翅荚木种源遗传多样性及其抗低温胁迫能力研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
翅荚木是我国特有的珍稀、速生、多功能树种,具有广阔的开发利用前景。翅荚木作为我国西南各省石漠化治理及困难地造林的先锋树种,野生资源已处于濒危状态。但该树种被引种到福建、江西、浙江等地后,其速生性显著优于当地其他乡土树种,与杨树、桉树相当。过去对翅荚木的研究主要集中在田间栽培技术上,其他基础研究工作均未见报道。本研究以调查收集的翅荚木主要分布区的9个种源为材料,于2005年-2007年开展了种源遗传多样性及其抗低温胁迫能力研究,利用ISSR分子标记技术结合苗期种源试验分析了其遗传多样性,分析了不同种源的抗寒性,以便为今后的良种选育和丰产栽培提供科学理论依据。本项研究的主要结果如下:
     1、翅荚木不同种源的苗期生长规律。湖南通道、江华、广东英德、翁源、广西桂林、平果、忻城、靖西、贵州兴义等9个种源苗期试验表明,翅荚木不同种源的种子大小及小叶叶片大小存在极显著的差异,可作为区分种源的重要特征。不同种源苗期生长量不存在极显著差异,但田间试验表明不同种源的抗寒能力存在极显著差异。湖南通道种源苗木在连续七天的日极端最低气温均低于零度,最低气温达-6.1℃的情况下也能安全越冬,表现了较高的抗低温胁迫能力。因此认为抗寒性等特异性状的选择应该成为翅荚木种源选择的重要内容,单株选择是速生良种选育的关键。研究还观察了翅荚木不同种源的苗期生长节律,并利用Logistic方程拟合建立了生长模型,发现翅荚木小苗移植后6月份生长加速,7月-8月为苗木的速生期,径生长高峰期稍早于高生长高峰期,显示了翅荚木的喜阳耐旱的特性。
     2、翅荚木不同种源的抗低温胁迫能力。结果表明,翅荚木幼苗经低温诱导后体内生理物质发生变化,保护物质(可溶性蛋白、可溶性糖)和渗透调节物质(游离脯氨酸)含量增加,体内抗氧化酶(SOD、POD)活性增强;在7℃时可溶性蛋白含量、可溶性糖含量、脯氨酸含量和SOD、POD酶活性均处于最高值,而丙二醛(MDA)含量处于最低值,此时翅荚木的最大抗寒力已经形成。翅荚木枝条经低温冷冻处理后,生理指标发生变化并在一定的低温下存在显著差异;-8℃处理后可溶性蛋白含量有较大的增加,MDA含量回升,SOD活性种源之间开始出现明显差异;-12℃处理后,相对电导率急剧增加,除通道种源外所有种源的相对电导率达到了50%以上,细胞质膜产生了严重的伤害。叶片解剖结构分析表明,不同种源翅荚木叶片细胞结构紧密度(CTR)和疏松度(SR)与种源的抗寒性有一定的关系,CTR值越大、SR值越小,种源的抗寒性越强。采用Logistic方程拟合出湖南通道种源枝条的半致死温度为-13.06℃,低于其它种源0.89℃-2.74℃。利用差示扫描量热仪(DSC)测量的湖南通道种源叶片组织细胞的结晶温度为-15.04℃,低于其他种源0.42℃-1.34℃。综合分析表明翅荚木不同种源的抗寒性强弱的排序为:湖南通道>贵州兴义>广西忻城>广东英德>湖南江华>广西靖西。
     3、翅荚木不同种源的遗传多样性。成功地建立了翅荚木的ISSR-PCR反应体系,筛选出的10个引物平均扩增条带5.4条,引物平均多态位点比率为64.29%。6个翅荚木种源平均多态位点比率达到56.48%,Shannon指数(I)为0.3048,Nei指数(H)为0.2052,表明种源间存在一定程度的遗传分化,其遗传多样性水平高低为:忻城>江华>英德>靖西>通道>兴义。翅荚木物种的基因流Nm=0.4840,种源间的基因多样度Dst=0.1058,种源间存在一定的基因流动,遗传分化处于中等水平;种源间的遗传变异占总遗传变异的34.03%,65.97%的遗传变异分布在种源内的个体之间。翅荚木种源的遗传距离与地理距离没有显著的相关性,多态位点比率与叶片形态显著相关,Shannon信息指数(I)、Nei's基因多样性指数(H)与生长性状显著相关,但均与抗寒生理指标无关,因此可以认为翅荚木的抗寒性状主要由特异基因所控制。根据种源间遗传距离聚类结果可将翅荚木6个种源大体分为4大类:第Ⅰ类为英德、忻城、通道种源:第Ⅱ类为靖西种源;第Ⅲ类为兴义种源:第Ⅳ类为江华种源。翅荚木各大类群种源之间存在地形隔离,与地理分布格局基本一致。
Zenia insignis, one of the most valuable, rare, rapid growing species with multi-functions, has a bright prospect of utilization. As pioneer tree species in difficult forestation regions, the wild resources of Z. insignis were getting extinct. Z. insignis has been introduced to Fujian, Jiangxi and Zhejiang provinces, and its capability of rapid growing excelled indigenous trees and equaled to poplar and eucalyptus. Previous researches on Z. insignis focus on cultivation techniques, while no other basic researches were reported. This paper investigated genetic diversities of Z. insignis provenances and their resistance to low temperature stress using nine Z. insignis provenances collected from their main distribution areas as materials from 2005 to 2007. Moreover, genetic diversity of the Z. insignis provenances was estimated by combination of ISSR marker and provenance experiments in seedling stage. This study would provide a scientific base for cultivation and breeding of Z. insignis. The main results are as follows:
     1. The growth pattern in seedling stage of different Z. insignis provenances. Experiments were involved in nine provenances including Tongdao and Jianghua in Hunan, Yingde and Wongyuan in Guangdong, Guilin, Pingguo, Xincheng and Jingxi in Guangxi, and Xingyi in Guizhou. Results showed that there were extremely significant differences in seed sizes and leaf sizes between different provenances which were considered to be important characters distinguishing different provenances. Extremely significant differences were not present in production volume in different seedling stages, but in capability of cold resistance which was indicated by field experiments. Provenance of Tongdao, Hunan, could safely winter under the conditions of daily lowest temperature below 0℃, even by -6.1℃within durative seven days, showing good capability of resistance to stress. Therefore, special characters such as cold resistance should be considered as indexes when performing Z. insignis provenance selection. Individual selection played a key role in selection and breeding of superior and rapid growing varieties of Z. insignis. Growth pattern in seedling stage of different Z insignis provenances was investigated. The growth model was established by Logistic equation. From this equation it could be found that small seedlings began to accelerate growth from June after transplanting, and then rapidly grew from July to August. The peak stage of stem diameter growth was earlier than that of height growth, suggesting that Z. insignis is drought resistant.
     2. The cold resistance of different Z. insignis provenances. Results showed that physiological substances in Z. insignis seedlings changed after low temperature treatment. For instance, contents of protective substances such as soluble proteins and soluble carbohydrates, and osmotic adjustment substances such as free praline increased, and activities of antioxidative Enzymes were also increased. At 7℃the contents of soluble proteins, soluble carbohydrates and praline, and the activities of SOD and POD reached by the maximum values, whereas the content of MDA by the minimum value when the strongest cold resistance was developed. After treatment with low temperature, physiological indexes in Z. insignis shoots varied and showed significant differences at certain value of low temperature. There was a big increase in the contents of soluble proteins after being treated with -8℃, and the contents of MDA increased a little. The SOD activities between different Z. insignis provenances began to show significant differences. Relative electric conductivity sharply increased after treatment with -12℃, and that of all provenances apart from Tongdao provenance reached over 50%. The membrane of cytoplasms was damaged. Leaf anatomical analysis indicated that cell tense ratio (CTR) and spongy ratio (SR) of Z. insignis leaf were correlated with its cold resistance; the cold resistance ability became stronger with the increase of CTR and the decrease of SR. According to the Logistic equation, it could be calculated the semi-lethal temperature of Tongdao provenance was -13.06℃which is 0.89℃~2.74℃lower than that of the other provenances. The crystallization temperature of leaf of Tongdao provenance was -15.04℃indicated by DSC which is 0.42℃~1.34℃lower than that of the other provenances. Integrated analyses showed that the cold resistance of Tongdao provenance planting stock was the strongest, followed by Xinyi, Xincheng, Yingde, jianghua and Jingxi provenances.
     3. The genetic diversity of different Z. insignis provenances. ISSR-PCR reaction system for genetic diversity analysis of Z. insignis was successfully established for the first time. Averagely, each of the 10 primers screened amplified 5.4 bands, and the mean Percentage of Polymorphic Bands (PPB) was 64.29%. Among the six provenances, the mean PPB was 56.48%, Shannon's Information index 0.3048, Nei's index 0.2052, suggesting certain degree of genetic divergence exists among provenances. The genetic diversity of Xincheng provenance was the highest followed by Jianghua, Yingde, Jingxi, Tongdao and Xingyi provenances. Geneflow and Gene diversity were 0.4840 and 0.1058, respectively, indicating that certain degree of gene flow was present in Z. insignis provenances and the degree of genetic differentiation was medium. Genetic variations among provenances accounted for 34.03% of total genetic variations, and the genetic variations of 65.97% distributed in individuals of Z. insignis.
     Genetic distance and geographic distance matrices were not significantly correlated, while the PPB and leaf morphological characters were significantly correlated, and Shannon's Information index, Nei's index and growth characteristics were significantly correlated. While all these indexes were not correlated with physiological index of cold resistance, thus it could come to the conclusion that the cold resistance of Z. insignis was controlled by some specific genes. According to cluster analysis, Z. insighnis provenances were divided into four groups. GroupⅠ:Yingde, Xincheng and Tongdao provenances. GroupⅡ:Jingxi provenance. GroupⅢ:Xingyi provenance. Group IV:Jianghua provenance. There existed geographical isolation among the four groups, which is consistent with geographical distribution patterns.
引文
[1]傅立国.中国植物红皮书--稀有濒危植物(第一册)[M].北京:科学出版社,1992.
    [2]中国科学院植物研究所.中国高等植物图鉴[M].北京:科学出版社,1980.
    [3]World Conservation Monitoring Centre 1998. Zenia insignis. In:IUCN 2006.2006 IUCN Red List of Threatened Species.. Downloaded on 21 February 2007.
    [4]柳新红,王军峰,何小勇.翅荚木种源引种苗期试验初报[J].浙江林业科技.2005,25(5):27-28.
    [5]童方平,吴际友,龙应忠,等.珍稀速生树种翅荚木栽培技术研究[J].湖南林业科技.2005,32(4):13-15.
    [6]曾广腾,龚期绳,吴茂隆,等.翅荚木引种育苗试验及苗木生长规律研究[J].江西林业科技.2004(2):6-7.
    [7]陈亮明,陈永密,张巧琴.翅荚木引种栽培耐寒力的调查研究[J].林业科技开发.1997(3):37-38.
    [8]何义发,严昌荣.珍稀树种——翅荚木在恩施山地引种试验初报[J].湖北林业科技.1996(1):24-26.
    [9]覃志刚,邱进贤.翅荚木引种栽培的研究[J].四川林业科技.1992,13(1):59-63.
    [10]吕志锦,尹以明.翅荚木引种试验初报[J].江西林业科技.1989(3):26-28.
    [11]Chen W. Y. A new genus in the Chinese flora[J]. Sunyatsenia.1946(5):3-4.
    [12]吴征缢.中国种子植物属的分布区类型[J].云南植物研究.1991(增刊Ⅳ):1-319.
    [13]裘利洪,刘仁林,施建敏,等.马头山自然保护区种子植物区系研究[J].江西农业大学学报.2005,27(4):590-595.
    [14]刘演,宁世江.广西重点保护野生植物资源的现状与评价[J].广西科学.2002,9(2):124-132.
    [15]韦健康.广西发现任豆树王[J].广西林业.2002(4):34.
    [16]敖惠修,何道泉,张祝平,等.广东石灰岩地区的任豆群落[J].热带地理.1997, 17(3):275-282.
    [17]唐兰芳.石灰岩地区造林绿化好树种——任豆[J].广东林业科技.1998,14(3):34-37.
    [18]陈永密,张巧琴,张石玉,等.珍稀树种--翅荚木[M].福州:福建教育出版社,1989.
    [19]方小平,徐联英.珍稀濒危植物——翅荚木[J].贵州林业科技.1996,24(2):56-58.
    [20]莫明忠.云南金平分水岭国家级自然保护区稀濒危植物种类[J].林业调查规划.2003,28(3):50-53.
    [21]王娟,马钦彦,杜凡.云南大围山国家级自然保护区种子植物区系多样性特征[J].林业科学.2006,42(1):7-15.
    [22]张祝平,何道泉,敖惠修.任豆林的生物量和光能利用率[J].植物生态学报.1996,20(6):502-509.
    [23]张海浪,刘国云,袁正科.湖南省通道县龙底沟谷森林生态系统自然保护区自然资源研究[M].长沙:湖南科学技术出版社,2003.
    [24]高尚武,马文元.中国主要能源树种[M].北京:中国林业出版社,1990.
    [25]侯伦灯,李玉蕾,平宇,等.任豆树综合利用研究[J].林业科学.2001,37(3).
    [26]洪长福,陈希英,安平.桉树引种实践对林木引种理论的验证[J].福建林业科技.1997,24(4):65-68.
    [27]张文远.翅荚木生长收获模型的研究[J].江西林业科技.1995(5):9-12.
    [28]余光,张亚宁.我省引种的任豆木材纤维形态初步研究[J].福建林业科技.1998,25(1):31-33.
    [29]韩素芬,周湘泉.我国豆科树种结瘤情况[J].南京林业大学学报:自然科学版.1990,14(3):84-90.
    [30]苏冬梅.翅荚木种子活力的测定[J].中南林学院学报.1991,11(1):103-106.
    [31]唐文秀,黄仕训,等.稀有树种任木种子繁殖试验[J].广西植物.2003,23(2):161-164.
    [32]苏冬梅.短期高温高湿处理可提高翅荚木种子活力[J].林业科技通讯.1992(10):12-13.
    [33]卢又伟,栗彩.翅荚木种子萌发特性初报[J].广西林业科技.1989(4):13-15.
    [34]卢又伟,栗彩.翅荚木苗期生物量和营养元素积累的初步研究[J].农业现代化研究.1991,12(2):42-45.
    [35]黄玉清,王晓英,陆树华,等.岩溶石漠化治理优良先锋植物种类光合、蒸腾及水分利用效率的初步研究[J].广西植物.2006,26(2):171-177.
    [36]陈永密,张巧琴.尿素浸种对翅荚木种子活力的影响[J].植物生理学通讯.1995,31(3):198-199.
    [37]唐兰芳,古问为.任豆实生苗秋季培育技术[J].广东林业科技.1999,15(1):46-49.
    [38]陈永密,陈亮明.尿素浸种对翅荚木种子活力的影响[J].种子.1995(2):50-51.
    [39]潘月芳,曹艳云,等.任豆容器苗培育技术[J].林业科技开发.2001,15(2):32-33.
    [40]邱运亮.几种植物生长调节剂对翅荚木试管苗的生根效应[J].林业科技开发.2004,18(3):59-60.
    [41]邱运亮.翅荚木试管苗快速繁殖技术的研究[J].林业科技开发.2002,16(6):14-16.
    [42]黄学明,廖世全.翅荚木适生立地条件调查分析[J].林业科技通讯.1993(7):19-20.
    [43]秦维俊,韦作柳.任豆育苗和造林技术的探讨[J].广西林业科学.2001,30(2):95-96.
    [44]闭彩玲.任豆树的育苗造林技术[J].中南林业调查规划.1999,18(3):23-25.
    [45]王青天,余婉芳,陈进宝.福建柏任豆混交造林技术研究[J].林业实用技术.2004(5):11-12.
    [46]潜伟平,刘忠华.翅荚木干形分析及材积估测[J].林业科技通讯.1999(3):27-28.
    [47]周志春,李建民,陈炳星,等.几种亚热带速生乡土阔叶树种的制浆特性评价[J].中国造纸.2003,22(2):8-12.
    [48]李本贵,喻云水,等.百度法制定翅荚木干燥基准[J].湖南林业科技.2003,30(1):51-52.
    [49]范霭萱,梁兆彦.值得开发利用的木本饲料—任豆树[J].广西畜牧兽医.1995,11(2):20-23.
    [50]唐兰芳.石灰岩地区生态公益林营造技术[J].广东林业科技.2005,21(1):56-59.
    [51]焦月玲,周志春,金国庆,等.6个南方红豆杉种源苗期和幼龄生长差异[J].林业科学研究.2005,18(5):636-640.
    [52]肖复明,曾志光,包国华,等.木荷种源苗期生长性状地理变异及遗传参数估算[J].江西农业大学学报.2004,26(4):545-550.
    [53]王军辉,顾万春,夏良放,等.桤木种源(家系)苗期根瘤固氮能力的遗传变异[J].南京林业大学学报:自然科学版.2004,28(4):68-72.
    [54J何贵平,孙银祥.南酸枣地理种源苗期性状变异研究[J].林业科学研究.2003,16(2):177-182.
    [55]郑仁华,黎维英.福建柏地理种源苗期试验的研究[J].福建林学院学报.2001,21(1):40-44.
    [56]姚小华,孙银祥.樟树种源/家系苗期性状变异分析[J].林业科学研究.1999,12(3):283-290.
    [57]刘世芳,范义荣.黄山松5种源种苗期酯酶同工酶及核酸代谢[J].浙江林学院学报.1993,10(4):378-386.
    [58]姜成英,杨成生,孟少童,等.不同种源铅笔柏抗寒性对比研究[J].甘肃林业科技.2004,29(3):48-49.
    [59]廖声熙,张春华,李立,等.印楝种源间抗寒能力比较研究[J].林业科学研究.2004,17(2):172-177.
    [60]赖天碧,王泽有.马尾松不同种源抗寒性的研究[J].安徽林业科技.1991(4):3-6.
    [61]李晓储,李志琪.杉木地理种源寒害研究[J].江苏林业科技.1990,17(3):11-20.
    [62]唐季林,徐化成.油松抗寒性与种源关系的研究[J].北京林业大学学报.1989,11(1):53-60.
    [63]陈晓阳,沈熙环.林木育种学[M].北京:高等教育出版社,2005.
    [64]Kojima T, Noda K, Noda K. Genetic linkage map of ISSR and RAPD markers in Einkorn wheat in relation to that of RFLP markers[J]. Theoretical and Applied Genetics,1998,96:37-45.
    [65]杨玉玲,马祥庆,张木清.ISSR分子标记及其在树木遗传育种研究中的应用[J].亚热带农业研究.2006,2(1):18-24.
    [66]Zietiewiez E, Rafalski A, Labuda D. Genome fingerprinting by simple sequence repeat (SSR)-anchored polymerase chain reaction amplification[J]. Genomes, 1994(20):176-183.
    [67]Fang D. Q, Roose M. L. Identification of closely related citrus cultivars with inter-simple sequence repeat markers[J]. Theoretical and Applied Genetics, 1997(95):408-417.
    [68]Wolfe A. D, Kephart S. Assessing hybridization in natural populations of Penstemon (Scrophulariaceae) using hypervariable inter-simple serequence repeat (ISSR) bands[J]. Molecular Ecology,1998(7):107-125.
    [69]Esselman E. J, Crawford D. J. Clonal diversity in the rare Calamagostis porteri spp.Insperata (Poaceae):comparative results for allozymes and random amplified polymorphic DNA (RAPD) and inter-simple sequence repeat (ISSR) markers[J]. Molecular Ecology,1999(8):443-451.
    [70]祁建民,周东新,吴为人,等.RAPD和ISSR标记检测黄麻属遗传多样性的比较研究[J].中国农业科学.2004,37(12):2006-2011.
    [71]贺学勤,刘庆昌,翟红,等.用RAPD、ISSR和AFLP标记分析系谱关系明确的甘薯品种的亲缘关系[J].作物学报.2005,31(10):1300-1304.
    [72]Moreno S, Ortiz J. M, Ortiz J. M. Inter-simple sequence repeats PCR for characterization of closely related grapevine germplasm[J]. Euphytica,1998(101): 117-125.
    [73]Qian W. Genetic variation within and among populations of a wild rice Oryza granulata from China detected by RAPD and ISSR markers[J]. Theoretical and Applied Genetics,2001(102):440-449.
    [74]Huang J. C. Genetic diversity and relationships of sweptotato and its wild relatives in Jpompea series Batatas (Convolvlaceae) as revealed by ISSR and restriction analysis of chloroplast DNA[J]. Theoretical and Applied Genetics,2000(100): 1050-1060.
    [75]Charter Y. M. PCR analysis of oilseed rape cultivars using 5'-anchored simple sequence repeat (SSR) primers[J]. Theoretical and Applied Genetics,1996(92): 442-447.
    [76]Godwin I. D, Smith L. W, Godwin I. D, et al. Application of inter-simple sequence repeat (ISSR) markers to plant genetics[J]. Electrophoresis,1997,18(18): 1524-1528.
    [77]Blair M. W, Mccouch S. R. Inter-simple sequence repeat (ISSR) amplification for analysis of microsatellite motif frequency and fingerprinting in rice (Oryza sativa L.)[J]. Theoretical and Applied Genetics,1999,98:780-792.
    [78]Dirlewanger E, Parvery C. Genetic linkage map of peach (Prunus persica L.) using morphological and molecular markers[J]. Theoretical and Applied Genetics,1998, 8(8):443-451.
    [79]Gilbert J. E, Wilkinson M. J. Developing an appropriate strategy to assess genetic variability in plant germplasm collections[J]. Theoretical and Applied Genetics, 1999,98:1125-1131.
    [80]Moreno S, Ortiz M. Inter-simple sequence repeats PCR for characterization of closely related grapevine germplasm[J].1998,117(Euphytica):117-125.
    [81]Ammiraju J. S. S, Santra D. K. Identification of inter simple sequence repeat (ISSR) markers associated with seed size in wheat[J]. Theoretical and Applied Genetics, 2001:726-732.
    [82]Ratnaparkhe M. B, Tullu A. Inheritance of inter-simpler-sequence-repeat polymorphisms and linkage with a fusarium wilt resistance gene in chickpea[J]. Theoretical and Applied Genetics,1998,96:348-353.
    [83]Fang D. Q, Roose M. L. Phylogenetic relationships among selected Citrus germplasm accessions revealed by inter-simple sequence repeat (ISSR) markers[J]. Journal of the American Society for Horticultural Science,1998,123:612-617.
    [84]Casasoli M, Cherubina. A genetic linkage map of European chestnut (Castanea sativa Mill.) based on RAPD ISSR and isozyme markers[J]. Theoretical and Applied Genetics,2001,102:1190-1199.
    [85]Kantety R. V, Bennetzen J. Assessment of genetic diversity in popcorn (Zea mays L.) inbred lines using inter-simple sequence repeat (ISSR) amplification[J]. Molecular Breeding,1995,1:365-373.
    [86]Fang D. Q. Inheritance of intersimple sequences repeat markers in Citrus[J]. Journal of Heredity,1999,90:247-249.
    [87]Ratnaparkhe M. B, Muehlbauer F. J. Inter-simpler-sequence-repeat (ISSR) polymorphisms are useful for finding markers associated with disease resistance gene clusters[J]. Theoretical and Applied Genetics,1998,98:515-519.
    [88]Davila J. A, Ferrer E. Molecular characterization and genetic mapping of random amplified microsatellite polymorphism in barley[J]. Theoretical and Applied Genetics,1999,98:265-273.
    [89]Arcade A, Faivre R. P. Application of AFLP RAPD and ISSR markers to genetic mapping of European and Japanses larch[J]. Theoretical and Applied Genetics, 2000,100:299-307.
    [90]Cekic C, Wilkinson M. J. The potential of ISSR-PCR primer-pair combinations for genetic linkage analysis using the seasonal flowering locus in Fragaria as a model [J]. Theoretical and Applied Genetics,2001,103:540-546.
    [91]Sankar A. A. Evalution of inter-simple sequence repeat analysis for mapping in Citrus and extension of the genetic linkage map[J]. Theoretical and Applied Genetics,2001,102:206-214.
    [92]Nagaoka T. Applicability of inter-simple sequence repeat markers in wheat for use as DNA markers in comparison to RFLP and RAPD markers[J]. Theoretical and Applied Genetics,1997,94:597-602.
    [93]Prevost A. A new system of comparing PCR primers applied to ISSR fingerprinting of potato cultivars[J]. Theoretical and Applied Genetics,1998,98:107-112.
    [94]Joshi S. P, Aggarwal R. K. Genetic diversity and phylogenetic relationship as revealed by inter simple sequence repeat (ISSR) polymorphism in the genus Oryza[J]. Theoretical and Applied Genetics,2000,100:1311-1320.
    [95]Huang J. C. Genetic diversity and relationships of sweetpotato and its wild relatives in Ipomoea series Batatas (Convovulaceae) as revealed by inter-simple sequence repeat (ISSR) and restrication analysis of chloroplast DNA[J]. Theoretical and Applied Genetics,2000,100:1050-1060.
    [96]周俊亚,唐绍清,向悟生,等.栽培罗汉果遗传多样性的ISSR分析[J].广西植物.2005,25(5):431-436.
    [97]姚明哲,王新超,陈亮,等.茶树ISSR-PCR反应体系的建立[J].茶叶科学.2004,24(3):172-176.
    [98]李海生,陈桂珠.海南岛红树植物海桑遗传多样性的ISSR分析[J].生态学报.2004,24(8):1656-1662.
    [99]乔玉山,章镇,房经贵,等.李种质资源ISSR反应体系的建立[J].果树学报.2003,20(4):270-274.
    [100]刘世彪,陈菁,胡正海.7种番荔枝果树的叶片结构及其与抗寒性关系研究[J].果树学报.2004,21(3):241-246.
    [101]陈俊秋,慈秀芹,李巧明,等.樟科濒危植物思茅木姜子遗传多样性的ISSR分析[J].生物多样性.2006,14(5):410-420.
    [102]那冬晨,杨传平,姜静,等.利用ISSR标记分析兴安落叶松种源的遗传多样性[J].林业科技.2006,31(1):1-4.
    [103]祁建民,周东新,吴为人,等.用ISSR标记检测黄麻野生种与栽培种遗传多样性[J].应用生态学报.2003,14(9):1473-1477.
    [104]冷欣,王中生,安树青,等.岛屿特有种全缘冬青遗传多样性的ISSR分析[J].生物多样性.2005,13(6):546-554.
    [105]邱英雄,何云芳.乐昌含笑不同类型鉴定的ISSR—PCR分析[J].林业科学.2002,38(6):49-52.
    [106]王毅,杨宏福,李树德.园艺植物冷害和抗冷性的研究文献综述[J].园艺学报.1994,21(3):239-244.
    [107]张金花,谭世廷.葡萄极早熟新品利·红旗特早玫瑰[J].中国果树.2001(5):51.
    [108]田建保,王占和,贾小云,等.扁桃优良新品种“晋扁1号”选育[J].2003(1):11.
    [109]Clark J. R.'Reliance'Grape[J]. J Amer Porn Soe,2002,56(1):2-3.
    [110]刘慧民,温宇弘,王崑,等.植物抗寒研究综述[J].北方园艺.2003(6):14-15.
    [111]林定波,颜秋生.柑橘抗寒细胞变异体的获得及其抗性遗传稳定性的研究[J].植物学报:英文版.1999,41(2):136-141.
    [112]Dashek W. V, Erickso S. S. Isolation, assay, biosynthesis, metabolism, uptake and translation and function of proline in plant cells and tissue[J]. Bot Review,1981, 47(3):350-385.
    [113]张彬,张怀渝.植物转基因技术及其应用[J].安徽科技.2005(5):54-56.
    [114]王勇,杨培岭,任树梅.水分、抗旱剂BGA耦合对大叶黄杨抗寒性的影响[J].北京林业大学学报.2006,28(4):112-117.
    [115]Grifith M, Ala P, Yang Dsc, et al. Antifreeze Protein Produeed Endogenously in Winter Rye Leaves[J]. Plant Physiol,1992(100):593-596.
    [116]Hightower R, Cathy B, Ranela D..Expression of antifreeze proteins in transgenic plants[J]. Plant Molecular Biology,1991,17(5):1013-1021.
    [117]Breusegem F. V, Slooten L, Stassart J. M, et al. Overproduction of Arabidopsis thaliana Fe-SOD confers oxidative stress tolerance to transgenic maize[J]. Plant Cell Physiol,1999,40(5):515-523.
    [118]Tanaka Y, Brotherton P, Hostetter S, et al. The operational planting stock quality testing program at Weyerhaeuser[J]. New Forests,1997,13:423-437.
    [119]Bigras F. J. Freezing temperatures and exposure times during bud break and shoot elongation influence survival and growth of containerized black spruce (Picea mariana) seedlings[J]. Canadian Journal of Forest Research,1996,26:1481-1489.
    [120]Burr K. E, Hirondelle S. J, Binder, et al. Methods for measuring cold hardiness of conifers[J]. Kluwer Academic Publishers,Dordrecht/Boston/London,2001: 369-401.
    [121]Ashworth E. N. Formation and spread of ice in plant tissues[J]. Horticulture Review, 1992,13:215-255.
    [122]Deans J. D, Billington F. J, Harvey F. J, et al. Assessment of frost damage to leafless stem tissues of Quercus petraea:a reappraisal of the method of relative conductivity[J]. Forestry,1995,68:25-34.
    [123]Gillies S. L, Binder W. D. The effect of sub-zero temperatures in the light and dark on cold-hardened, dehardened and newly flushed white spruce [Picea glauca (Moench.) Voss] seedlings[J]. New Forests,1997,13:91-104.
    [124]Maxwell K, Johnson G. N. Chlorophyll fluorescence-a practical guide[J]. Journal of Experimental Botany,2000,51:659-668.
    [125]Quamme H. A. An exothermic process involved in the freezing injury to flower buds of several Prunus species[J]. Journal of the American Society for Horticultural Science,1974,99:315-318.
    [126]Warmund M. R, George M. F, Cumbie B. G. Methods for measuring cold hardiness of conifers In Bigras[J]. Ournal of the American Society for Horticulture Science, 1990,113(3):369-401.
    [127]Ashworth E. N, Lightner G. W, Rowse D. J. Evaluation of apricot flower bud hardiness using a computer-assisted method of thermal analysis[J]. Hort Science, 1981,16(6):754-756.
    [128]Kang S. K, Motosugi H, Yonemori K, et al. Supercooling characterics of some deciduous fruit trees as related to water movement within the bud[J]. Journal of Horticultural Science and Biotechnology,1998,73(2):165-172.
    [129]Repo T, Zhang G, Ryypp A, et al. The electrical impedance spectroscopy of Scots pine (Pinus sylvestris L.) shoots in relation to cold acclimation[J]. Journal of Experimental Botany,2000,51:2095-2107.
    [130]Ide H, Price W. S, Arata Y, et al. Freezing behaviors in leaf buds of cold-hardy conifers visualized by N.M R microscopy[J]. Tree Physiology,1998,18:451-458.
    [131]Sundblad L. G, Andersson M, Geladi P, et al. Fast, nondestructive measurement of frost hardiness in conifer seedlings by VIS+NIR spectroscopy[J]. Tree Physiology, 2001,21:751-757.
    [132]马英姿,梁文斌,陈建华.经济植物的抗寒性研究进展[J].经济林研究.2005,23(4):89-94.
    [133]郭玉春,余高镜.温度胁迫下外引高羊茅活性氧代谢与细胞膜透性的变化[J].草业科学.2003,20(2):4-8.
    [134]韩蕊莲,梁宗锁.干旱胁迫下沙棘叶片细胞膜透性与渗透调节物质研究[J].西北植物学报.2003,23(1):23-27.
    [135]张宗申,利容千.外源Ca^2+预处理对高温胁迫下辣椒吧片细胞膜透性和GSH、AsA含量及Ca^2+分布的影响[J].植物生态学报.2001,25(2):230-234.
    [136]杨广容,倪金卫.秋冬季茶树抗寒性对光合呼吸作用的影响[J].福建茶叶.2002(4):14-15.
    [137]骆耀平,吴姗.二年生嫁接茶树的冬季光合特性与抗寒性[J].浙江大学学报: 农业与生命科学版.2002,28(4):397-400.
    [138]郭蔚岚,高述民.日本桃叶珊瑚(Acuba j ap vari egate)在低温下的光合作用及蛋白的研究初报[J].江西农业大学学报.2002,24(3):376-379.
    [139]沈漫.常春藤质膜透性和内源激素与抗寒性关系初探[J].园艺学报.2005,32(1):141-144.
    [140]芦站根,赵昌琼,谈锋.不同光照条件下曼地亚红豆杉抗寒力的变化及内源激素调控[J].西南师范大学学报:自然科学版.2003,28(1):122-125.
    [141]赵春江,康书江.植物内源激素与不同基因型小麦抗寒性关系的研究[J].华北农学报.2000,15(3):51-54.
    [142]郭惠红,宋菲,沈昕,等.金边卫矛冷驯化期间SOD和POD同工酶及蛋白的研究[J].北京林业大学学报.2005,27(6):56-61.
    [143]王丽,赵春梅,王义菊,等.过量表达叶绿体小分子热激蛋白提高番茄的抗寒性[J].植物生理与分子生物学学报.2005,31(2):167-174.
    [144]马海慧,戴思兰.植物的冷调节蛋白及诱导其基因表达的条件[J].中南林学院学报.2003,23(5):96-100.
    [145]车代弟,王军虹.丰花月季抗寒生理指标和抗寒性的关系[J].北方园艺.2000(2):57-57.
    [146]王淑杰,王家民.可溶性全蛋白,可溶性糖含量与葡萄抗寒性关系的研究[J].北方园艺.1996(2).
    [147]钟广炎,陈力耕.柑桔种质资源抗寒性与叶片结构的关系[J].中国柑桔.1994,23(2):16-17.
    [148]韩善华,李劲松.沙冬青叶片结构特征及其与抗寒性的关系[J].林业科学.1992,28(3):198-201.
    [149]谢庭味,欧阳美珊.13种木兰科树种叶片解剖与其抗寒性[J].武汉植物学研究.1989,7(3):234-238.
    [150]Thmoashow M. F. Role of cold-responsive genes in plant freezing tolerance[J]. PLANT PHYSIOLOGY,1998,118:1-8.
    [151]Orvar B. L, Omann F. Early steps in cold sensing by plant cells:the role of actin cytoskeleton and membrane fluidity[J]. Plant Journal,2000,23(06):785-794.
    [152]Lee H, Guo Y, Ohta M, et al. LOS2 a genetic locus required for cold-responsive gene transcription encodes a bi-functional enolase[J]. EMBO Journal,2002,21(11): 2692-2702.
    [153]王凭青,吴明生,王远亮,等.植物抗寒基因工程研究最新进展[J].重庆大学学报:自然科学版.2003,26(7):81-85.
    [154]甄伟,陈溪,等.冷诱导基因的转录因子CBF1转化油菜和烟草及抗寒性鉴定[J].自然科学进展:国家重点实验室通讯.2000,10(12):1104-1108.
    [155]谢吉容,向邓云.南方红豆杉抗寒性的变化与内源激素的关系[J].西南师范大学学报:自然科学版.2002,27(2):231-234.
    [156]肖万喜,邓兰英.柑桔抗寒力的生理生化分析[J].江西柑桔科技.1993(2):21-23.
    [157]肖双燕,李力.翅荚木测树指标与冻害关系的初步研究[J].江西林业科技.1992(6):23-25.
    [158]左欣,韩斌,程嘉林.基于数字图像处理的植物叶面积测量方法[J].计算机工程与应用.2006,42(27):194-196.
    [159]李合生.现代植物生理学[M].北京:高等教育出版社,2002.
    [160]陈瑞荣,尉春法,接富庆,等.欧美杨新无性系苗期年生长模型的研究[J].河北林业科技.2004(1):5-8.
    [161]周元满,谢正春,刘素青,等.Logistic模型在桉树生长过程估计中的应用[J].南京林业大学学报(自然科学版).2004,28(6):107-110.
    [162]张萍,周志春,金国庆,等.木荷种源苗高生长参数变异研究[J].林业科学研究.2006,19(1):61-65.
    [163]李秋元,孟德顺.Logistic曲线的性质及其在植物生长分析中的应用[J].西北林学院报.1993(8):81-86.
    [164]陈晓阳.树木种内的地理变异及其利用[J].贵州林业科技.1989,17(1):79-85.
    [165]应叶青,吴家胜,周国模,等.喜树种源苗期性状遗传变异研究[J].林业科学研究.2004,17(6):751-756.
    [166]贺超英,陈益泰.桤木种源苗期生长和固N能力的变异[J].林业科学研究.2002,15(6):680-686.
    [167]王晶英,敖红,张杰,等.植物生理生化实验技术与原理[M].哈尔滨:东北林业大学出版社,2003:22-23.
    [168]中国科学院上海植物生理研究所.现代植物生理学实验指南[M].北京:科学出版社,1999:314-315.
    [169]j Kochba. Plant Cell Physiol[M].1977:463-467.
    [170]Sequeira L,L. Limineo. Plant Physiol[M].1966:1200-1208.
    [171]汤章诚.现代植物生理学实验指导[M].北京:科学出版社,1999:305-306.
    [172]史清华,高建社,王军,等.5个杨树无性系抗寒性的测定与评价[J].西北植物学报.2003,23(11):1937-1941.
    [173]缴丽莉,路丙社,白志英,等.四种园林树木抗寒性的比较分析[J].园艺学报.2006,33(3):667-670.
    [174]芦站根,周文杰,赵昌琼,等.不同光强对曼地亚红豆杉抗寒性的影响[J].植物研究.2003,23(3):285289.
    [175]徐位力,苏开君,王光,等.马占相思树苗对低温冻害的抗性研究[J].广西植物.2005,25(5):489-493.
    [176]郑国铝,翟中和.植物抗寒性的细胞及分子生物学研究进展[C].北京:高等教育出版社,1991.
    [177]武惠肖,吉艳芝,何海龙,等.落叶松几个抗寒生理指标研究[J].河北林果研究.2000,15(2):105-109.
    [178]巫光宏,罗焕亮.几种保护酶活性变化与马占相思树对低温胁迫的抵抗性的关系研究[J].植物研究.2002,22(1):42-45.
    [179]陈杰忠,徐春香.低温对香蕉叶片中蛋白质及脯氨酸的影响[J].华南农业大学学报.1999,20(3):54-58.
    [180]黄月华,徐建民,余雪标.低温胁迫对桉树代谢的影响[J].热带农业科学.2005,25(5):24-28.
    [181]张荣华,李拥军,张叶玲.脯氨酸含量对苜蓿抗寒性影响的研究[J].现代化农业.2006(4):17-18.
    [182]汤章城.逆境条件下植物游离脯氨酸的积累及其可能的意义[J].植物生理学通讯.1984(1):15-21.
    [183]韩涛,李丽萍,黄万荣,等.间歇升温对冷藏桃果实游离脯氨酸含量和冷害的影响[J].果树科学.1995(12):46-49.
    [184]万琳琛,肖尊安.猕猴桃属种间体细胞杂种试管苗的抗寒性[J].果树学报.2001,18(3):148-151.
    [185]彭永康,郝泗城.低温处理对豇豆幼苗生长的POD,COD,ATPase同工酶的影响[J].华北农学报.1994,9(2):76-80.
    [186]戴金平,简令成.低温锻炼对黄瓜幼苗几种酶活性的影响[J].植物学报:英文版.1991,33(8):627-632.
    [187]陈贻竹,B帕特森.低温对植物叶片中超氧化物歧化酶、过氧化氢酶和过氧化氢水平的影响[J].植物生理学报.1988,14(4):323-328.
    [188]郭爱华,左宝峰,姚延祷,等.自然降温对雪松叶片中叶绿素及电导率的影响[J].山西农业大学学报:自然科学版.2005,25(4):393-395.
    [189]张素勤,程智慧,耿广东.低温胁迫对茄子幼苗生理特性的影响[J].湖南农业大学学报:自然科学版.2006,32(4):393-396.
    [190]李晶,祖元刚.低温胁迫下红松幼苗活性氧的产生及保护酶的变化[J].植物学报:英文版.2000,42(2):148-152.
    [191]彭昌操,孙中海.低温锻炼期间柑桔原生质体SOD和CAT酸活性的变化[J].华中农业大学学报.2000,19(4):384-387.
    [192]佘文琴,刘星辉.荔枝叶片膜透性和束缚水/自由水与耐寒性的关系[J].福建农业大学学报.1995,24(1):14-18.
    [193]刘星辉,王宏华.香蕉叶片组织细胞结构和生量特性与耐寒性的关系[J].福建农学院学报.1990,19(2):181-185.
    [194]马翠兰,刘星辉.柚品种间的耐寒性差异及其机理[J].福建农业大学学报.1998,27(2):160-165.
    [195]简令成.生物膜与植物寒害和抗寒性的关系[J].植物生理学通讯.1986(3).
    [196]何开跃,李晓储,黄利斌,等.福建柏抗寒生理指标变化研究[J].南京林业大学学报:自然科学版.2002,26(5):10-14.
    [197]黄以江,王宗.苹果属果树抗寒性的细胞学鉴定[J].园艺学报.1982,9(3):23-29.
    [198]简令成.不同种类桔柑叶片组织的细胞结构与抗寒性的关系[J].园艺学报.1986,13(3):163-168.
    [199]苏金乐,程绍荣.白花泡桐不同种源叶片比较解剖学研究[J].河南农业大学学 报.1993,27(1):52-56.
    [200]李芳兰,包维楷,刘俊华,等.岷江上游干旱河谷海拔梯度上白刺花叶片生态解剖特征研究[J].应用生态学报.2006,17(2):5-10.
    [201]陈清西,廖镜思,王明双,等.食用蕉若干品种类型叶片组织结构的比较观察[J].福建农学院学报.1992,21(4):406-412.
    [202]吴国良,常留印,陈国秀.核桃实生苗叶片性状与抗寒性关系[J].植物学通报.1998,15(增刊):111-113.
    [203]吴林,刘海广,刘雅娟,等.越橘叶片组织结构及其与抗寒性的关系[J].吉林农业大学学报.2005,27(1):48-5054.
    [204]高琼.胡枝子不同种和种源耐旱、耐寒性变异研究[D].北京:北京林业大学,2005.
    [205]Dexter S. T, Tottingham W. E, Crebe L. F. Preliminary results in measu-reing the hardiness of plants[J]. Plants Physiology,1930(5):215-223.
    [206]Sukumaran N. P. An excise leaflet test for evaluating potato frost tolerance[J]. Hortisci,1972(7):467-468.
    [207]Rajashekar C. Membrerance structural transitions:Probable relation to frost damage in hardy herbaceous species, Low temperature stress in crop plants [C]. Academic Press,1979.
    [208]王洪春.修正的logistic公式在植物抗性研究中的作用[C].1984.
    [209]朱根海,刘祖祺,朱培仁.应用losistic方程确定植物组织低温半致死温度的研究[J].南京农业大学学报.1985(3):11-16.
    [210]余观夏,阮锡根,封维忠,等.杨树无性系超冷现象分析[J].南京林业大学学报(自然科学版).2006,30(2):67-71.
    [211]陈镜泓,李传儒.热分析及其应用[M1.北京:科学出版社,1985.
    [212]徐文铎,郑元润,刘广田.内蒙古沙地云杉生长与生态条件关系的研究[J].应用生态学报.1993(04).
    [213]张文标,金则新,李钧敏.濒危植物香果树自然居群遗传多样性的RAPD分析[J].浙江大学学报:农业与生命科学版.2007,33(1):61-67.
    [214]明军,顾万春.紫丁香天然群体遗传多样性的AFLP分析[J].园艺学报.2006,33(6):1269-1274.
    [215]万爱华,徐有明,管兰华,等.马尾松种子园无性系遗传结构的地理变异[J].东北林业大学学报.2006,34(4):12-14.
    [216]徐小林,徐立安,黄敏仁,等.栓皮栎天然群体SSR遗传多样性研究[J].遗传.2004,26(5):683-688.
    [217]罗建勋,顾万春,姚平.云杉现有天然林的遗传分化和种源区划分[J].西北农林科技大学学报.2005,33(12):78-84.
    [218]杨佳,李晓东,李新伟,等.华中特有珍稀植物裸芸香的AFLP遗传多样性分析[J].武汉植物学研究.2007,25(3):226-234.