MicroRNA在系统性硬皮病发病中的作用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
一、研究背景和目的
     系统性硬皮病(SSc)是一种病因不明、发病机制尚不明确、涉及多因素的复杂性疾病,临床上主要以皮肤和内脏器官纤维化、血管异常病变和免疫系统异常为主要特点的自身免疫性结缔组织病。其中纤维化是系统性硬皮病发病过程中最突出的特点,也是严重影响病人生活质量、甚至危及病人生命的主要威胁。在以往的研究中,系统性硬皮病的发病机理主要涉及纤维化、血管病变、免疫系统异常、双胞胎研究、遗传、种族、嵌合体等多个方面,也涉及了基因芯片、蛋白芯片等技术在基因组范围内进行研究,但均未能成功的解释其发病机理。
     MircoRNAs (miRNAs)是存在于许多生物体内长约18~25 nt的一类短序列、非编码、具调控功能的单链小分子RNA,几乎参与所有生命过程中一系列的重要进程,包括早期发育,细胞增殖、分化与凋亡,物质代谢等。目前已经明确,miRNAs是通过与其靶mRNA分子的3′端非编码区(3′-UTR)互补结合,在翻译水平上特异性抑制基因表达,在许多疾病的发病中扮演着重要角色。mircoRNA芯片是近年来出现的发展比较成熟的高通量基因芯片技术,能在特定的时间点筛选出患者与正常人之间的差异microRNA表达情况,已在不少复杂性疾病的研究中得到了广泛的应用,特别是恶性肿瘤的研究中应用最为广泛。目前多个研究已经证实microRNA与肿瘤的发病、转移、复发以及银屑病、系统红斑狼疮、恶性黑素瘤等疾病的发病密切相关,并找到了疾病特异性microRNA,如miR-203是银屑病特异性microRNA,miR-140与骨肉瘤密切相关等。SSc作为一种复杂性自身免疫性疾病,与肿瘤、银屑病、系统红斑狼疮有类似的地方,因此,我们推测在其发病机制中很可能也有其发病相关的microRNA。
     本研究用microRNA芯片技术和生物信息学的方法,在国内外首次对系统性硬皮病患者皮损和正常人皮肤中的差异microRNA进行分析筛选,并对筛选结果进行初步的分析和预测,以期获得与系统性硬皮病发病关系密切相关或特异性的microRNA,为进一步研究microRNA在系统性硬皮病发病中的分子机制、发现新的诊断标记与治疗靶点提供重要参考。
     二、对象与方法
     将研究对象分为SSc组和对照组。SSc组的纳入标准为:符合美国风湿病学会关于系统性硬皮病的诊断标准、发病较早(<2年)且未经过长期系统激素治疗(激素应用<3个月)、有全身皮肤的硬化及肺纤维化的证据但临床症状不明显的患者,正常对照组为包皮环切患者的皮肤或良性皮肤痣切除术患者边缘的正常皮肤;分别切取足量皮肤,提取总RNA,分离microRNA并进行荧光标记;然后进行杂交、清洗,之后进行microRNA芯片扫描;扫描结果用LuxScan3.0图像分析软件和SAM2.1软件进行差异microRNA的分析筛选;Real-time PCR方法随机验证筛选出的差异表达microRNA,以确保芯片结果的可靠性。
     生物信息学分析过程:首先,建立重点靶基因筛选库;其次,在microRNA数据库中(TargetScan数据库)进行其靶基因(mRNA)的搜索获得其功能注释;第三,将搜索到的靶基因与重点靶基因筛选库的基因进行比对,挑选出功能上与细胞外基质(ECM)、纤维化、血管异常、免疫异常等相关以及存在于重点靶基因筛选库中的基因,作为重点靶基因;第四,登录NCBI网站,将重点靶基因与SSc输入NCBI进行检索,检索式:“SSc and重点靶基因”;然后阅读检索出的文献,分析其是否与SSc发病相关;如有多个(≧5个)由同一个miRNA调节的靶基因与SSc发病相关,那么就可以初步预测出该miRNA与SSc的发病相关;
     生物信息学方法查询出差异表达microRNA所调节的靶mRNA,PubMed上检索出目前已发表文献中与系统性硬皮病发病相关的靶mRNA,即可初步预测出该microRNA与系统性硬皮病的发病相关。
     三、结果
     1.我们首次从系统性硬皮病患者皮损中筛选出24个差异表达microRNA,其中9个microRNA表达上调, 15个microRNA表达下调;并随机抽取三个microRNA——hsa-let-7g, hsa-miR-206和hsa-miR-125b,用Real-time PCR的方法进行可靠性验证,验证结果与芯片分析结果一致,表明芯片结果可靠;
     2.通过生物信息学(www.gogene.org,目前该网站在维护中,不能打开,可以通过http://www.targetscan.org进行microRNA靶mRNA的查询)和文献分析(http://www.ncbi.nlm.nih.gov/pubmed/)发现有6个差异表达的microRNA其调节的靶基因与SSc的发病相关,其中hsa-miR-206调控的584条靶基因中有7条与SSc发病密切相关;hsa-let-7g调控的819条靶基因中有24条与SSc发病密切相关;hsa-miR-133a调控的502条靶基因中有12条与SSc发病密切相关;hsa-miR-125b调控的604条靶基因中有8条与SSc发病密切相关;hsa-miR-140-5p调控的251条靶基因中有7条与SSc发病密切相关;hsa-miR-23b调控的480条靶基因中有14条与SSc发病密切相关。
     四、结论
     1.microRNA不仅参与了系统性硬皮病的发病过程,而且可能在系统性硬皮病的发病中扮演着重要的角色;
     2.hsa-miR-206等6个miRNA与SSc发病密切相关,并很可能在SSc的发病中起着较为重要的作用;
     3.microRNA的表达异常可能是SSc发生、发展以及演化的重要分子事件,特别是在该病的早期阶段,可能起着更为重要的作用;
     4.有意义的差异表达microRNA可能是系统性硬皮病潜在的诊断标记、治疗靶点或重要的致病因素,为进一步研究系统性硬皮病的分子机制提供重要参考。
Background and Objectives
     Systemic Scleroderma is an autoimmunity connective tissue disease, which is a complex disease involved in multiple factor, its etiology and pathogenesis is unclear. In clinically, it is characterized by excessive and widespread fibrosis in the skin and internal organs, vasculopathy and abnormal activation of the immune system. And fibrosis is the most remarkable clinic character in the process of scleroderma, it is also the major threaten of influencing seriously on the life quality of patients, even the patients’life. In previous studies, the pathogenesis of SSc was focused mainly on fibrosis, vessels change, the immune system abnormalty, twins, heredity, race, chimeras, and others, including genome-wide studies using gene-chip and protein-chip technology, but all can’t elucidate the SSc’s pathogenesis.
     MiRNAs are short 18- to 25-nt noncoding single strand RNAs that serve a regulatory function and participate in many vital processes, including early development, cell proliferation, cell differentiation, apoptosis, substance metabolism and others. These miRNAs have been demonstrated to suppress the expression of specific genes at the translation level by complementary binding to the 3′noncoding region of target mRNA, which play important role in the pathogenesis of many disease. MicroRNA arrays are a newly developed high-throughput screening technology that can be used to detect different expression levels of miRNAs in patients and the healthy subjects at the specified time and space. which hsa been applied to the study of some complex diseases, especially in the study of malignant tumor. It was demonstrated from a lot of study that microRNA plays the important role on the pathogenesis, metastasis, relapse, of malignant tumor, and the pathogenesis of psoriasis, SLE, malignant melanoma and so on, and some disease-specificity microRNA were found, for example: miR-203 is the psoriasis-specificity microRNA, miR-140 expression is related to osteosarcoma, and so on. As a sort of complex autoimmunity disease, SSc hsa been similar to tumor, psoriasis, SLE. So we presumed that microRNA may also play important role in the pathogensis and otherelse of SSc. With microRNA chip technology and bioinformatics methods, For the first time in the world, we screened different expression microRNA between SSc patient’s skin lesion and health people, then analyzed and predicted the screening results so as to get the microRNA, which is intimate or related or specific to SSc. The study result may provide the important reference for studying molecular mechanism of microRNA in the SSc, finding new diagnosis biomarker and new therapy target.
     Objects and Methods
     The objects were divided to two group, SSc group (SSc G.) and Control group (Ctrol. G.). the selected criterion of SSc G. was the patients who fulfilled the American College of Rheumatology classification criteria for SSc, had suffered from the SSc within 2 years, had not received recent hormonal systemic therapy or no more than 3 month, had systemic skin sclerosis and some signs of lung fibrosis but without obvious clinical manifestations. The Ctrol. G. was skin tissues of circumcision and the normal skin bordering a melanin pigmented naevus ectomy. Incise enough skin tissue from the two group patients, extract their total RNA, Isolate microRNA and fluorescent Labeled, Then hybridizing, cleaning and scanning. The scanning results and the different expression microRNA were analyzed with LuxScan 3.0 image analysis software and SAM 2.1 software. The different expression microRNA were demonstrated randomly with Real-time PCR to ensure the reliability of chip results.
     The process of bioinformatics analysis: firstly, establishing screening base of the emphsais target gene; Secondly, searching the target genes in the microRNA database (Target Scan), and get their function annotation; Thirdly, comparing the target genes with the genes in the screening base of the emphsais target gene, choose out the genes whose function are related to the ECM, fibrosis, vassular abnormality, immunologic abnormality, or which are in the screening base of the emphsais target gene, it is regarded as emphsais target genes; Fourthly, logging the website of NCBI, searching the emphsais target gene and the SSc, the searching formula is“SSc and emphsais target gene”, then reading the literature and analyzing which is relate to SSc or not; If there have many target genes regulated by the same microRNA are related to SSc or participant in the pathogenesis of SSc, then we would initially predict this microRNA correction with SSc pathogenesis.
     Results
     1.We firstly selected out 24 different expression microRNA were from SSc patient’s skin lesion, in which the 9 microRNAs were upregulation and the 15 microRNAs downregulation. the three differential expression of microRNAs (microRNA—hsa-let-7g, hsa-miR-206 and hsa-miR-125b) were selected outrandomly, and demonstrated with real-time PCR to ensure the reliability of chip results. The verification results were consistent with the chip results. 2.The 6 differential expression of microRNAs were demonstrated that they may be related to SSc pathogenesis with bioinformatics methods and document analysis(http://www.ncbi.nlm.nih.gov/pubmed/). (www.gogene.org, now this website is maintenance, can’t open it, you can inquire out the target mRNA regulated by microRNA to http://www.targetscan.org ), in which, The 7 genes in the 584 target genes regulated by hsa-miR-206 were correlation with SSc, The 24 genes in the 819 target genes regulated by hsa-let-7g were correlation with SSc, The 12 genes in the 502 target genes regulated by hsa-miR-133a were correlation with SSc, The 8 genes in the 604 target genes regulated by hsa-miR-125b were correlation with SSc, The 7 genes in the 251 target genes regulated by hsa-miR-140-5p were correlation with SSc, The 14 genes in the 480 target genes regulated by hsa-miR-23b were correlation with SSc.
     Conclusions
     1.MicroRNA not only participant in the process of SSc pathogenesis, but play the important role in the SSc etiopathogenisis;
     2.The hsa-miR-206 six miRNAs are closely correlation with SSc’pathogenesis and they may have more important function in the SSc pathogenesis, development and turnover;
     3.The expression abnormalty of microRNA may be the important molecular event during the process of SSc genesis, development and disease evolution, especially in the early stage of SSc, which may take more important function;
     4.The significant different expression microRNAs may be potentially diagnosis marker, therapy target or important causative agent, which will provide the important reference for studying SSc molecular mechanism.
引文
1. Chizzolini C. Update on pathophysiology of scleroderma with special reference to immunoinflammatory events [J]. Ann Med. 2007, 39(1): 42-53.
    2. Sakkas L. New developments in the pathogenesis of systemic sclerosis [J]. Autoimmunity March. 2005, 8(2):113–116.
    3. Nelson JL. Microchimerism and scleroderma. Curr Rheumatol Rep. 1999, 1:15-21.
    4. Giusti B, Serrati S, Margheri F, et al. The antiangiogenic tissue kallikrein pattern of endothelial cells in systemic sclerosis. Arthritis Rheum. 2005, 52:3618-3628.
    5. Tan FK, Hildebrand BA, Lester MS, et al. Classification analysis of the transcriptosome of nonlesional cultured dermal fibroblasts from systemic sclerosis patients with early disease. Arthritis Rheum. 2005, 52:865-876.
    6. Ahmed SS, Tan FK. Identification of novel targets in scleroderma: update on population studies, cDNA arrays, SNP analysis, and mutations. Curr Opin Rheumatol. 2003, 15:766-771.
    7. Zhou X, Tan FK, Xiong M, et al. Monozygotic twins clinically discordant for scleroderma show concordance for fibroblast gene expression profiles. Arthritis Rheum. 2005, 52:3305-3314.
    8. Zhou X, Tan FK, Xiong M, et al. Systemic sclerosis (scleroderma): specific autoantigen genes are selectively overexpressed in scleroderma fibroblasts. J Immunol. 2001, 167:7126-7133.
    9. Luzina IG, Atamas SP, Wise R, et al. Gene expression in bronchoalveolar lavage cells from scleroderma patients. Am J Respir Cell Mol Biol. 2002, 26:549-557.
    10. Whitfield ML, Finlay DR, Murray JI, et al. Systemic and cell type-specific gene expression patterns in scleroderma skin. Proc Natl Acad Sci U S A. 2003, 100: 12319-12324.
    11. Ambros V. The functions of animal microRNAs. Nature. 2004, 431:350-355.
    12. Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell. 2004, 116:281-297.
    13. Croce CM, Calin GA. miRNAs, cancer, and stem cell division. Cell. 2005, 122:6-7.
    14. Czech MP. MicroRNAs as therapeutic targets. N Engl J Med. 2006, 354:1194-1195.
    15. Adams BD, Furneaux H, White BA. The micro-ribonucleic acid (miRNA) miR-206 targets the human estrogen receptor-alpha (ERalpha) and represses ERalpha messenger RNA and protein expression in breast cancer cell lines. Mol Endocrinol. 2007, 21:1132-1147.
    16. Negrini M, Calin GA. Breast cancer metastasis: a microRNA story. Breast Cancer Res. 2008, 10:203.
    17. McCarthy JJ. MicroRNA-206: the skeletal muscle-specific myomiR. Biochim Biophys Acta. 2008, 1779:682-691.
    18. Rao PK, Kumar RM, Farkhondeh M, et al. Myogenic factors that regulate expression of muscle-specific microRNAs. Proc Natl Acad Sci U S A. 2006, 103:8721-8726.
    19. Szafranska AE, Davison TS, John J, et al. MicroRNA expression alterations are linked to tumorigenesis and non-neoplastic processes in pancreatic ductal adenocarcinoma. Oncogene. 2007, 26:4442-4452.
    20. Wong TS, Liu XB, Chung-Wai Ho A, et al. Identification of pyruvate kinase type M2 as potential oncoprotein in squamous cell carcinoma of tongue through microRNA profiling. Int J Cancer. 2008, 123:251-257.
    21. Wang C, Li Q. Identification of differentially expressed microRNAs during the development of Chinese murine mammary gland. J Genet Genomics. 2007, 34:966-973.
    22. Bostjancic E, Glavac D. Importance of microRNAs in skin morphogenesis and diseases. Acta Dermatovenerol Alp Panonica Adriat. 2008,17:95-102.
    23. Shi XB, Xue L, Yang J, et al. An androgen-regulated miRNA suppresses Bak1 expression and induces androgen-independent growth of prostate cancer cells. Proc Natl Acad Sci U S A. 2007, 104:19983-19988.
    24. Saetrom P, Biesinger J, Li SM, et al. A risk variant in an miR-125b binding site in BMPR1B is associated with breast cancer pathogenesis. Cancer Res. 2009, 69:7459-7465.
    25. Le MT, Teh C, Shyh-Chang N, et al. MicroRNA-125b is a novel negative regulator of p53. Genes Dev. 2009, 23:862-876.
    26. Song B, Wang Y, Xi Y, et al. Mechanism of chemoresistance mediated by miR-140 in human osteosarcoma and colon cancer cells. Oncogene. 2009, 28:4065-4074.
    27. Lin ST, Fu YH. miR-23 regulation of lamin B1 is crucial for oligodendrocytedevelopment and myelination. Dis Model Mech. 2009, 2:178-188.
    28. Nakajima G, Hayashi K, Xi Y, et al. Non-coding MicroRNAs hsa-let-7g and hsa-miR-181b are Associated with Chemoresponse to S-1 in Colon Cancer. Cancer Genomics Proteomics. 2006, 3:317-324.
    29. Lim LP, Lau NC, Garrett-Engele P, et al. Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs. Nature. 2005, 433:769-773.
    30. Lu J, Getz G, Miska EA, et al. MicroRNA expression profiles classify human cancers. Nature. 2005, 435:834-838.
    31. Sonkoly E, Wei T, Janson PC, et al. MicroRNAs: novel regulators involved in the pathogenesis of Psoriasis? PLoS One. 2007, 2:e610.
    32. Dai Y, Huang YS, Tang M, et al. Microarray analysis of microRNA expression in peripheral blood cells of systemic lupus erythematosus patients. Lupus. 2007, 16:939-946.
    33.王炎,孙建方,方方,等. microRNA在人皮肤黑素瘤与色素痣中共同差异表达的研究.中华皮肤科杂志. 2010, 43(2):1-3.
    1. Wallace DC. Mitochondrial diseases in man and mouse [J]. Science, 1999, 283 (5407):1482.
    2. Croce CM, Calin GA. miRNAs, cancer, and stem cell division. Cell.2005, 122:6-7.
    3. Czech MP. MicroRNAs as therapeutic targets. N Engl J Med. 2006, 354:1194-1195.
    4. Adams BD, Furneaux H, White BA. The micro-ribonucleic acid (miRNA) miR-206 targets the human estrogen receptor-alpha (ERalpha) and represses ERalpha messenger RNA and protein expression in breast cancer cell lines. Mol Endocrinol. 2007, 21:1132-1147.
    5. Negrini M, Calin GA. Breast cancer metastasis: a microRNA story. Breast Cancer Res. 2008, 10:203.
    6. McCarthy JJ. MicroRNA-206: the skeletal muscle-specific myomiR. Biochim Biophys Acta. 2008, 1779:682-691.
    7. Rao PK, Kumar RM, Farkhondeh M, et al. Myogenic factors that regulate expression of muscle-specific microRNAs. Proc Natl Acad Sci U S A. 2006, 103:8721-8726.
    8. Szafranska AE, Davison TS, John J, et al. MicroRNA expression alterations are linked to tumorigenesis and non-neoplastic processes in pancreatic ductal adenocarcinoma. Oncogene. 2007, 26:4442-4452.
    9. Wong TS, Liu XB, Chung-Wai Ho A,et al. Identification of pyruvate kinase type M2 as potential oncoprotein in squamous cell carcinoma of tongue through microRNA profiling. Int J Cancer. 2008, 123:251-257.
    10. Wang C, Li Q. Identification of differentially expressed microRNAs during the development of Chinese murine mammary gland. J Genet Genomics. 2007,34:966-973.
    11. Bostjancic E, Glavac D. Importance of microRNAs in skin morphogenesis and diseases. Acta Dermatovenerol Alp Panonica Adriat. 2008, 17:95-102.
    12. Shi XB, Xue L, Yang J, et al. An androgen-regulated miRNA suppresses Bak1 expression and induces androgen-independent growth of prostate cancer cells. Proc Natl Acad Sci U S A 2007, 104:19983-19988.
    13. Saetrom P, Biesinger J, Li SM, et al. A risk variant in an miR-125b binding site inBMPR1B is associated with breast cancer pathogenesis. Cancer Res. 2009, 69:7459-7465.
    14. Le MT, Teh C, Shyh-Chang N, et al. MicroRNA-125b is a novel negative regulator of p53. Genes Dev. 2009,23:862-876.
    15. Song B, Wang Y, Xi Y, et al. Mechanism of chemoresistance mediated by miR-140 in human osteosarcoma and colon cancer cells. Oncogene. 2009, 28:4065-4074.
    16. Lin ST, Fu YH. miR-23 regulation of lamin B1 is crucial for oligodendrocyte development and myelination. Dis Model Mech. 2009, 2:178-188.
    17. Nakajima G, Hayashi K, Xi Y, et al. Non-coding MicroRNAs hsa-let-7g and hsa-miR-181b are Associated with Chemoresponse to S-1 in Colon Cancer. Cancer Genomics Proteomics. 2006, 3:317-324.
    18. Segura MF, Hanniford D, Menendez S, et a1. Aberrant miR-182 expression promotes melanoma metastasis by repressing FOX03 and microphthalmia.associated transcription factor.Proc Natl Acad Sci U S A. 2009, 106(6):1814-1819.
    19. Igoucheva O, Alexeev V. MicroRNA-dependent regulation of c10t in cutaneous melanoma.Bioehem Biophys Res Commtm. 2009, 379(3):790-94.
    20. Bemis LT, Chert IL, Amato CM, et a1.MicroRNA-137 targets microphthalmia-associated transcription factor in melanoma cell lines. Cancer Res. 2008, 68(5):1362-1368.
    21. Yu J, Ryan IX, Getsios S, et a1. MicroRNA-184 antagonizes microRNA-205 to iliaintain SHIP2 levels in epithelia.Proc Natl Acad Sci U S A. 2008, 105(49): 19300-19305.
    22. Sonkoly E, Wei T, Janson PC, et al. MicroRNAs: novel regulators involved in the pathogenesis of Psoriasis? PLoS One. 2007, 2:e610.
    23. Dai Y, Huang YS, Tang M, et al. Microarray analysis of microRNA expression in peripheral blood cells of systemic lupus erythematosus patients. Lupus. 2007, 16:939-946.
    24.王炎,孙建方,方方,等. microRNA在人皮肤黑素瘤与色素痣中共同差异表达的研究.中华皮肤科杂志. 2010, 43(2):1-3.
    25. Shilo S, Roy S, Khanna S. MicroRNA in cutaneous wound healing: a new paradigm. DNA Cell Biol. 2007, 26(4): 227.
    1. Bartel B, Bartel D P. MicroRNAs: at the root of plant development? Plant Physiol, 2003, 132(2): 709-717.
    2. Lim L P, Glasner M E, Yekta S, et al. Vertebrate microRNA genes. Science, 2003, 299(5612): 1540.
    3. Wallace DC. Mitochondrial diseases in man and mouse[J]. Science, 1999, 283 (5407):1482.
    4. Cheng A M, Byrom M W, Shelton J. Antisense inhibition of human miRNAs and indications for an involvement of miRNA in cell growth and apoptosis. Nucleic Acids Res, 2005, 33(4): 1290-1297.
    5. Tavazoie S F, Alarco C. Endogenous human microRNAs that suppress breast cancer metastasis. Nature, 2008, 451(7175): 147-152.
    6. Kozomara A, Griffiths-Jones S. miRBase: integrating microRNA annotation and deep-sequencing data. NAR 2011 39(Database Issue):D152-D157.
    7. Lim L P, Lau N C, Garrett-Engele P, et al. Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs. Nature, 2005, 433(7027): 769-773.
    8. Zhang Y. miRU: an automated plant miRNA target prediction server. Nucleic Acids Res, 2005, 33: W701-W704.
    9. Rhoades M W, Reinhart B J, Lim L P, et al. Prediction of plant microRNA targets. Cell, 2002, 110(4): 513-520.
    10. microRNA靶标数据库和识别软件资源大全http://www.seekbio.com/biotech/exp/molbio/RNA/2010/p819583390.html.( 2010/12/29).
    1. Armando Gabrielli, Enrico V Avvedimento, Thomas Krieg. Scleroderma. N Engl J Med. 2009, 360:1989-2003.
    2. Chiff lot H, Fautzi B, Sordet C, et al. Incidence and prevalence of systemic sclerosis: a systematic litera-ture review. Semin Arthritis Rheum. 2008, 37:223-35.
    3. Sakkas L. New developments in the pathogenesis of systemic sclerosis[J]. Autoimmunity March. 2005, 8(2):113–116.
    4. Nelson JL. Microchimerism and scleroderma. Curr Rheumatol Rep. 1999, 1:15-21.
    5. Giusti B, Serrati S, Margheri F, et al. The antiangiogenic tissue kallikrein pattern of endothelial cells in systemic sclerosis. Arthritis Rheum. 2005, 52:3618-3628.
    6. Masatoshi J. Mechanisms of skin fibrosis in systemic sclerosis. Journal of Dermatology 2010, 37: 11-25.
    7. Thomas Hügle, Christiaan A. Huigens, JacobM. van Laar. New pathogenic and therapeutic concepts in systemic sSclerosis. Arzneimittelforschung. 2009, 59(12):615-624.
    8. Sandeep K. Agarwal, John D. Reveille. The genetics of scleroderma (systemic sclerosis). Current Opinion in Rheumatology. 2010,22:133-138.
    9. Myllyharju J, Kivirikko KI. Collagens and collagen-related diseases. Ann Med 2001; 33: 7-21.
    10. Inkinen K, Turakainen H, Wolff H, et al. Cloning of cDNA for rat pro a1(V) collagen mRNA. Expression pat-terns of type I, type III and type V collagen genes in experimental granulation tissue. Connect Tissue Res 1999, 40: 209–220.
    11. Hulmes DJ. Building collagen molecules, fibrils, and suprafibrillar structures. J Struct Biol 2002, 137: 2-10.
    12. Ono S, Imai T, Shimizu N, et al. Serum markers of type I collagen synthe-sis and degradation in amyotrophic lateral sclerosis. Eur Neurol 2000; 44: 49–56.
    13. Querfeld C, Eckes B, Huerkamp C, et al. Expression of TGF-beta 1, -beta 2 and -beta 3 in localized and systemic scleroderma. J Dermatol Sci.1999 Sep;21(1):13-22.
    14. Annes JP, Chen Y, Munger JS, et al. Integrin alphaV-beta6-mediated activation of latent TGF-beta requiresthe latent TGF-betabinding protein-1. J Cell Biol. 2004, 165(5):723-34.
    15. Abraham D. Connective tissue growth factor: growth factor, matricellular organizer, fibrotic biomarker or molecular target for anti-fibrotic therapy in SSc? Rheu-matology 2008, 47: v8–v9.
    16. Igarashi A, Okochi H, Bradham DM, et al. Regulation of connective tissue growth factor gene expression in human skin fibroblasts and during wound repair. Mol Biol Cell. 1993, 4: 637-645.
    17. Frazier K, Williams S, Kothapalli D, et al. Stimulation of fibroblast cell growth, matrix production, and granulation tissue formation by connective tissue growth factor. J Invest Dermatol 1996, 107: 404-411.
    18. Takehara K. Hypothesis: pathogenesis of systemic sclerosis. J Rheumatol 2003, 30: 755-759.
    19. Chujo S, Shirasaki F, Kondo-Miyazaki M, et al. Role of connective tissue growth factor and its interaction with basic fibroblast growth factor and macrophage chemoattractant protein-1 in skin fibrosis. J Cell Physiol 2009, 220: 189-195.
    20. De WinterP, Leoni P, Abraham D. C onnective tissue growth factor: structure-function relationships of a mosaic, multifunctional protein. Growth Factors. 2008, 26: 80-91.
    21. Sato S, Nagaoka T, Hsaegawa M et al. Serum levels of connective tissue growth factor are elevated in patients with systemic sclerosis: association with extent of skin sclerosis and severity of pulmonary fibrosis. J Rheumatol. 2000, 27: 149-154.
    22. Igarashi A, Nashiro K, Kikuchi K et al. Significant correlation between connective tissue growth factor gene patients with systemic sclerosis. J Invest Dermatol 1995, 105 (2): 280–284.
    23. Denton CP, Abraham DJ. Transforming growth factor-b and connective tissue growth factor: key cytokines in scleroderma pathogenesis. Curr Opin Rheumatol. 2001, 13: 505-511.
    24. MatsushitaT, HsaegawaM, Hamaguchi Y, et al. Longitudinal analysis of serum cytokine concentrations in systemic sclerosis:association of interleukin12 elevation with spontaneous regression of skin sclerosis. J Rheumatol. 2006, 33(2):275-84.
    25. Verrecchia F, Mauviel A, Farge D. Transforming growth factor-beta signaling through the Smad proteins: role in systemic sclerosis. Autoimmun Rev. 2006 , 5(8):563-9.
    26. Chen SJ, Yuan W, Mori Y, et al. Stimulation of type I collagen transcription in human skinfibroblasts by TGF-b:involvement of Smad 3. J Invest Dermatol 1999, 112: 49-57.
    27. Kirk TZ, Mayes MD. IL-1 rescues scleroderma myofibroblasts from serum-starvation-induced cell death. BiochemBiophys Res Commun 1999, 255: 129-132.
    28. Kawaguchi Y, McCarthy SA, Watkins SC, et al. Autocrine activation by interleukin 1a induces the fibrogenic phenotype of systemic sclerosis fibroblasts. J Rheumatol 2004, 31: 1946-1954.
    29. Kawaguchi Y, Hara M, Wright TM. Endogenous IL-1a from systemic sclerosis fibroblasts induces IL-6 and PDGF-A. J Clin Invest 1999, 103: 1253-1260.
    30. Hu B, Wang S, Zhang Y, et al. A nuclear target for interleukin-1a:interaction with the growth suppressor necdin modulates proliferation and collagen expression. Proc Natl Acad Sci USA 2003, 100: 10008-10013.
    31. Morgan JG, Dolganov GM, Robbins SE, et al. The selective isolation of novel cDNAs encoded by the regions surrounding the human interleukin 4 and 5 genes. Nucleic Acids Res 1992, 20: 5173-5179.
    32. Zurawski SM, Vega F Jr, Huyghe B, et al. Receptors for interleukin-13 and interleukin-4 are complex and share a novel component that functions in signal transduction. EMBO J 1993; 12: 2663-2670.
    33. Kolodsick JE, Toews GB, Jakubzick C, et al. Protection from ?uorescein isothiocyanate-induced fibrosis in IL-13-deficient, but not IL-4-deficient, mice results from impaired collagen synthesis by fibroblasts. J Immunol. 2004, 172: 4068–4076.
    34. Bosello S, De Santis M, Lama G, et al. B cell depletion in diffuse progressive systemic sclerosis: safety, skin score modification and IL-6 modulation in an up to thirty-six months follow-up open-label trial. Arthritis Res Ther. 2010,12(2):R54.
    35. Carulli MT, Handler C, Coghlan JG, et al. P. Can CCL2serumlevels be used in risk stratification orto monitortreatmentresponsein systemic sclerosis? Ann Rheum Dis. 2008, 67(1):105-9.
    36. Gruschwitz MS, Albrecht M, Vieth G, et al. In situ expression and serumlevels of tumor necrosis factor-alpha receptors in patients withearlystages of systemic sclerosis. JRheumatol. 1997, 24(10):1936–43.
    37. Chizzolini C, Parel Y, De Luca C, et al. Systemic sclerosis Th2 cells inhibit collagen production by dermalfibroblastsvia membrane-associated tumor necrosis factor alpha.Arthritis Rheum. 2003, 48(9):2593–604.
    38. Yamane K, Ihn H, Asano Y, et al. Antagonis-tic effects of TNF-alpha on TGF-beta signaling through down-regulation of TGF-beta receptortype II in human dermalfibroblasts. JImmunol. 2003, 171(7):3855–62.
    39. Duan H, Fleming J, Pritchard DK, et al. Combined analysis of monocyte and lymphocyte messenger RNA expression with serumprotein profiles in patients with scleroderma. Arthritis Rheum. 2008, 58(5):1465-74.
    40. York MR, Nagai T, Mangini AJ, et al. A macrophage marker,Siglec-1, is increased on circulating monocytes in patients with systemic sclerosis and induced bytype I interferons and toll-like receptor agonists. Arthritis Rheum. 2007, 56(3):101-20.
    41. McDonnell S, O’Connor A, Murray D, et al. Matrix metalloproteinases. In: Genazzani AR ed. Hormone Replacement Therapy and Cancer: The Current Status of Research and Practice. London, UK: Informa Health Care. 2002, 17-24.
    42. Sternlicht MD, Werb Z. How matrix metalloproteinases regulate cell behavior. Annu Rev Cell Dev Biol. 2001, 17: 463-516.
    43. Birkedal-Hansen H. Role of cytokines and in?amma-tory mediators in tissue destruction. J Periodontal Res. 1993, 28: 500-510.
    44. Chakraborti S, Mandal M, Das S, et al. Regulation of matrix metalloproteinases: an overview.Mol Cell Biochem 2003, 253: 269-285.
    45. Birkedal-Hansen H, Moore WG, Bodden MK. et al. Matrix metalloproteinases: a review. Crit Rev Oral Biol Med 1993; 4: 197-250.
    46. McCawley LJ, Matrisian LM. Matrix metalloproteinas-es: they’re not just for matrix anymore! Curr Opin Cell Biol. 2001, 13 (5): 534-540.
    1. Armando Gabrielli, M.D., Enrico V. Avvedimento, M.D., and Thomas Krieg, M.D. Scleroderma,New England J Med. 2009, 360: 1989-2001
    2. Chifflot H, Fautzi B, Sordet C, et al. Incidence and prevalence of systemic sclerosis: a systematic litera-ture review. Semin Arthritis Rheum. 2008, 37: 223-35.
    3. Mayes MD, Lacey JV, Beebe-Dimmer J, et al. Prevalence, incidence, survival, and disease characteristics of systemic sclerosis in a large US population. Arthritis Rheum. 2003,48: 2246-55.
    4. Reveille JD. Ethnicity and race in systemic sclerosis: how it affects susceptibility, severity, antibody genetics, and clinical manifestations. Curr Rheumatol Rep. 2003, 5:160-7.
    5. Agarwal SK, Tan FK, Arnett FC. Genetics and genomic studies in scleroderma(systemic sclerosis). Rheum Dis Clin North AM. 2008, 34:17-40.
    6. Loubire LS, Lambert NC, Madeleine. MM, et al. HLA allelic variants encoding DR11 in diffuse and limited systemic sclerosis in Caucasian women. Rheumatology. 2005, 44:318-22.
    7. Nietert PJ, Silver RM. Systemic sclero-sis: environmental and occupational risk factors. Curr Opin Rheumatol. 2000, 12:520-6.
    8. Nelson JL, Furst DE, Maloney S, et al. Microchimerism and HLA-compatible relationships of pregnancy in scleroderma. Lancet. 1998, 351:559-62.
    9. Artlett CM, Smith JB, Jimenez SA. Identification of fetal DNA and cells in skin lesions from women with systemic sclerosis. N Engl J Med 1998, 338:1186-91.
    10. Harrison NK, Myers AR, Corrin B, et al. Structural features of interstitial lung disease in systemic sclerosis. Am Rev Res- pir Dis. 1991, 144:706-13.
    11. Fleming JN, Nash RA, McLoad DO, et al. Capillary regeneration in scleroderma: stem cell therapy reverses phenotype? PLoS One. 2008;3(1):e1452.
    12. Davies CA, Jeziorska M, Freemont AJ, et al. The differential expression of VEGF, VEGFR-2, and GLUT-1 proteins in cells in disease subtypes of systemic sclerosis. Hum Pathol. 2006, 37:190-7.
    13. Kuwana M, Okazki Y, Yasuoka H, et al. Defective vasculo- Shared genesis in systemicsclerosis. Lancet. 2004, 364:603-10.
    14. Cipriani P, Guiducci S, Miniati I, et al. Impairment of endothelial differentiation from bone marrow-derived mesenchymal stem cells: new insights into the patho- genesis of systemic sclerosis. Arthritis Rheum. 2007, 56:1994-2004.
    15. Sainson RC, Johnston DA, Chu HC, et al. TNF primes endothelial cells for angio- genic sprouting by inducing a tip cell phe- notype. Blood. 2008, 111: 4997-5007.
    16. Perlish JS, Lemlich G, Fleischmajer R. Identification of collagen fibrils in sclero- derma skin. J Invest Dermatol. 1988, 90: 48-54.
    17. Fleischmajer R, Jacobs L, Schwartz E, et al. Extracellular microfibrils are in-creased in localized and systemic sclero-derma. Lab Invest. 1991, 64:791-8.
    18. Allanore Y, Batteux F, Avouac J, et al. Kahan A. Levels of circulating endothelial progenitors cells in systemic sclerosis. Clin Exp Rheumatol. 2007, 25: 60-6.
    19. Avouac J, Juin F, Wipff J, et al. Circu-33. lating endothelial progenitor cells in sys-temic sclerosis: association with disease severity. Ann Rheum Dis. 2008, 67:1455-60.
    20. Stellos K, Gnerlich S, Kraemer B, et al. Platelet interaction with progenitor cells: vascular regeneration or inquiry? Pharmacol Rep. 2008, 60: 101-8.
    21. Stellos K, Langer H, Daub K, et al. Platelet-derived stromal cell-derived factor-1 regulates adhesion and promotes dif- ferentiation of human CD34+ cells to endothelial progenitor cells. 2008, 117:206-15.
    22. Sainson RC, Johnston DA, Chu HC, et al. TNF primes endothelial cells for angiogenic sprout ing by inducing a t ip cel l phenotype. Blood. 2008, 111:4997-5007.
    23. Bellini A, Mattoli S. The role of the fibrocyte, a bone marrow-derived mesenchymal progenitor, in reactive and reparative fibroses. Lab Invest. 2007, 87:858-70.
    24. Perlish JS, Lemlich G, Fleischmajer R. Identification of collagen fibrils in scleroderma skin. J Invest Dermatol. 1988, 90: 48-54.
    25. Hsaegawa M, Sato S, Fujimoto M, et al. Serum levels of interleukin 6 (IL-6), oncostat in M, soluble IL-6 receptor, and soluble gp130 in patients with systemic sclerosis. J Rheumatol. 1998, 25:308-13.
    26. Leask A, Abraham DJ. TGF-beta signaling and the f ibrotic response. FASEB J 2004, 18:816-27.
    27. Whit f ield ML, Finlay DR, Mur ray J I, et al. Systemic and cell type-specific geneexpression patterns in scleroderma skin. Proc Natl Acad Sci U S A 2003;100:12319-24.
    28. Yamakage A, Kikuchi K, Smith EA, et al. Selective upregulation of platelet-derived growth factor alpha receptors by transforming growth factor beta in scleroderma fibroblasts. J Exp Med 1992, 175:1227-34.
    29. Leask A, Abraham DJ. The role of connective tissue growth factor, a multifunct ional matricel lul lar protein, in fibroblast biology. Biochem Cell Biol 2003, 81:355-63.
    30. Sonnylal S, Denton CP, Zheng B, et al. Postnatal induction of transforming growth factor beta signaling in fibroblast of mice recapitulates clinical, histologic and biochemical features of scleroderma. Arthritis Rheum. 2007, 56:334-44.
    31. Gay S, Jones RE Jr, Huang GQ, et al. Immunohistologic demonstration of platelet-der ived growth factor (PDGF) and sis-oncogene expression in scleroderma. J Invest Dermatol 1989, 92:301-3.
    32. Klareskog L, Gust afsson R, Scheynius A, et al. Increased expression of platelet-der ived growth factor t ype B receptors in the skin of patients with systemic sclerosis. Arthritis Rheum. 1990, 33:1534-41.
    33. Akhmetshina A, Dees C, Pileckyte M, et al. Dual inhibition of c-abl and PDGF receptor signaling by dasatinib and nilotinib for the treatment of dermal fibrosis. FASEB J. 2008, 22:2214-22.
    34. Kawaguchi Y, McCarthy SA, Watkins SC, et al. Autocrine activation by interleukin 1a induces the fibrogenic phenotype of systemic sclerosis fibroblasts. J Rheumatol 2004, 31: 1946-1954.
    35. Hu B, Wang S, Zhang Y, et al. A nuclear target for interleukin-1a: interaction with the growth suppressor necdin modulates proliferation and collagen expression. Proc Natl Acad Sci USA 2003, 100: 10008-10013.
    36. Morgan JG, Dolganov GM, Robbins SE, et al. The selective isolation of novel cDNAs encoded by the regions surrounding the human interleukin 4 and 5 genes. Nucleic Acids Res 1992, 20: 5173-5179.
    37. Zurawski SM, Vega F Jr, Huyghe B, et al. Receptors for interleukin-13 and interleukin-4 are complex and share a novel component that functions in signal transduction. EMBO J. 1993, 12: 2663-2670.
    38. Kolodsick JE, Toews GB, Jakubzick C et al. Protection from ?uoresceinisothiocyanate-induced fibrosis in IL-13-deficient, but not IL-4-deficient, mice results from impaired collagen synthesis by fibroblasts. J Immunol. 2004, 172: 4068–4076.
    39. Bosello S, De Santis M, Lama G, et al. B cell depletion in diffuse progressive systemic sclerosis: safety, skin score modification and IL-6 modulation in an up to thirty-six months follow-up open-label trial. Arthritis Res Ther. 2010,12(2):R54.
    40. Gruschwitz MS, Albrecht M, Vieth G, et al. In situ expression and serumlevels of tumor necrosis factor-alpha receptors in patients withearlystages of systemic sclerosis. JRheumatol. 1997, 24(10):1936–43.
    41. Chizzolini C, Parel Y, De Luca C, et al. Systemic sclerosis Th2 cells inhibit collagen production by dermalfibroblastsvia membrane-associated tumor necrosis factor alpha. Arthritis Rheum. 2003, 48(9):2593–604.
    42. Yamane K, Ihn H, Asano Y, et al. Antagonis-tic effects of TNF-alpha on TGF-beta signaling through down-regulation of TGF-beta receptortype II in human dermalfibroblasts. JImmunol. 2003,171(7):3855–62.
    43. Duan H, Fleming J, Pritchard DK, et al. Combined analysis of monocyte and lymphocyte messenger RNA expression with serumprotein profiles in patients with scleroderma. Arthritis Rheum. 2008, 58(5):1465-74.
    44. York MR, Nagai T, Mangini AJ, et al. A macrophage marker,Siglec-1, is increased on circulating monocytes in patients with systemic sclerosis and induced bytype I interferons and toll-like receptor agonists. Arthritis Rheum. 2007, 56(3):101-20.
    45. McDonnell S, O’Connor A, Murray D, et al. Matrix metalloproteinases. In: Genazzani AR ed. Hormone Replacement Therapy and Cancer: The Current Status of Research and Practice. London, UK: Informa Health Care, 2002, 17-24.
    46. Sternlicht MD, Werb Z. How matrix metalloproteinases regulate cell behavior. Annu Rev Cell Dev Biol 2001, 17: 463-516.
    47. Chakraborti S, Mandal M, Das S, et al. Regulation of matrix metalloproteinases: an overview.Mol Cell Biochem. 2003, 253: 269-285.
    48. McCawley LJ, Matrisian LM. Matrix metalloproteinas-es: they’re not just for matrix anymore! Curr Opin Cell Biol. 2001, 13 (5): 534-540.
    49. Sambo P, Baroni SS, Luchetti M, et al. Oxidative stress in scleroderma: maintenance of scleroderma f ibroblast phenotype by the constitutive up-regulation of reactive oxygenspecies generation through the NADPH oxidase complex pathway. Arthritis Rheum. 2001, 44: 2653-64.
    50. Servet taz A, Gui lpain P, Goulvestre C,. et al. Radical oxygen species production induced by advanced oxidation protein products predicts clinical evolution and response to treatment in systemic sclerosis. Ann Rheum Dis. 2007, 66:1202-9.
    51. Mantovani A, Al lavena P, Sica A, et al. Cancer-related inflammation. Nature. 2008, 454: 436-44.
    52. Lassègue B, Sorescu D, Sz?cs K, et al. Novel gp91 (phox) homologues in vascular smooth muscle cells: nox1 mediates angiotensin II-induced superoxide formation and redox-sensitive signaling pathways. Circ Res 2001, 88:888-94.
    53. Sturrock A, Cahill B, Norman K, et al. Transforming growth factor-beta1 induces Nox4 NAD(P)H oxidase and reactive oxygen species-dependent proliferation in hu-man pulmonary artery smooth muscle cells. Am J Physiol Lung Cell Mol Physiol. 2005, 290:L661-L673.
    54. Bellocq A, Azoulay E, Marullo S, et al. Reactive oxygen species and nitrogen intermediates increase transforming growth factor-beta1 release from human epithelial alveolar cells through two different mechanisms. Am J Respir Cell Mol Biol. 1999, 21:128-36.
    55. Ambros V. The functions of animal microRNAs. Nature. 2004, 431:350-355.
    56. Croce CM, Calin GA. miRNAs, cancer, and stem cell division. Cell. 2005, 122:6-7.