内蒙古白云鄂博矿区引种木本观赏植物抗旱和抗寒研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
白云鄂博矿区地处包头市西北部,属内陆干燥气候区,气候干燥冬季寒冷。加上矿区开采严重导致生态环境破坏、地表裸露,亟需引种能在当地生长、改善生态的园林植物。干旱和低温为影响白云鄂博矿区引种的主要限制因子。因此,筛选适合在白云鄂博矿区生长、具有一定抗旱和抗寒性的园林植物种类,并研究适宜的栽培繁殖技术方案,对白云鄂博矿区的植物引种工作具有实际意义。
     本论文以元宝枫(Acer truncatum Bunge)、木槿(Hibiscus syriacus Linn.)、紫荆(Cercis chinensis Bunge)、紫藤(Wisteria sinensis (Sims) Sweet)和榆树(Ulmus pumilaL.)为引种对象和研究材料,对其繁殖栽培方法、抗旱能力及抗寒性差异等方面展开研究,获得主要结果和结论如下:
     (1)通过盆栽控水试验设置4个不同土壤水分梯度(对照、轻度、中度和重度水分胁迫处理土壤相对含水量分别为80%-90%、60%-70%、40%-50%、20%-30%),对不同土壤水分条件下元宝枫、木槿、紫荆和紫藤的生理生态响应、表观形态、光合参数、叶绿素荧光参数、保护酶活性和渗透调节物质含量等生理生化指标的变化情况进行测定,运用主成分分析和隶属函数的统计方法进行数据分析,对4种植物的抗旱能力综合评价结果为:元宝枫>紫荆>木槿>紫藤。
     (2)对各项抗旱指标进行分析发现,对于4种木本植物来说,干生物量比(叶生物量比、茎生物量比、根生物量比)不能有效比较植物的抗旱性。土壤水分胁迫下植株死亡率、株高增量、叶片数增量、植株鲜重、植株含水量、叶片含水量、叶片饱和水分亏缺、比叶重、叶片蜡质含量、叶片气孔密度、气孔孔径、光合及叶绿素荧光参数、MDA含量、电导率、渗透调节物质含量和抗氧化酶活性等指标,在一定程度上反映植物的受干旱影响程度。在植物引种过程中,根据不同树种及实际需要,这些指标可作为比较木本植物种(或品种)抗旱性的筛选指标。
     (3)对低温处理下5种木本植物幼苗的电导率、MDA含量、游离脯氨酸含量测定,运用主成分分析和隶属函数的方法进行数据分析表明:紫荆、榆树和元宝枫幼苗的抗寒能力大于紫藤和木槿。在对植物抗寒性指标进行筛选时,电导率和游离脯氨酸含量可以作为植物的抗寒性指标。电导率可以有效说明一些植物的细胞质膜受伤害程度和耐低温能力。在讨论游离脯氨酸含量是否适宜作为抗寒能力的指标时,运用合适的综合评价方法才是考察植物抗寒性的关键。不同植物的MDA含量对低温变化的响应程度不同,木槿和榆树的MDA含量对低温响应不敏感。
     (4)对5种园林植物进行栽培试验分析发现,元宝枫、木槿、紫荆和紫藤4种植物均可通过种子繁殖和实生苗移栽的方法进行引种栽培,播种成活率均高达90%以上;木槿还可以扦插繁殖,用蛭石作基质,无需使用生长调节剂处理插穗,生根率即可达84.0%。通过对4种木本植物在白云鄂博矿区进行实地栽培观察和抗旱、抗寒能力生理指标的分析发现,元宝枫抗旱性最强,且能连续2年在白云鄂博矿区栽培地自然越冬,适合在白云鄂博矿区引种。其他3种植物紫荆、木槿和紫藤在白云鄂博矿区引种的物候表现有待进一步的观察和探讨。
     综合4种植物的抗旱和抗寒性研究,以及木本植物的自然分布情况,作者认为适宜在白云鄂博矿区栽种的园林植物应该具有如下特征:(1)具有较强的抗旱性,在干旱条件下水分利用效率较强,植株含水量、叶片含水量、比叶重、根冠干物质重比率值相对较大,自由水和束缚水含量比较低,叶片气孔密度较大,气孔孔径较小,表观量子效率和最大光化学效率值较高,叶片蜡质含量较多,渗透调节物质(可溶性糖、可溶性蛋白、游离脯氨酸)含量较高,酶促系统(超氧化物歧化酶、过氧化物酶、过氧化氢酶、抗坏血酸一过氧化物酶)活性较高。(2)抗低温能力强,能自然露地越冬,或在简单保护等栽培条件下,越冬后能够成活。
Bayan Obo mining area located in the northwest of China belongs to the inland dry climate zone which is cold in winter and dry. Serious exploitation of the mine leads to ecological destruction and and bare ground. Consequently, an urgent need in the local growth and improve the ecology of landscape plants. For this reason, it has great significance for introduction to Bayan Obo mining area. Drought and cold are the restriction factor for the introduction by the way of analysis of site conditions, climate and cultivation conditions. Therefore the purpose of this study is introduction of certain drought and cold tolerance plants and electing suitable plant species.
     In this paper, Acer truncatum, Hibiscus syriacus, Cercis chinensis, Wisteria sinensis and Ulmus pumila are used for the introduction and experimental materials whose reproduction method, drought and cold tolerance differences are researched. The main conclusions are as follows:
     (1) Physiological and ecological responses, and the changes of physiological and biochemical indexes of four seedlings, Acer truncatum, Hibiscus syriacus, Cercis chinensis and Wisteria sinensis are investigated under4different treatment of water stress (relative water content of well-water control, mild water stress, moderate water stress and severe water stress followed by80%-90%,60%-70%,40%-50%and20%-30%). On the basis of different responses of four seedlings under drought stress, the drought resistance of Acer truncatum was the highest, followed by Cercis chinensis, Hibiscus syriacus and Wisteria sinensis.
     (2) When selecting drought tolerance indicators in the process of plant breeding, except for dry mass ratio, other indices such as death rate, plant height and leaves increment, fresh weight, plant water content, leaf water content, leaf saturated water deficit, SLW, leaf waxes value, stomatal density, stomatal length, photosynthetic and chlorophyll fluorescent, MDA content, leaf electric conductivity, osmotic substance conten and antioxidative enzyme activities could be used as drought resistance evaluation indices.
     (3) After investigating of leaf electric conductivity, MDA content and free proline content of5woody plants seedlings, research shows that leaf electric conductivity can be used effectively investigating plant cell membrane injury degree and cold resistance ability. Through the comparative analysis, it is cold intolerance for Hibiscus syriacus and Wisteria sinensis. MDA content of different species response to low temperature changes is different. The variation of free proline content is insensitivity for Hibiscus syriacus and Ulmus pumila, but in contrast of Cercis chinensis. The accumulation of free proline increased. Nevertheless, there is no obvious correlation between the accumulation of free proline and cold resistance ability, which has its limits for comparing cold resistance of5plants.
     (4) Acer truncatum, Hibiscus syriacus, Cercis chinensis and Wisteria sinensis can be cultivated and prouducted through seed breeding, the survival rate of which is more than90%. Hibiscus syriacus can be propagated by cottage with vermiculite and no auxin treatment, the survival rate of which is84.0%. With the study of introduction and cultivation observation, drought and cold resistance, Acer truncatum is the most suitable species for introduction in Bayan Obo mining area, the drought resistance of which is the highest. Phenology performance of other3species Cercis chinensis, Hibiscus syriacusand Wisteria sinensis in Bayan Obo mining area are to be further observation and discussed.
     Combine with the above results of the analysis and natural distribution of4woody plants species, the author suggests that with the followed characteristic of ornamental plants can be planted in Bayan Obo mining area.(1) High ability of drought resistance and higher water use efficiency in drought conditions. Higher plant water content, LRWC, SLW, R/S. Lower ratio of free water and bound water content. The stomatal density is higher, and stomatal length is smaller. The value of AQY, Fv/Fm, the content of leaf waxes, and the content of osmoregulation substance (soluble sugar, soluble protein, free proline) are higher. Enzyme system (SOD, POD, CAT, APX) activity is higher.(2) Strong ability to low temperature resistance and natural live through the winter. Or in simple protection cultivation measures conditions after the winter can survive.
引文
[1]卞正富,许家林,雷少刚.论矿山生态建设[J].煤炭学报,2007,32(1):13-19.
    [2]常根柱,张茜,路远,等.阿拉善沙拐枣引种驯化栽培试验[J].中国草地学报,2011,33(5):58-61.
    [3]陈俊松,方向京,李贵祥,等.矿区废弃地生态恢复研究[J].安徽农业科学2012,40(1):326-328,331.
    [4]陈俊愉.对园林植物引种驯化的再认识[C]//张启翔,刘青林.花凝人生.北京:中国林业出版社,2007.
    [5]陈有民.园林树木学[M]一北京:中国林业出版社,2006.
    [6]戴思兰.园林植物育种学[M].北京:中国林业出版社,2006.
    [7]董文珂,王斌,戴思兰,等.北京平原地区引种抗寒茶花的形态学研究.北京林业大学学报,2011,33(增刊1):107-113.
    [8]付爱红,陈亚宁,李卫红,等.干旱、盐胁迫下的植物水势研究与进展[J].中国沙漠,2005,25(5):744-749.
    [9]顾振瑜,胡景江,文建雷等.元宝枫对干旱适应性的研究[J].西北林学院学报,1999,14(2):1-6.
    [10]巩玉霞,贺康宁,朱艳艳,等.黄土半干旱区元宝枫叶片气体交换参数对土壤水分的响应[J].水土保持研究,2007,14(1):242-245.
    [1]]郭从俭,张新胜,张万钦.气孔性状对楸树生长及早期选择的影响[J].河南农业大学学报,1996,30(1):65-71.
    [12]郭二果,王成,彭镇华,等.半干旱地区城市单位附属绿地绿化树种的选择一一以神东矿区为例[J].林业科学,2007,43(7):35-43.
    [13]侯湖平,张绍良,闫艳.基于RS,GIS的徐州城北矿区生态景观修复研究[J].中国矿业大学学报,2010,39(4):504-510.
    [14]胡景江,顾振瑜,文建雷,等.水分胁迫对元宝枫膜脂过氧化作用的影响[J].西北林学院学报,1999,14(2):7-11.
    [15]胡景江,文建雷,王姝清.土壤干旱对元宝枫渗透调节能力的影响[J].西北植物学报,2004,24(10):1832-1836.
    [16]黄福才,吴丽君.紫金山矿区裸地引种耐寒桉树试验研究[J].福建林业科技,2006,33(3):147-151.
    [17]黄铭洪,骆永明.矿区土地修复与生态恢复[J].土壤学报,2003(2):161-169.
    [18]荐圣淇,赵传燕,赵阳,等.基于遥感图像处理技术胡杨叶气孔密度的估算及其生态意义[J].生态学报,2011,31(17):4818-4825.
    [19]金花,王斌,戴思兰,等.北京引种7种常绿阔叶植物的抗寒适应性研究[J].湖南农业科学,2011,(01):121-125.
    [20]柯世省,杨敏文.水分胁迫对云锦杜鹃光合生理和光温响应的影响[J].园艺学报,2007,34(4):959-964.
    [21]孔东升.四翅滨藜在国内的引种表现及应用研究综述[J].西北林学院学报,2009,24(4):125-129.
    [22]孔红岭,孙明高,孙方行,等.盐、旱及其交叉胁迫对紫荆光合性能的影响[J].西北林学院学报 2007,22(5):42-44.
    [23]孔艳菊,孙明高,苗海霞,等.干旱胁迫下元宝枫生长性状及生理特性研究[J].西北林学院学报,2006,21(5):26-31.
    [24]李富平,杨福海,袁怀雨.矿区开发密集地区景观生态重建[M].北京:冶金工业出版社,2007.
    [25]李国庆,刘君慧.树木引种技术[M].北京:中国林业出版社,1982.
    [26]李吉跃,翟洪波.木本植物水力结构与抗旱性[J].应用生态学报,2000,11(2):301-305.
    [27]李婧婧,黄俊华,谢树成.植物蜡质及其与环境的关系[J].生态学报,2011,31(2):565-574.
    [28]李艳菊,贾彩霞,杨正礼.元宝枫扦插育苗研究∥王性炎编.元宝枫开发利用研究[M].西安:陕西科学技术出版社,1996:46-50.
    [29]李轶群.白云鄂博矿区草本植物引种及耐旱耐寒性研究[D].北京林业大学硕士学位论文.2011.
    [30]黎裕.作物抗旱鉴定方法与指标[J].干旱地区农业研究,1993,11(1):91-99.
    [31]刘家琼,蒲锦春,刘新民.我国沙漠中部地区主要不同生态类型植物水分关系和旱生结构的比较研究[J].植物学报,1987,29(6):662-673.
    [32]吕廷良,孙明高,宋尚文,等.盐、旱及其交叉胁迫对紫荆幼苗净光合速率及其叶绿素含量的影响[J].山东农业大学学报(自然科学版),2010,41(2):191-195.
    [33]陆佩玲,于强,贺庆棠.植物物候对气候变化的响应[J].生态学报,2006,26(3):923-929.
    [34]马洁,韩烈保,江涛.北京地区抗旱野生草本地被植物引种生态效益评价[J].北京林业大学学报,2006,28(增刊1):51-54.
    [35]马海慧.北京地区引种常绿阔叶植物主要限制因子的研究[D].北京林业大学硕士学位论文.2004.
    [36]马海慧,王斌,郑彩霞,等.光照对北京地区常绿阔叶植物越冬适应性的影响.北京林业大学学报,2011,33(增刊1):156-162.
    [37]庞云龙,王进鑫,田丽.水分胁迫及复水对元宝枫幼树生理特性的影响[J].西北农林科技大学学报(自然科学版),2008,36(6):92-96.
    [38]任利超.白云鄂博矿区13种木本植物引种及耐旱耐寒性研究[D].北京林业大学硕士学位论文.2011.
    [39]茹桃勤,李吉跃,张克勇,等.国外刺槐(Robinia pseudoacacia)研究[J],西北林学院学报,2005,20(3):102-107.
    [40]沙海峰,马海慧,王斌,等.北京引种常绿阔叶植物越冬过程中水分生理状况研究[J].北京林业大学学报,2011,33(增刊1):161-168.
    [41]束文圣,叶志鸿,张志权,等.华南铅锌尾矿生态恢复的理论与实践[J].生态学报,2003,23(8):1629-1639.
    [42]苏丹,孙国峰,张金政,等.水分胁迫对费菜和长药八宝生长及生物量分配的影响[J].园艺学报,2007,34(5):1317-1320.
    [43]孙殿富,刘耀.浅议白云铁矿环境地质问题与对策[J].科技信息,2011,1:355-355.
    [44]孙志勇,王维,季孔庶.6个杂交鹅掌楸无性系的抗旱性比较[J],南京林业大学学报:自然科学版,2009,33(2):39-42.
    [45]畦晓蕾,张宝玺,张振贤,等.不同品种辣椒幼苗光合特性及弱光耐受性的差异[J].园艺学报,2005,32(2):222-227.
    [46]隋益虎,钱春桃,陈劲枫,等.紫色辣椒夏季坐果率及其主要光合特性分析[J].园艺学报,2001,38(1):77-86.
    [47]孙景宽,张文辉,刘新成.干旱胁迫对沙枣和孩儿拳头的生理特性的影响[J].西北植物学报,2008,28(9):1868-1874.
    [48]陶晶,陈士刚,刘宝,等.抗逆性灌木树种——银莓的引种及抗性评价[J].东北师大学报(自然科学版),2006,38(1):87-90.
    [49]王碧霞,曾永海,王大勇,等.叶片气孔分布及生理特征对环境胁迫的响应[J].干旱地区农业研究,2010,28(2):122-130.
    [50]王连喜,陈怀亮,李琪,等.植物物候与气候研究进展[J].生态学报,2010,30(2):447-454.
    [51]王巍伟.新引进木槿品种的抗旱性评价[D].北京林业大学硕士学位论文.2009.
    [52]王霞,侯平,尹林克,等.土壤水分胁迫对柽柳体内膜保护酶及膜脂过氧化的影响[J],2002,19(3):17-20.
    [53]王艳荣,高明娟,IRoch矿区生态环境问题及其治理[J].能源技术与管理,2011,04(63):154-156.
    [54]王永格,丛日晨.常绿阔叶树种小果卫矛引种北京的抗寒性比较研究[J].北京农学院学报2007,22(4):13-16.
    [55]王永增,高海峰.新疆几种旱生植物的耐旱性评估[J].干旱区研究,1992,9(4):18-21.
    [56]王玉涛,李吉跃,刘平.七种藤本绿化植物叶解剖结构与抗旱性研究[J].北方园艺,2011,(08):111-114.
    [57]王玉健,胡林,张志祥等.α-三联噻吩致斜纹夜蛾SL细胞氧化损伤的研究[J].中国农业科学2007,40(7):1403-1409.
    [58]文建雷,刘志龙,王姝清.水分胁迫条件下元宝枫的光合特征及水分利用效率[J].西北林学院学报,2003,18(2):1-3.
    [59]吴征镒.中国自然地理-植物地理[M].北京:科学出版社,1983.
    [60]吴中伦.国外树种引种概论[M].北京:科学出版社,1983.
    [61]夏江宝,张光灿,刘刚,等.不同土壤水分条件下紫藤叶片生理参数的光响应[J].应用生态学报,2007,28(1):30-34.
    [62]肖文静,孙建磊,王绍辉,等.适度水分胁迫提高黄瓜幼苗光合作用弱光适应性[J]_园艺学报,2010,37(9):1439-1448.
    [63]谢孝福.植物引种学[M].北京:科学出版社,1994.
    [64]谢韵帆,谢碧玉,黄光卫.紫荆扦插育苗技术研究[J].湖南林业科技,2003,30(2):30-31.
    [65]徐炳成,山仑,李凤民.黄土丘陵半干旱区引种禾草柳枝稷的生物量与水分利用效率[J].生态学报,2005,25(9):2206-2213.
    [66]徐飞,郭卫华,徐伟红,等.刺槐幼苗形态、生物量分配和光合特性对水分胁迫的响应[J].北京林业大学学报,2010,32(1):24-30.
    [67]徐莲珍,蔡靖,姜在民,等.水分胁迫对3种苗木叶片渗透调节物质与保护酶活性的影响[J].西北林学院学报2008,23(2):12-16.
    [68]徐兴友,张风娟,王子华,等.燕山地区6种花灌木幼苗耐旱特性的研究[J].西北植物学报,2007,27(10):2080-2088.
    [69]许大全.光合作用效率[M]上海:上海科学技术出版社,2002.
    [70]许联瑛.抗寒梅花品种在北京城区园林绿地中的引种和示范应用试验[J].北京林业大学学报,2010,32(增刊2):70-76.
    [71]杨惠敏,张晓艳,王根轩,等.干旱条件下两种山黧豆气孔特性及种子ODAP,粗蛋白和淀粉积累的研究[J].兰州大学学报(自然科学版),2004,40(1):64-67.
    [72]杨惠敏,王根轩.干旱和CO2浓度升高对干旱区春小麦气孔密度及分布的影响[J].植物生态学报,2001,25(3):312-316.
    [73]杨开宝,孙宝胜,孙延芳,等.秦岭冷杉嫩枝扦插育苗技术研究[J].中南林业科技大学学报,201],31(11):75-78.
    [74]叶子飘,康华靖,陶月良,等.以“光合助手”计算光合参数的一些问题[J].植物生理学通讯,2010,46(1):67-70.
    [75]应叶青,郭璨,魏建芬,等.水分胁迫下毛竹幼苗光合及叶绿素荧光特性的响应[J].北京林业大学学报.2009,31(6):128-133.
    [76]虞德源.用生态相似原理打造“绿色之都”——对园林植物引种方法的探析[J].技术与市场:园林工程,2006(12):36-40.
    [77]袁涛,苏雪痕.彩叶木本花卉金叶莸的引种与栽培[J].园艺学报2004,31(1):112-114.
    [78]张明庆,裴晶晶,许晓波.北京地区大山樱引种的气候适应性研究[J].首都师范大学学报(自然科学版),2010,31(6):65-68.
    [79]张建国,李吉跃,沈国舫.树木耐旱特性及其机理研究[M].北京:中国林业出版社,2000.
    [80]张秦英,陈俊愉,魏淑秋,等.‘燕杏’梅栽培适生地和引种试验初步分析[J].北京林业大学学报,2007,29(21):155-159.
    [8l]张学霞,葛全胜,郑景云.北京地区气候变化和植被的关系—基于遥感数据和物候资料的分析[J].植物生态学报,2004,28(4):499-506.
    [82]赵雪梅,成仿云,唐立红,等.赤峰地区紫斑牡丹的引种与抗寒性研究[J].北京林业大学学报,2011,33(2):84-70.
    [83]赵银河,祝钰,孙明高,等.干旱和盐分交互胁迫对紫荆、皂角幼苗保护酶活性的影响[J].山东农业大学学报(自然科学版),2007,38(2):173-177.
    [84]赵勇,黄强,李建森,等.平顶山矿区大气污染与绿化状况相关分析[J].河南农业大学学报,2001,35(4):343-346.
    [85]郑玉龙,姜春玲,冯玉龙.植物的气孔发生[J].植物生理学通讯,2005,41(6):847-850.
    [86]中科院中国植被图编委会.中华人民共和国植被图(1:1000000)中国植被及其地理格局[M].北京:地质出版社,2007.
    [87]周杰,姜良宝,陈俊愉,等.抗寒棕榈繁殖的研究[J].安徽农业科学,2009,37(21):9964-9966.
    [88]朱成刚,陈亚宁,李卫红,等.干旱胁迫对胡杨PSⅡ光化学效率和激能耗散的影响[J].植物学报,2011,46(4):413-424.
    [89]朱万泽,王金锡,薛建辉.台湾桤木引种气候生态适生区分析[J].热带亚热带植物学报,2005,13(1):59-64.
    [90]竺可桢.物候学[M].上海:科学普及出版社,1963.
    [91]邹琦,植物生理生化实验指导[M].中国农业出版社,1995:15-16。
    [92]Alvarez S, Navarro A, Banon S, et al. Regulated deficit irrigation in potted Dianthus plants: Effects of severe and moderate water stress on growth and physiological responses [J]. Scientia Horticulturae,2009,122 (4):579-585.
    [93]Bacelar E A, Moutinho-Pereira J M, Goncalves B C et al. Changes in growth, gas exchange, xylem hydraulic properties and water use efficiency of three olive cultivars under contrasting water availability regimes [J]. Environmental And Experimental Botany,2007,60(2):183-192.
    [94]Bates L M, Hall A E. Stomatal closure with soil water depletion not associated with changes in bulk leaf water status [J]. Oecologia,1981,50:62-65.
    [95]Bor M, Ozdemir F, Turkan I. The effect of salt stress on lipid peroxidation, antioxidative in leaves of sugar beet Beta vulgaris L. and wild beet Beta maritima L [J]. Plant Science, 2003,164:77-84.
    [96]Bouslama M, Schapaugh W T.Stress tolerance in soybeans.Ⅰ:Evaluation of three screening techniques for heat and drought tolerance [J]. Crop Science,1983,24(5):933-937.
    [97]Cameron K D, Teece M A, Smart L B. Increased accumulation of cuticular wax and expression of lipid transfer protein in response to periodic drying events in leaves of tree tobacco [J]. Plant Physiology,2006,140(1):176-183.
    [98]Cameron R W F, Harrison-Murray R S, Scott M A. The use of controlled water stress to manipulate growth of container-grown Rhododendron cv.Hoppy [J]. J. Hort. Sci. Biotechnol, 1999,74:161-169.
    [99]Chmielewski F M, Rotzer T. Response of tree phenology to climate change across Europe [J]. Agricultural and Forest Meteorology,2001,108(2):101-112.
    [100]Crombie D S, Tippett J T, Hill T C. Dawn water potential and root depth of trees and understorey species in southwestern Australia [J]. Aust. J. Bot,1988,36:621-631.
    [101]Davies W J, Wilkinson S, Loveys B R. Stomatal control by chemical signalling and the exploitation of this mechanism to increase water use efficiency in agriculture [J]. New Phytol, 2002,153:449-460.
    [102]Erice G, Irigoyen J J, Sanchez-Diaz M, et al. Effect of drought, elevated CO2 and temperature on accumulation of N and vegetative storage proteins (VSP) in taproot of nodulated alfalfa before and after cutting [J].Plant Science,2007,172(5):903-912.
    [103]Erice G, Louahlia S, Irigoyen J J, et al. Biomass partitioning, morphology and water status of four alfalfa genotypes submitted to progressive drought and subsequent recovery [J]. Journal of Plant Phsiology,2010,16:114-120.
    [104]Fernandez J A. Balenzategui L, Banon S, et al. Induction of drought tolerance by paclobutrazol and irrigation deficit in Phillyrea angustifolia during the nursery period [J]. Scientia Horticulturae 2006,107(3):277-283.
    [105]Filcheva E, Noustorova M, Gentcheva-Kostadinova S. Organic accumulation and microbial action in surface coal mine spoils, Pernik, Bulgaria [J]. Ecological Engineering, 2000,15(1):12-15.
    [106]Fort C, Fauveau M L, Muller F, et al. Stomatal conductance, growth and root signaling in young oak seedlings subjected to partial soil drying [J]. Tree Physiol,1997,17:281-289.
    [107]Garcia-Navarro M C,Evans R Y, Montserrat R S. Estimation of relative water use among ornamental landscape species [J]. Scientia Horticulturae,2004,99(2):163-174.
    [108]Geng Y P, Pan X Y, Xu C Y, et al. Phenotypic plasticity of invasive Alternanthera philoxeroides in relation to different water availability, compared to its native congener [J]. Acta Oecologica, 2006,30(3):380-385.
    [109]Gollan T, Passioura J B, Munns R. Soil water status affects the stomatal conductance of fully turgid wheat and sunflower leaves [J]. Aust J Plant Physiol,1986,13:459-464.
    [110]Gollan T, Turner N C, Schulze E D. The responses of stomata and leaf gas exchange to vapour pressure deficits and soil water content Ⅲ. In the sclerophyllous woody species Nerium oleander [J]. Oecologia,1985,65:356-362.
    [111]Gray J E, Hetherington A M. Plant development:YODA the stomatal switch. Current Biology, 2004,14(12):488-490.
    [112]Hamerlynck E P, Huxman T E. Ecophysiology of two Sonoran Desert evergreen shrubs during extreme drought [J]. Journal of Arid Environments,2009,73,582-585.
    [113]Hasegawa P M, Bressan R A, Zhu J K, et al. Plant cellular and molecular responses to high salinity [J]. Annu Rev Plant Physiol Plant Mol Biol,2000,51:463-499.
    [114]Hassine A B, Bouzid S, Lutts S. Does habitat of Atriplex halimus L. affect plant strategy for osmotic adjustment [J]. Acta Physiologiae Plantarum,2010, (32):325-331.
    [115]He Y M, Xiao H D, Wang H Z, et al. Effect of silicon on chilling-induced changes of solutes, antioxidants, and memberane stability in seashore paspalum turfgrass [J]. Acta Physiol Plant, 2010,32:487-494.
    [116]Henckel P A. Physiology of plants under drought [J]. Annu.Rev.Plant Physiol,1964,15:363-386.
    [117]Hong Z L, Lakkineni K, Zhang Z M, et al. Removal of feedback inhibition of Δ 1-pyrroling-5-carboxylate synthase results in increased proline accumulation and protection of plants from osmotic stress[J]. Plant Physiology,2000,122:1129-1136.
    [118]Hsiao T C. Plant responses to water stress [J]. Annual review of plant physiology,1973,24: 519-570.
    [119]Huang M, Guo Z. Responses of antioxidative system to chilling stress in two rice cultivars differing in sensitivity [J]. Biol Plant,2005,49:81-84.
    [120]IPCC. Intergovernmental panel on climate change [EB/OL]. [2007-11-21]. http://www.ipcc.ch/ipccreports/ar4-wg2.htm.
    [121]Jaleel C A, Manivannan P, Sankar B, et al. Induction of drought stress tolerance by ketoconazole in Catharanthus roseus is mediated by enhanced antioxidant potentials and secondary metabolite accumulation [J]. Colloids And Surfaces B-Biointerfaces,2007,60 (2):201-206.
    [122]King J S, Albaugh T J, Allen H L, et al. Below-ground carbon input to soil is controlled by nutrient availability and fine root dynamics in loblolly pine [J]. New Phytologist,2002, 154:389-398.
    [123]Kjelgren R, Rupp L, Kilgren D. Water conservation in urban landscapes [J]. HortScience,2000, 35:1037-1043.
    [124]Kjelgren R, Wang L X, Joyce D. Water Deficit Stress Responses of Three Native Australian Ornamental Herbaceous Wildflower Species for Water-wise Landscapes [J]. HortScience, 2009,44 (5):1358-1365.
    [125]Kozlowski T T, Pallardy S G. Physiology of woody plants,2nd edn. Academic Press, San Diego. 1997.
    [126]Kramer P J, Boyer J S. Water relations of plants and soils.Academic, San Diego.1995.
    [127]Larcher W. Physiological plant ecology:ecophysiology and stress physiology of functional groups[M]. Springer, Berlin.2003.
    [128]Lenzi A, Pittas L, Martinelli T, et al. Response to water stress of some oleander cultivars suitable for pot plant production [J]. Scientia Horticulturae,2009,122 (3):426-431.
    [129]Lin K H, Tsou C C, Hwang S Y, et al. Paclobutrazol pre-treatment enhanced flooding tolerance of sweet potato [J]. Journal of Plant Physiology,2006,163(7):750-760.
    [130]Liu F M, Wu Y Q, Su J P, et al. Effects of water stress on Haloxylon ammodendron seedlings in the desert region of Heihe inland river watershed, Gansu Province, China [J]. Journal of Forestry Research,2003,14 (3):197-201.
    [131]Liu F. Stiitzel H. Biomass partitioning, specific leaf area, and water use efficiency of vegetable amaranth (Amaranthus spp.) in response to drought stress [J].Scientia horticulturae, 2004,102(1):15-27.
    [132]Marcelis L F M, Heuvelink E, Goudriaan J. Modelling biomass production and yield of horticultural crops:a review [J]. Scientia Horticulturae,1998,74:83-111.
    [133]Martinez J P, Lutts S, Schanck A, et al. Is osmotic adjustment required for water stress resistance in the Mediterranean shrub Atriplex halimus L.? [J]. Journal of Plant Physiology, 2004,161 (9):1041-1051.
    [134]Michel M, Brigitte K, Pascal R, et al. Tocotrienols, the Unsaturated Forms of Vitamin E, Can Function as Antioxidants and Lipid Protectors in Tobacco Leaves [J]. Plant Physiology, 2008,147:764-778.
    [135]Munne-Bosch S, Penuelas J. Photo and antioxidative protection, and a role for salicylic acid during drought and recovery in field-grown Phillyrea angustifolia plants [J]. Planta, 2003,217:758-766.
    [136]Niu S L, Jiang G M, Gao L M, et al. Comparison of photosynthesis and water use efficiency between three plant functional types in Hunshandak sandland [J]. Acta Ecologica Sinica 2005,25 (4):699-704.
    [137]Oliveira A F M, Meirelles S T, Salatino A. Epicuticular waxes from caatingaand cerrado species and their efficiency against water loss [J]. Anais da Academia Brasileira de Ciencias,2003,75(4):431-439.
    [138]Oxborough K, Baker N R. Resolving chlorophyll a fluorescence images of photosynthetic efficiency into photochemical and non-photochemical components-calculation of qP and Fv-/Fm-; without measuring Fo [J]. Photosynth research.1997,54:135-142.
    [139]Premachandra G S, Saneoka H, Fujiata K, et al. Leaf water relations, osmotic adjustment, cell membrane stability, epicuticular wax load and growth as affected by increasing water deficits in sorghum[J]. Journal of Experimental Botany,1992,43(12):1569-1576.
    [140]Premachandra G S, Saneoka H, Kanaya M, et al. Cell Membrane Stability and Leaf Surface Wax Content as Affected by Increasing Water Deficits in Maize [J]. Journal of Experimental Botany, 1991,42(2):167-171.
    [141]Prochazkova D, Sairam R K, Srivastava G C, et al. Oxidative stress and antioxidant activity as the basis of senescence in maize leaves [J]. Plant Science,2001,161 (7):765-771.
    [142]Radyukina N L, Kartashov A V, Ivanov Y V, et al. Functioning of defense systems in halophytes and glycophytes under progressing salinity [J]. Russian Journal of Plant Physiology,2007,54(6): 806-815.
    [143]Reich P B, Ellsworth D S, Walters M B, et al. Generality of leaf trait relationships:A test across six biomes [J]. Ecology,1999,80(6):1955-1969.
    [144]Riederer M, Schreiber L. Protecting against water loss:analysis of the barrier properties of plant cuticles [J]. Journal of Experimental Botany,2001,52(363):2023-2032.
    [145]Ristic Z, Jenks M A.Leaf cuticle and water loss in maize lines differing in dehydration avoidance [J]. Journal of Plant Physiology,2002,159(6):645-651.
    [146]Russin J S, Guo B Z, Tubajika K M. Comparison of kernel wax from corn genotypes resistant or susceptible to Aspergillus flavus [J]. Phytopathol,1997,87:529-533.
    [147]Saliendra N Z, Sperry J S, Comstock J P. Influence of leaf water status on stomatal response to humidity, hydraulic conductance, and soil drought in Betula occidentalis [J]. Planta,1995, 196:357-366.
    [148]Sanchez F J, Manzanares M, de Andres E F, et al. Residual transpiration rate, epicuticular wax load and leaf colour of pea plants in drought conditions. Influence on harvest index and canopy temperature [J].European Journal of Agronomy,2001,15(1):57-70.
    [149]Sanchez-Blanco M J, Ferrandez T, Navarro A, et al. Effects of irrigation and air humidity preconditioning on water relations, growth and survival of Rosmarinus officinalis plants during and after transplanting [J]. Plant Physiol,2004,161:1133-1142.
    [150]Sanchez-Blanco M J, Rodriguez P, Morales M A, et al. Comparative growth and water relations of Cistus albidus and Cistus monspeliensis plants during water deficit conditions and recovery [J]. Plant Sci,2002,162(1):107-113.
    [151]Saneoka H, Ogata S. Relationship between water use efficiency and cuticular wax deposition in warm season forage crops grown under water deficit conditions [J].Soil science and plant nutrition,1987,33(3),439-448.
    [152]Schreiber U, Bilger W, Schliwa U. Continuous recording of photochemical and non-photochemical chlorophyll fluorescence quenching with a new type of modulation fluorometer [J]. Photosynthesis Research,1986,10:51-62.
    [153]Shuyong Z, Jiangbao X, Zefu Z, et al. Photosynthesis responses to various soil moisture in leaves of Wisteria sinensis [J]. Journal of Forestry Research,2007,18(3):217-220.
    [154]Sinclair T R, Holbrook N M, Zwieniecki M A. Daily transpiration rates of woody species on drying soil [J]. Tree Physiol,2005,25(11):1469-1472.
    [155]Slooten L,Capiau K, Van Camp W, et al. Factors affecting the enhancement of oxidative stress tolerance in transgenic tobacco over expressing manganese superoxide dismutase in the chloroplasts [J]. Plant Physiol,1995,107(3):373-380.
    [156]Starman T, Lombardini L. Growth, gas exchange, and chlorophyll fluorescence of four ornamental herbaceous perennials during water deficit conditions [J]. Journal of the American Society for Horticultural Science,2006,131(4):469-475.
    [157]Subbaro G B, Johansen C, Slinkard A E, et al. Strategies for improving drought resistance in grain legumes [J]. Crit. Rev. Plant Sci,1995,14:469-523.
    [158]Tezara W, Mitchelli V J, Driscoll S D, et al. Water stress inhibits plant photosynthesis by decreasing coupling factor and ATP [J]. Nature,1999,1401:914-917.
    [159]Ticha I. Photosynthetic characteristics during ontogenesis of leaves 7:stomata density and size[J]. Photosynthetica,1982,16:375-471.
    [160]Turner N C, Schulze E D, Gollan T. The responses of stomata and leaf gas exchange to vapour pressure deficits and soil water content 11. In the mesophytic herbaceous species Helianthus annuus [J]. Oecologia 1985,65:348-355.
    [161]Turner N C. Further progress in crop water relations. Advances in Agronomy[J], 1996,58:293-338.
    [162]Vogg G, Fischer S, Leide J, et al. Tomato fruit cuticular waxes and their effects on transpiration barrier properties:functional characterization of a mutant deficient in a very-long-chain fatty acid β-ketoacyl-CoA synthase [J].Journal of Experimental Botany,2004,55(401):1401-1410.
    [163]Wang F Z, Wang Q B, Kwon S Y, et al. Enhanced drought tolerance of transgenic rice plants expressing a pea manganese superoxide dismutase [J]. Plant Physiol,2005,162:465-472
    [164]Whitehead D, Livingston N J, Kelliher P M, et al. Response of transpiration and photosynthesis to a transient change in illuminated foliage area for a Pinus radiata D Don tree [J]. Plant Cell Environment,1996,19:949-957.
    [165]Wu F Z, Bao W K, Li F L, et al. Effects of drought stress and N supply on the growth, biomass partitioning and water-use efficiency of Sophora davidii seedlings [J]. Environmental and Experimental Botany,2008,63(1-3):248-55.
    [166]Yan M J, Yamanaka N, Yamamoto F, et al. Responses of leaf gas exchange, water relations, and water consumption in seedlings of four semiarid tree species to soil drying [J]. Acta Physiologiae Plantarum,2010,32 (1):183-189.
    [167]Zhang J H, Schurr U, Davies W J. Control of stomatal behaviour by abscisic acid which apparently originates in the roots [J]. Journal of experimental botany,1987,38(7):1174-1181.
    [168]Zhang X, Wu N, Li C. Physiological and growth responses of Populus davidiana ecotypes to different soil water contents[J]. Journal of Arid Environments,2005,60(4):567-579.
    [169]Zheng Y H, Xu X B, Wang M Y, et al. Responses of salt-tolerant and intolerant wheat genotypes to sodium chloride:Photosynthesis, antioxidants activities, and yield [J]. Photosynthetica, 2009,47(1):87-94.
    [170]Zhu J K. Salt and drought stress signal transduction in plants [J]. Annual review of plant biology,2002,53:247-273.