分子印迹技术及其在三唑类杀菌剂残留分析中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
分子印迹是指制备对某一特定分子(模板分子或印迹分子)具有特异选择性的分子印迹聚合物的过程。分子印迹聚合物具有亲和性好、稳定性好、抗干扰性强、选择性高、使用寿命长以及应用范围广等优点,在药物、生化、环境以及食品安全分析方面得到迅猛发展。
     三唑类杀菌剂是指含有1,2,4-三唑环的化合物,由于其具有低毒、内吸性强、持效期长等优点,被广泛的应用于水果、蔬菜、稻谷等病虫害的防治。随着三唑类农药在水果、蔬菜中的广泛应用,易导致其在农产品和环境中的高残留问题,构成了对食品安全和人类生命健康的重大隐患。因此,对三唑类药物的分离与检测是食品安全与制药生产中质量的控制关键。本论文对三唑酮分子印迹聚合物体系进行了研究,具体内容如下:
     1、本文首先采用Hyperchem8.0分子模拟软件,通过半经验算法和从头算法优化,模拟了模板分子三唑酮和4种功能单体的最低能量构象,然后结合Mulliken电荷,分析了三唑酮与功能单体之间的相互作用并计算了相应的结合能,以此表征二者之间相互作用的强弱并指导单体的选择。运用Gaussion03软件将预组装体系置于溶剂模型(PCM)中,计算了模板分子和功能单体在介电常数不同溶剂中的溶剂化能。通过计算可知三氟甲基丙烯酸与三唑酮形成的聚合物稳定性最强,丙烯酸次之,甲基丙烯酸再次之,丙烯酰胺最差。模板分子和功能单体在溶剂中的溶剂化效应与溶剂的介电常数的高低成相关性,在非极性溶剂中溶剂化能最弱。
     2、以三唑酮为模板分子,三氟甲基丙烯酸为功能单体,乙二醇二甲基丙烯酸酯为交联剂通过本体聚合的方法制备了分子印迹聚合物(MIP),并结合紫外光谱法研究了该印迹聚合物的结合机理和识别特性。紫外光谱研究证明三唑酮与单体之间可以通过氢键作用形成1∶2型配合物。采用Scatchard模型和Langmuir-Freundlich模型分析表明,以甲基丙烯酸为功能单体的印迹聚合物通过氢键作用可以形成两类结合位点,并用多点结合模型求算了两类不同结合位点的离解常数。
     3、以合成的三唑酮分子印迹聚合物为填料,制备了分子印迹固相萃取柱,对上样溶液、淋洗溶液、洗脱溶剂进行优化。固相萃取实验表明,表明当MISPE柱依次用20%的乙腈-水(V/V)上样、淋洗,5mL乙腈洗脱时,20种三唑类农药在分子印迹固相萃取上的同收率均达到85%以上。利用分子印迹固相萃取法对不同食品样品基体进行了前处理,并与ENVI-Carb/SPE小柱在回收率和基体效应上进行对比研究。结果显示:在三个不同加标水平下,三唑类农药的回收率在81.0%~109.7%之间,相对标准偏差小于13%,基质效应在88.8%~126.0%,与ENVI-Carb/SPE小柱相比,能更有效的减弱基体效应。
Molecularly imprinted polymers are specific high polymer material that have the selective binding ability to the particular molecules. MIP has good affinity, good stability, powfull anti-interference, high selectivity, long service life as well as the advantages of wide range of applications. MIP has got rapid development in medicine, biochemistry, environmental and food safety analysis.
     Triazoles fungicide is refers to the containing1,2,4-triazole ring compounds. It has been widely used in fruit, vegetables because it has low toxicity, strong systemic and long effective period. Triazoles fungicide is widely applied in fruits, vegetables, which easily lead to its high residues in agricultural products and environment. This constitutes the major hidden dangers of food safety and human health. Therefore, separation and detection of triazole drugs is a key in food safety and pharmaceutical production quality control. The triadimefon molecules is studied in this paper. The main contents and conclusions are as follows:
     l.The minimum energy conformations of template and4functional monomers were simulated by a semi-empirical method(PM3) and ab inito algorithm methods with Hyperchem8.0software. The Mulliken charges were used to analys possible interactions between templates and functional monomers and to calculate their binding energies. So as to characterize the strength of the interaction between them and guide the choice of monomer. Calculating the solvent energy of template and4functional monomers in the solvents with different dielectric constants by putting the pre-assembly system into PCM. The results showed that the stability of polymer formed by TFMAA and triadimefon was the most powerful,the second was AA,and then MAA,AM was the last.The salvation energies of template and functional monomers were related to their dielectric constants. The salvation energy in polar solvents is greater than that in non-polar solvents.
     2.Molecularly imprinted polymers(MIPs) with high selectivity to triazoles residues were prepared using triadimefon as template,trifluoromethyl acrylic acid (TFMAA) as functional monomer,ethylene glycol dimethacrylate (EGDMA) as cross-linker. The synthesized MIPs was analysed using ultraviolet spectrum. It was showed that the complex ratio between TFMAA and triazolone was1:2. Scatchard and Langmuir-Freundlich analysis indicated that the complex can form two classes of binding sites through hydrogen bonding interaction. The dissociation constants were calculated respectively.
     3.The MIPs was applied to solid phase extraction (SPE) of triazoles residues. The sample solution, leaching solution and elution solvent were optimized. The recovery of20triazoles was above85%when the following procedure was applied to MIPs cartridge:loading and cleaning with acetonitrile-water(20:80,V/V) respectively, and eluting with5mL acetonitrile. Under optimized MISPE conditions, recoveries of analytes were in the range of81.0~109.7%with satisfactory precision (RSD%lower than13%) and the matrix effect was in the range of88.8%-126.0%. Compared with ENVI-Carb/SPE columns, MISPE exhibited selective binding properties for triazoles and the matrix effect was significantly decreased.
引文
[1]杨吉春,吴峤,刘若霖,等.杀菌剂开发的新进展[J].农药,2008,47(6):402~405
    [2]曹克广,杨夕强.三唑类化合物杀菌剂的发展现状与展望[J].精细石油化工2007,24(6):82~86
    [3]周子燕,李昌春,高同春,等.三唑类杀菌剂的研究进展[J].安徽农业科学,2008,36(27):11842~11844
    [4]刘传德,王培松,王继秋,等.三唑类杀菌剂及其在小麦病害防治中的应用研究进展[J].安徽农业科学,2005,36(1):157~160
    [5]李继革, 王玉飞, 施家威,等.固相萃取-气相色谱-串联质谱法测定水果中11种三唑类杀菌剂[J].色谱,2012,30(3):262~266
    [6]王菲,李彤, 马辰.超高效液相色谱-串联质谱法测定中药材中三唑类杀菌剂及三嗪类除草剂的残留量[J].色谱,2013,31(3):191~199
    [7]Schermerhorn PG,Golden PE,Krynitsky AJ,et al.Determination of 22 triazole compounds including parent fungicides and metabolites in apples, peaches, flour, and water by liquid chromatography/tandem mass spectrometry[J] Journal of AOAC International,2005,88(5):1491~1502.
    [8]李娜, 张玉婷,李辉,等.超高效液相色谱-串联质谱法测定6种中药材中110种农药残留[J].农药学学报,2012,14(6):619~628
    [9]张伟国,高金山,陈姗姗,等.凝胶渗透色谱-气相色谱-质谱测定玉米中3种农药的残留[J].分析大学,2005,30(10):1442~1444
    [10]Zambonin C G, Cilenti A, Palmisano F. Solid-phase microextraction and gas chromatography-mass spectrometry for the rapid screening of triazole residues in wine and strawberries [J]. Journal of chromatography A,2002,967(2):255~260.
    [11]Sannino A. Evaluation of a method based on liquid chromatography/el ectrospray tandem mass spectrometry for analyzing eight triazolic and pyrimidine fungicides in extracts of processed fruits and vegetables [J]. Journal of Aoac International,2004, 87(4):991-996
    [12]Juan-Garcia A, Manes J, Font G, et al. Evaluation of solid-phase extraction and stir-bar sorptive extraction for the determination of fungicide residues at low-mu g kg(-1) levels in grapes by liquid chromatography-mass spectrometry[J]. Journal of Chromatography A,2004,1050(2):119~127.
    [13]Piletska E V, Burns R, Terry L A, et al. Application of a Molecularly Imprinted Polymer for the Extraction of Kukoamine A from Potato Peels[J]. Journal of Agricultural and Food Chemistry,2012,60(1):95~99
    [14]Zhou W H, Guo X C, Zhao H Q,et al. Molecularly imprinted polymer for selective extraction of domoic acid from seafood coupled with high-performance liquid chromatographic determination[J]. Talanta,2011,84(3):777~782.
    [15]Caro E, Marce R M, Borrull, F. et al. Application of molecularly imprinted polymers to solid-phase extraction of compounds from environmental and biological samples[J]. Trac-Trends in Analytical Chemistry,2006,25(2):143~154.
    [16]He C Y, Long Y Y, Pan J L, et al. Application of molecularly imprinted polymers to solid-phase extraction of analytes from real samples[J]. Journal of Biochemical and Biophysical Methods,2007,70(2):133~150.
    [17]Wulff G, Vietmeier J. Enzyme-analogue built polymers. XXV:Synthesis of macroporous copolymers from a-amino acid based vinyl compounds[J]. Die Makromolekulare Chemie,1989,190(7):1717~1726.
    [18]Wulff G, Vesper W, Grobe-Einsler R. Sarhan A. Enzyme-analog built polymers, The synthesis of polymers containing chiral cavities and theft use for the resolution of racemates [J]. Makromolekulare Chemic,1977,178(10):2799~2816
    [19]Wulff G. Molecular imprinting in cross-linked materials with the aid of molecular templates—a way towards artificial antibodies[J]. Angewandte Chemie International Edition in English,1995,34(17):1812~1832.
    [20]Andersson B, Sellergren, Mosbach K. Imprinting of amino acid derive-atives in macroporous polymers [J]. Tertrahedron Letters,1984,25:5211~5218
    [21]Arshady R, Mosbach K. Synthesis of substrate~selective polymers by host-guest polymerization[J]. Die Makromolekulare Chemie,1981,182(2):687~692.
    [22]Dickert F L, Besenbock H, Tortschanoff M. Molecular imprinting through van der Waals interactions:fluorescence detection of PAHs in water[J]. Advanced Materials,1998,10(2):149~151.
    [23]Andersson L I, O'shannessy D J', Masbach K.Molecular recognition in synthetic polymers:Preparation of chiral stationary phases by molecular imprinting of amino acid amides [J]. Journal of Chromatography,1990,513:313~322
    [24]Shea K J, Spivak D A, Sellergren B. Polymer complements to nucleotide bases. Selective binding of adenine derivatives to imprinted polymers[J]. Journal of the American Chemical Society,1993,115(8):3368-3369.
    [25]Vlatakis G, Andersson LI, Muller Masbach K. Drug assay using anti-body mimics made by molecular imprinting [J].Nature,1993,361:645-649
    [26]Dunkin I R, Lenfeld J, Sherrington D C. Molecular imprinting of flat polycondensed aromatic molecules in macroporous polymers[J]. Polymer,1993,34(1): 77~84.
    [27]Andersson L I, Sellergren B, Masbach K. Studies on guest selective molecular recognition on an octaclecyi silyated silicon surface using ellipsometry [J].Tetrahedron Letters,1988,29:5437~5441
    [28]Whitcombe M J, Rodriguez M E, Villar P, et al. A new method for the introduction of recognition site functionality into polymers prepared by molecular imprinting:synthesis and characterization of polymeric receptors for cholesterol [J]. Journal of the American Chemical Society,1995,117(27):7105~7111.
    [29]Cormack, P. A. G, Elorza, A. Z. Molecularly imprinted polymers:synthesis and characterisation[J]. Journal of Chromatography B-Analytical Technologies in the Biomedical and Life Sciences,2004,804(1):173~182.
    [30]Meier F, Schott B, Riedel D. et al. Computational and experimental study on the influence of the porogen on the selectivity of 4-nitrophenol molecularly imprinted polymers[J]. Analytica Chimica Acta,2012,744:68~74.
    [31]戴晴,王妍,包学伟,等.苏丹红Ⅰ分子印迹聚合物的制备及其性能评价[J]色谱,2009,27(6):764~768
    [32]Alexander C, Andersson H S, Andersson L I, et al. Molecular imprinting science and technology:a survey of the literature for the years up to and including 2003[J]. Journal of molecular recognition,2006,19(2):106~180.
    [33]Souvignet I, Olesik S V. Liquid chromatography at the critical condition using enhanced-fluidity liquid mobile phases[J]. Analytical Chemistry,1997,69(1):66~71.
    [34]Henry O Y F, Piletsky S A, Cullen D C. Fabrication of molecularly imprinted polymer microarray on a chip by mid-infrared laser pulse initiated polymerisation[J]. Biosensors and Bioelectronics,2008,23(12):1769-1775.
    [35]De Smet D, Monbaliu S, Dubruel P, et al. Synthesis and application of a T-2 toxin imprinted polymer[J]. Journal of Chromatography A,2010,1217(17): 2879~2886.
    [36]Bunte G, Hurttlen J, Pontius H, et al. Gas phase detection of explosives such as 2, 4,6-trinitrotoluene by molecularly imprinted polymers[J]. Analytica chimica acta, 2007,591(1):49~56.
    [37]Milojkovic S S, Kostoski D, Comor J J, et al. Radiation induced synthesis of molecularly imprinted polymers[J]. Polymer,1997,38(11):2853~2855.
    [38]张静,贺浪冲,傅强.士的宁分子印迹整体柱的制备[J].分析化学研究简报,2005,33(1):113~116
    [39]王进防,周良模,孟子晖.复合碱性功能单体分子烙印手性同定相[J].化学学报,1999,57(10):1147~1151.
    [40]Kempe M, Mosbach K. Receptor binding mimetics:A novel molecularly imprinted polymer[J]. Tetrahedron Letters,1995,36(20):3563~3566.
    [41]Surugiu I, Svitel J, Ye L, et al. Development of a flow injection capillary chemiluminescent ELISA using an imprinted polymer instead of the antibody[J]. Analytical chemistry,2001,73(17):4388~4392.
    [42]张航航,黄小波,杨春华张静,贺浪冲,傅强分子印迹聚合物制备新进展.湖南农业科学2007,(6),59~60.
    [43]Yoshikawa M, Yonetani K. Molecularly imprinted polymeric membranes with oligopeptide tweezers for optical resolution[J]. Desalination,2002,149(1):287~292.
    [44]Yoshikawa M, Izumi J, Kitao T, et al. Molecularly imprinted polymeric membranes containing DIDE derivatives for optical resolution of amino acids[J]. Macromolecules,1996,29(25):8197~8203.
    [45]Kobayashi T, Wang HY, Fujii N. Molecular imprint membranes of polyacrylonitrile copolymers with different acrylic acid segments. Analytica Chimica Acta,1998,365(1-3):81~88.
    [46]Liu Y, Hoshina K, Haginaka J. Monodispersed, molecularly imprinted polymers for cinchonidine by precipitation polymerization[J]. Talanta,2010,80(5):1713~1718.
    [47Daniel S, Prabhakara Rao P, Prasada Rao T. Investigation of different polymerization methods on the analytical performance of palladium (Ⅱ) ion imprinted polymer materials[J]. Analytica chimica acta,2005,536(1):197~206.
    [48]Kirk C, Jensen M, Kjaer C N, et al. Aqueous batch rebinding and selectivity studies on sucrose imprinted polymers[J]. Biosensors and Bioelectronics,2009,25(3): 623~628.
    [49]Tsai H A, Syu M J. Synthesis and characterization of creatinine imprinted poly (4-vinylpyridine- co-divinylbenzene) as a specific recognition receptor[J]. Analytica chimica acta,2005,539(1):107~116.
    [50]Urraca J L, Carbajo M C, Torralvo M J, et al. Effect of the template and functional monomer on the textural properties of molecularly imprinted polymers[J]. Biosensors and Bioelectronics,2008,24(1):155~161.
    [51]Cormack P A G, Elorza A Z. Molecularly imprinted polymers:synthesis and characterisation[J]. Journal of chromatography B,2004,804(1):173~182.
    [52]姜忠义,吴洪.分子印迹技术(第一版)[M].北京:化学工业出版社,2003.17~22
    [53]Xia Y, Guo T, Song M, et al. Adsorption dynamics and thermodynamics of Hb on the Hb-imprinted polymer beads[J]. Reactive and Functional Polymers,2008,68(1): 63~69.
    [54]Whitcombe M J, Rodriguez M E, Villar P, et al. A new method for the introduction of recognition site functionality into polymers prepared by molecular imprinting:synthesis and characterization of polymeric receptors for cholesterol [J]. Journal of the American Chemical Society,1995,117(27):7105~7111.
    [55]Umpleby Ⅱ R J, Baxter S C, Rampey A M, et al. Characterization of the heterogeneous binding site affinity distributions in molecularly imprinted polymers[J]. Journal of Chromatography B,2004,804(1):141~149
    [56]Umpleby R J, Baxter S C, Chen Y, et al. Characterization of molecularly imprinted polymers with the Langmuir-Freundlich isotherm[J]. Analytical chemistry, 2001,73(19):4584~4591.
    [57]Garcia-Calzon J A, Diaz-Garcia M E. Characterization of binding sites in molecularly imprinted polymers[J]. Sensors and Actuators B:Chemical,2007,123(2): 1180~1194.
    [58]Umpleby R J II,Bode M,Shimizu K D. Measurement of the continuous distribution of binding sites in molecularly imprinted polymers.Analyst,2000, 125(7):1261~1265.
    [59]Umpleby R J, Baxter S C, Bode M,, Berch J K, Shah R N, Shimizu K D. Application of the Freundlich adsorption isotherm in the characterization of molecularly imprinted polymers. Analytica Chimica Aeta,2001,435(1):35-42.
    [60]Umpleby ⅡR J, Baxter S C, Rampey A M, et al. Characterization of the heterogeneous binding site affinity distributions in molecularly imprinted polymers[J]. Journal of Chromatography B,2004,804(1):141~149.
    [61]Rampey A M, Umpleby R J, Rushton G T, et al. Characterization of the imprint effect and the influence of imprinting conditions on affinity, capacity, and heterogeneity in molecularly imprinted polymers using the Freundlich isotherm-affinity distribution analysis[J]. Analytical chemistry,2004,76(4): 1123~1133.
    [62]薛敏,王安,王瑜, 等.分子印迹固相萃取技术检测江水、尿液及牛奶中雌激素残留[J].分析化学,2011,39(6):793~798
    [63]黄怡,张青杰,刘敏,等.分子印迹固相萃取-高效液相色谱法测定饲料中莱克多巴胺[J].色谱,2012,30(1):56~61
    [64]王荣艳,王培龙,王静,等.分子印迹技术的研究的新进展及应用[J].现代科学仪器,2008,01:11~16
    [65]王颜红,霍佳平,张红,等.阿特拉津分子印迹固相萃取柱的制备及应用[J].分析化学,2010,38(5):678~682
    [66]刘英,王芳,谭天伟.分子模拟在分子印迹技术中的应用[J]..化工学报,2006,57,(10):2257~2262
    [67]熊汉国,王二蕾.稽大圣分子模拟在分子印迹技术中的应用研究[J].中国肉类食品综合研究中心,2009,11:(129)52~54
    [68]董文国,闫明,吴国是,等.溶剂对分子印迹聚合物分子识别能力的影响:实验研究与计算量子化学分析[J].化工学报,2005,56(7):1247~1252
    [69]武利庆,王晶..分子印迹聚合物预组装体系计算机模拟[J].计算机与应用化学,2007,24(8):1009~1013
    [70]Dong, W. G., Yan, M., Zhang, M. L. et al. A computational and experimental investigation of the interaction between the template molecule and the functional monomer used in the molecularly imprinted polymer[J]. Analytica Chimica Acta, 2005,542(2):186~192.
    [71]毕慧敏,高玉红,谢鹏涛,等.不同功能单体对分子印迹聚合物识别性能的模拟[J].计算机与应用化学,2006,26(4):501~503
    [72]宁左云,聂长明,周凌云,等.计算机模拟探讨磺胺分子印迹聚合体系[J].南华大学学报,2011,24(4):97-101
    [73]郑海燕,马芬, 邵伟,等.不同功能单体制备水杨酸分子印迹聚合物的分子模拟研究[J].计算机与应用化学,2008,25(12):1577~1580
    [74]李琳,张玉涛,张进忠.三唑类农药残留分析研究进展[J].安徽农业科学,2008,36(22):9704~9707
    [75]Meier, F., Schott, B., Riedel, D et al. Computational and experimental study on the influence of the porogen on the selectivity of 4-nitrophenol molecularly imprinted polymers[J]. Analytica Chimica Acta,2012,744:68~74.
    [76]Umpleby R J, Baxter S C, Chen Y, et al. Characterization of molecularly imprinted polymers with the Langmuir-Freundlich isotherm[J]. Analytical chemistry, 2001,73(19):4584~4591.
    [77]Feng, Q. Z., Zhao, L. X., Chu, B. L, et al. Synthesis and binding site characteristics of 2,4,6-trichlorophenol-imprinted polymers[J]. Analytical and Bioanalytical Chemistry,2008,392(7-8):1419~1429
    [78]Rushton, G. T., Karns, C. L., Shimizu, K. D. A critical examination of the use of the Freundlich isotherm in characterizing molecularly imprinted polymers (MLPs)[J]. Analytica Chimica Acta,2005,528(1):107~113.
    [79]陈安珍,董襄朝.分子印迹聚合物结合位点的非均一性及其评价方法[J].化学通报,2006,69
    [80]Umpleby Ⅱ R J, Baxter S C, Bode M, et al. Application of the Freundlich adsorption isotherm in the characterization of molecularly imprinted polymers[J]. Analytica Chimica Acta,2001,435(1):35~42.
    [81]Andersson H S, Nicholls I A. Spectroscopic evaluation of molecular imprinting polymerization systems[J]. Bioorganic Chemistry,1997,25(3):203~211.
    [82]杨俊,朱晓兰, 苏庆德, 等.可天宁印迹聚合物分子识别特性的光谱与XPS研究[J].光谱学与光谱分析,2005,27(16):1152~1155
    [83]张孝刚,朱秋劲,胡萍.三聚氰胺分子印迹预组装体系紫外光谱研究[J].食品科学,2011,32(21):128~132
    [84]胡小刚,李攻科.分子印迹技术在样品前处理中的应用[J].分析化学,2006,34(7):1035~1041
    [85]Matuszewski, B. K., Constanzer, M. L., Chavez-Eng, C. M. Strategies for the assessment of matrix effect in quantitative bioanalytical methods based on HPLC-MS/MS[J]. Analytical chemistry,2003,75(13):3019~303