.高凝高粘原油流变性及其降凝降粘机理研究[D].西南石油学院,1999.
    [104] 周风山.稠油流动性改善机理及聚合物降粘剂制备与应用研究[D].西安交通大学,1999.
    [105] Duong A G, Chattopadhyaya, Kwok W Y. An Experimental Study of Heavy Oil Ultrafiltration Using Ceramic Membranes[y]. Fuel, 1997, 76(9): 821~828.
    [106] 刘同春,王春生,王孟容等.丙烯酸十八酯的合成[J].化学世界.1989,30(10):453~455.
    [107] 丁伟,李柏林,肖早玲等.丙烯酸十八酯的合成[J].大庆石油学院学报.1998,22(2):79~81.
    [108] 戚国荣,胡合贵,杨云松.丙烯酸与十八醇酯化动力学研究[J].科技通报.1999,15(5):326~330.
    [109] 周风山,吴瑾光,卢凤纪.丙烯酸高级酯的一种先进制备方法[J].石油化工.2001,30(增刊):316~318.
    [110] 刘同春.丙烯酸高级混合酯的制备[J].化学世界.1989,30(10):453~454.
    [111] 张付生,谢慧专,董丽坚.原油降凝降粘剂在原油开采和集输中的应用[J].精细石油化工.1999(6):32~36.
    [112] 吴本芳,杨允明等.SL的合成及降粘性能研究[J].油田化学.2003,20(1):78~82.
    [113] 张毅,赵明方,周凤山等.马来酸酐-苯乙烯-丙烯酸高级酯稠油降粘剂MSA的研制[J].油田化学.2000,17(4):295~298.
    [114] 徐宏,卢凤纪.高粘原油降粘剂MSA的研制[J].化工新型材料.1997,27(2):38~39.
    [115] 贝歇尔[美],北京大学化学系胶体化学教研室译.乳状液理论与实践[修定本][M].北京:科学出版社,199~252.
    [116] 尉小明,辛达,才潜.荧光法测定稠油乳化HLB值研究[J].精细石油化工.2002(6):31~33.
    [117] 马文辉,梁梦兰.稠油乳化降粘剂的研究与开发[J].精细化工.1999,16(1):47~49.
    [118] 肖进新,赵振国.表面活性剂应用原理[M].北京:化学工业出版社,2003:216~225.
    [119] 张瑞泉,吴迪,林森.原油乳化输送技术的进展[J].精细化工.1999,16(增刊):49~53.
    [120] 刘文卿.实验设计[M].北京:清华大学出版社,2005:1~12.
    [121] 方开泰,马长兴.正交与均匀试验设计[M].北京:科学出版社,2001:83~152.
    [122] 方开泰.均与设计与均匀设计表[M].北京:科学出版社,1994.
    [123] 同[120].128~132.
    [124] 姚钟尧,梁士慧.均匀设计法在丁苯橡胶配方试验中的应用[J].华南理工大学学报(自然科学版).2001,29(1):78~82.
    [125] 叶仲斌,刘向君,杨建军等.均匀设计方法在界面流变性研究中的应用[J].西南石油学院学报(自然科学版) 2002,10(5):28~31.
    [126] 黎元生.应用配方优化技术筛选破乳添加剂[J].油田化学.1999,15(4):325~328.
    [127] 田国梁,方开泰.随机表示和次序约束下的混量与混料均匀设计[J].中国科学.1998,28(12):1087~1101.
    [128] 叶仲斌,刘向君等.聚合物与表面活性剂二元驱油体系界面性质研究[J].油气地质与采收率.2002,9(3):7~9.
    [129] 姚钟尧.回归分析法在均匀设计数据分析中的地位[J].特种橡胶制品.1998,19(2):35~41.
    [130] 姚钟尧,林惠音,等.回归分析法在橡胶配方试验中的应用[J].橡胶工业.2001,48(7):393~398.
    [131] 杨南林,瞿海斌,程翼宇.用均匀设计和回归分析法优化黄连提取工艺[J].高校化学工程学报.2004,18(1):126~130