纳米羟基磷灰石/聚乙烯醇/明胶复合材料的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
软骨组织内缺乏血管化作用和神经末梢,所以受损的软骨自修复能力有限。这使软骨缺损的治疗成为外科一大难题。用成熟的软骨进行同种异体移植术缺少移植物与周围组织的横向结合,而尖端的自体移植术又不能赋予植入体早期的机械强度。
     水凝胶能被用于人工软骨是由于它具有好的润滑性和粘弹性。在各种用于制备水凝胶的人工合成亲水性高分子中,聚乙烯醇(polyvinyl alcohol,简PVA)水凝胶因具有无毒、生物相容性良好及机械性能优良等特性而被广泛用于生物医学领域。纳米羟基磷灰石(nano-hydroxyapatite,简n-HA)具有良好的生物相容性和骨传导性,期望它能诱导钙化和在植入体与软骨下骨间形成生物性键合。明胶(gelatin,简Gel)是一种结缔组织蛋白,无毒,有好的生物相容性和生物降解性。
     基于上述特性,本研究制备了一种n-HA/PVA/Gel人工软骨材料和一种潜在的组织工程支架材料。本论文主要包含如下研究内容和结果:
     1.用溶液共混法制备了纳米羟基磷灰石/聚乙烯醇/明胶三元复合水凝胶材料。测定了材料的含水率,采用TEM、SEM、EDAX、IR、XRD和燃烧实验对材料的结构及组分进行了表征和分析,此外,还研究了材料的吸水性。结果表明,制备的复合水凝胶组成均一,各组分间存在相互作用,并具有良好的吸水和保水性能。本研究制备的纳米羟基磷灰石/聚乙烯醇/明胶复合水凝胶可望作为一种人工软骨材料。
     2.采用FT-IR和XRD技术对n-HA/PVA/Gel复合材料进行了分析,详细讨论了其内部的化学键合作用。测定了不同组分比例的复合水凝胶的拉伸强度和压缩强度,并分别测定了干胶的吸水率。结果表明,n-HA/PVA/Gel复合材料内部有较强的氢键和配位键作用;吸水率随PVA含量增加而增加;其机械强度与自然软骨相近。
     3.用乳化法制备了n-HA/PVA/Gel多孔支架材料。SEM观察表明该支架材料孔间贯通性良好,富含100~500μm的大孔,大孔壁上有小于20μm的小孔,其孔隙率达78%,而吸水率高达312.7%。材料浸入水中由于明胶的降解其重量不断下降。当其浸入模拟体液后,由于Ca2+和PO43-离子在材料的内外表面不断沉积使其重量不断增加。通过TF-XRD, FT-IR和EDAX等表征手段证明沉积物是碳酸根替代的羟基磷灰石。该材料由MTT法证明无细胞毒性。同时,n-HA/PVA/Gel复合材料被皮下植入成年雌性大鼠的背部,12周后,可观察到多孔材料与周围组织紧密结合,成纤维组织长入孔隙内部,并有部分材料发生降解。
     4.本文合成了PVA/Gel水凝胶,并用IR及XRD对其进行表征,结果表明PVA和Gel之间通过氢键发生交联。以吐温20为乳化剂采用乳化发泡法制备了PVA/Gel多孔支架。用SEM观察表明支架中孔隙相互连通,孔隙率达76%,孔径大小适于组织长入。该支架在去离子水和模拟体液(SBF)中的吸水率通过重量分析法进行检测。MTT实验表明支架对兔角膜成纤维细胞无毒性;兔角膜成纤维细胞培养72小时后仍有强烈增殖的趋势。将支架浸入SBF中8周后,其重量发生明显变化,大量的类骨磷灰石颗粒在支架孔壁上沉积,表明其具有好的生物活性。这些反映了PVA/Gel支架作为一种人工角膜的周边支架具有很大的应用潜力。
Damaged cartilage has a limited ability to repair itself due to the absence of vascularization and nerve endings in the tissue. Thus the treatment of cartilage lesion is one of the most important problems in orthopedic surgery. Reconstruction of articular cartilage defects using adult osteochondral allografts is lack of lateral integration of the grafts to the surrounding tissue, and sophisticated autologous chondrocytes transplantation can not provide implants with mechanical strength early.
     Hydrogel can be used as artificial cartilages due to their good lubrication and elasticity. Among various synthetic hydrophilic polymers used in the preparation of hydrogel, polyvinyl alcohol (PVA) hydrogel has definitely gained biomedical applications because of its inherent non-toxicity, good biocompatibility and desirable physical properties such as elasticity and high swelling property in aqueous solutions. Nano-hydroxyapatite (n-HA) has been proved to have good biocompatibility and osteoconductivity, and it is expected to induce calcification and biological bond between implant and subchondral bone. Gelatin (Gel), a connective tissue protein, is well known for its non-toxic, good biocompatibility and biodegradability. The incorporation of Gel in the composite is expected to enhance the biocompatibility.
     In this paper, an artificial cartilage material and a potential scaffold for cartilage tissue engineering based on PVA, n-HA and Gel were prepared, respectively. The contents included the following.
     1. A novel composite, composed of n-HA, PVA and Gel, was prepared by blending them in solution. Water content and burning test were used to analyze the homogeneity of the composites. The materials were also characterized by Scanning electron microscopy (SEM), energy dispersive X-ray analysis (EDAX), Transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD) and the water absorption rate of the hydrogels with different ratio of n-HA/PVA/Gel were tested. The results showed that the prepared hydrogels had good homogeneity and suitable water absorption rate. The n-HA/PVA/Gel hydrogel could be used as an artificial cartilage material.
     2. The n-HA/PVA/Gel composite was characterized by Fourier transform infrared absorption spectroscopy (FT-IR), X-ray diffraction (XRD) and the possible interior chemical bonds were also discussed. Hydrogen bonds and coordination bonds may exist between n-HA, PVA and Gel. Mechanical strength and water absorption of the prepared composite were investigated, respectively. The results show that water absorption of the samples is enhanced from 77% to 150% with the increase of PVA, and that n-HA/PVA/Gel composite has similar mechanical properties to natural cartilage. The composite has excellent biocompatibility in vivo.
     3. A novel porous composite material composed of n-HA, PVA and Gel was fabricated by emulsification. SEM showed that the material had a well-interconnected porous structure including a lot of micropores (less than 20μm) on the walls of macropores (100~500μm). The composite had a porosity of 78% and showed high water absorption rate up to 312.7% indicating a good water-swellable behavior. When immersed in water, the weight of the scaffold continuously decreased. However, after immersion in simulated body fluid (SBF), the weight continuously increased because Ca2+ and PO43- ions deposited on the surface and the internal surfaces of the material pores. The deposits were proved to be carbonated hydroxyapatite by thin-film X-ray diffraction (TF-XRD), FT-IR and EDAX. The composite was proved to be non-cytotoxicity by MTT assay. The n-HA/PVA/Gel material was also implanted subcutaneously in the dorsal region of adult female rats. After 12 weeks of implantation, the porous material adhered tightly with the surrounding tissue, and the ingrowth of fibrous tissue as well as the material’s partial degradation was observed.
     4. PVA and Gel were used to fabricate a gelatinous composite. The PVA/Gel composite was characterized by IR and XRD, which indicated that PVA and Gel was cross-linked via hydrogen bondings. PVA/Gel scaffold was prepared by emulsification and its microstructure was observed with SEM. The scaffold had a high porosity up to 76% and the pore size is fit for tissue ingrowth. Water absorption of the scaffolds in deionized water and in SBF was monitored by gravimetric procedure. The scaffold was proved to be non-toxic for rabbit corneal fibroblasts by MTT assay. We observed that rabbit corneal fibroblasts proliferated intensively in fluorescence photos after 72 hours of cell culture. After 8 weeks immersion in water and SBF, the scaffold’s weight varied obviously and a lot of apatite deposited along the internal surfaces of the porous structure, which demonstrated that the scaffold had good bioactivity and degradation property. The data herein reflect the promising utility of PVA/Gel scaffold as fringe scaffold of keratoprosthesis.
引文
[1] 马兴,胡蕴玉. 关节软骨损伤修复研究新进展. 中华创伤杂志. 2005, 21(10): 789-791.
    [2] 时述山, 胥少汀. 实用骨与软骨移植. 人民军医出版社. 北京. 2002. 98-129.
    [3] 林共周, 曲绵域. 关节软骨的损伤修复. 中国运动医学杂志. 1987, 8 (2): 102-105.
    [4] Ashiku SK, Randolph MA, Vacanti CA, et al. Tissue engineered cartilage. Materials Science Forum, 1997, 250: 129-150.
    [5] Kin KW, Moran ME, Salter RB, et al. The potential of regeneration of articular cartilage in defect created by chondral shaving and subchondral abrasion. An experimental investigation in rabbits. J Bone Joint Surg (Am), 1991, 73(9): 1301-1315.
    [6] Convery RF, Akeson WH,Keown GH. The repair of large osteochondral defects.An experiment study in horse. Clin Orthop, 1972, 82: 253-262.
    [7] Takao M, Uchio Y, Kakimaru H, et al. Arthroscopic drilling with debridement of remaining cartilage for os teochondral les ions of the talar dome in uns table ankles. Am J Sports Med 2004; 32(2):332-336.
    [8] 靳小兵, 娄思权. 组织工程方法修复关节软骨缺损. 中国微创外科杂志. 2005, 5 (8):685-687.
    [9] 吴丽君, 郭新明. 关节软骨伤病防治. 2003. 12-16.
    [10] 何翠菊. 关节透明软骨损伤的MR成像序列研究. 中国医科大学硕士学位论文. 2002. 14.
    [11] Shapiro F, Kiod S, Gincher G. Cell origin and differentiation in the repair of full thickness defect of articular cartilage. J Bone joint Surg (Am). 1996, 74 (4): 532.
    [12] 翁习生. 关节软骨损伤的治疗(上), 医学信息手术学分册. 2006, 19(1): 7-9.
    [13] 翁习生. 关节软骨损伤的治疗(下), 医学信息手术学分册. 2006, 19(3): 3-5.
    [14] 马兴, 胡蕴玉. 关节软骨损伤修复研究新进展. 中华创伤杂志. 2005, 21(10):789-791.
    [15] 张飞, 武宇赤. 骨关节炎软骨细胞凋亡的研究进展. 内蒙古医学院学报. 2005, 27(5):138-141.
    [16] N akagawa T, Yasuda T, Hoshikawa H, et al. LOX-1 expressed in cultured rat chondrocytes mediates oxidized LDL-induced cell death-possible role of dephosphorylation of Akt. Biochem Biophys Res Commun. 2002, 299 (1): 91-97.
    [17] Aigner T, Hemmel M, Neureiter D, et al. Apoptotic cell death is not awide spread phenomenon innormal aging and osteoarthrit is human articular knee cartilage. ArthritisRheum, 2001; 44 (6): 1304-1312.
    [18] 彭雪林, 张利, 李玉宝, 吴坚. 关节软骨缺损修复的研究与进展. 中国组织工程研究与临床康复. 11(2):336-339.
    [19] 官丙刚, 杨迪生, 关节软骨缺损修复方法及疗效. 27(3): 166-168.
    [20] 杨宗宇, 张俐. 关节软骨损伤修复的研究进展. 中国中医骨伤科杂志. 2005, 13(5):70-72.
    [21] Takao M, Uchio Y, Kakimaru H, et al. Arthroscopic drilling with debridement of remaining cartilage for osteochondral les ions of the talardome in unstable ankles. Am J Sports Med 2004, 32(2):332-336.
    [22] Buckwalter JA. Cartilage researchers tell progress: technologies hold promise, but caution urged. American Academy of Orthopaedic Surgeons Bulletin 1996, 44 (2):24226.
    [23] Seradge H, Kutz JA, Kleinert HE et al. Perichondrialresurfacing arthroplasty in the hand. Journal of Hand Surgery American Volume 1984, 9(6): 880-886.
    [24] Buckwalter JA, Woo SL-Y, Goldberg VM et al. Soft tissue aging and musculoskeletal function. The Journal of Bone and Joint Surgery, 1993, 75A: 1533-1548.
    [25] Moseley JB, O’Malley K, Petersen NJ et al. A controlled trial of arthroscopic surgery for osteoarthritis of the knee. The New England Journal of Medicine, 2002, 347(2): 81-88.
    [26] Kim HKW, Moran ME & Salter RB. The potential for regeneration of articular cartilage in defects created by chondral shaving and subchondral abrasion. The Journal of Bone and Joint Surgery, 1991, 73 - A: 1301-1315.
    [27] Barber FA, Chow JC. Arthroscopic osteo–chondral transplantation: histologic results. Arthroscopy, 2001, 17: 832-835.
    [28] Hangody, LaszloMD, Duska et al. Autologous osteochondral mosaicplasty. Techniques in Knee Surgery. J Bone Joint Sur (Am), 2003, 1(1): 13-22.
    [29] Ghazavi MT, Pritzker KP, Davis AM, et al. Fresh osteochondral allografts for post-traumatic osteochondral defects of the knee. J Bone Joint Surg (Br). 1997, 79(6):1008-1013.
    [30] Itay S, Abramovici A, Ysipovitch Z & Nevo Z. Correction of defects in articular cartilage by implants of cultures of embryonic chondrocytes. Transaction of Orthopaedic Research Society, 1988; 13: 112.
    [31] Brittberg M, Lindahl A, Nilsson A, et al. Treatment of deep cartilage defects in the knee with autologous chondrocyte transplantation. The New England Journal of Medicine, 1994, 331: 889-895.
    [32] Marcacci M, Kon E, Zaffagnini S et al. New cell–based technologies in bone and cartilage tissue engineering, II. Cartilage regeneration. La Chirurgia Degli Organi Di Movimento 2003; 88(1): 42-47.
    [33] Henderson I, Tuy B & Oakes B. Reoperation after autologous chondrocyte implantation. Indications and findings. The Journal of Bone and Joint Surgery British, 2004, 86(2): 205-211.
    [34] Gillogly SD. Treatment of large full - thickness chondral defects of the knee with autologous chondrocyte implantation. Arthroscopy, 2003, 19 (supplement 1): 147-153.
    [35] Hickey DG, Frenkel SR, Di Cesare PE. Clinical applications of growth factors for articular cartilage repair. Am J Orthop, 2003, 32 (2):70-76.
    [36] Burger D, Dayer JM. Inhibitory cytokines and cytokine inhibitors. Neurology, 1995 ,45(6 Suppl. 6) :39-43.
    [37] Itoh S, Itoh F, Goumans MJ, et al. Signaling of transforming growth factor-beta family members through Smad proteins. Eur J Biochem, 2000, 267 (24):6954-6967.
    [38] Aging. Osteoarthritis and transforming growth factor-β signalingin cartilage. J orthop Res, 1998, 445-454.
    [39] Feng XH, Derynck R. Specificity and versatility in TGF-β signaling through Smads. Annu Rev Cell Dev Bioly, 2005, 21:659-693.
    [40] Vivien D, Galera P, Lebrun E, et al. Differential effects of transforming growth factor-β and epidermal growth factor on the cell cycle of cultured rabbit articular chondrocytes. J Cell Physiol, 1990, 143 (3):534-545.
    [41] Frenkel SR, Saadeh PB, Mehrara BJ, et al. Transforming growth factor beta superfamily members: role in cartilage modeling. Plast Reconstr Surg, 2000, 105 (3):980-990.
    [42] Miura Y, Parvizi J, Fitzsimmons J S, et al. Brief exposure to high- dose transforming growth factor-beta1 enhances periosteal chondrogenesis in vitro: a preliminary report. J Bone Joint Surg Am, 2002, 84-A (5):793-799.
    [43] Blaney Davidson EN, Vitters EL, van der Kraan PM, et al. Expression of TGF-beta and theTGF-beta signaling molecule SMAD-2P in spontaneous and instability-induced osteoarthritis Role in cartilage degradation, chondrogenesis and osteophyte formation. Ann Rheum Dis, 2006, 26.
    [44] Boumediene K, Conrozier T, Mathieu P, et al. Decrease of cartilage transforming growth factor-beta receptor II expression in the rabbit experimental steoarthritis-potential role in cartilage breakdown. Osteoarthritis Cartilage, 1998, 6(2):146-149.
    [45] Iqbal J, Dudhia J, Bird JL, et al. Age-related effects of TGF-beta on proteoglycan synthesis in equine articular cartilage.
    [46] Keating EM, Meding JB, Faris PM, et al. Long-term followup of nonmodular total knee replacements. Clin Orthop Relat Res, 2002, (404):34-39.
    [47] Babis GC, Trousdale RT, Morrey BF. The effectivenes s of isolated tibial insert exchange in revis ion total knee arthroplas ty. J Bone Joint Surg Am, 2002, 84-A(1):64-68.
    [48] Meding JB, Keating EM, Ritter MA, et al. Minimum ten-year follow-up of a straight-stemmed, plasma-sprayed, titanium-alloy, uncemented femoralcomponent in primary total hip arthroplas ty. J Bone Joint Surg Am, 2004; 86-A (1):92-97.
    [49] Colizza WA, Insall JN, Scuderi GR. The posterior stabilized total knee prosthesis. Assessment of polyethylene damage and osteolys is after a ten-year-minimum follow-up. J Bone Joint Surg AM, 1995; 77(11):1713-1720.
    [50] Berend ME, Ritter MA, Keating EM, et al. The failure of all-polyethylene patellar components in total knee replacement. Clin Orthop Relat Res, 2001, 388(7):105-111.
    [51] Sharkey PF, Hozack WJ, Rothman RH, et al. Why are total knee arthroplas ties failing today. Clin Orthop, 2002, 404(11):7-13.
    [52] Kaihara S, Vacanti JP. Tissue Engineering. Toward Now Solution for Transplantation and Reconstructive Surgery, Arch, 1999, 134:1184-1188.
    [53] Tristan DC, John HP, Aleksander H. Bioengineering of elastic cartilage with aggregated porcine and human auricular chondrocytes and hydrogels containing alginate, collagen, and k-elastin. J Biomed Mater Res, 1999, 44:280-288.
    [54] Petrini P, Fare S, Piva A, Tanzi MC. Design, synthesis and properties of polyurethane hydrogels for tissue engineering. J Mater Sci: Mater Med, 2003, 14:683-686.
    [55] Martin I, Wendt D, Heberer M. The role of bioreactors in tissue engineering. TrendsBiotech, 2004, 22: 80-86.
    [56] 吴丽君, 郭新明. 关节软骨伤病防治. 人民军医出版社. 2003. 13-15.
    [57] 袁歆, 张其清. 软骨组织工程支架材料研究进展. 中华整形外科杂志. 2002, 18(1): 49-51.
    [58] 李强, 孙正义. 软骨组织工程支架材料研究的现状. 中国组织工程研究与临床康复. 11(1): 133-136.
    [59] 鄂征, 刘流. 医学组织工种技术与临床应用. 北京出版社. 北京, 2003. 123.
    [60] Baek CH, Ko YJ. Characteris tics of tis sue-engineered cartilage on macroporous biodegradable PLGA scaffold. Laryngoscope, 2006, 116(10):1829-1834.
    [61] 田晋洪, 艾玉峰, 潘宝华, 等. 以聚羟基丁酸已酯为支架材料的组织工程隆鼻法的实验研究. 中国美容医学. 2006, 15(4): 376-379.
    [62] 李文辉, 侯筱魁, 汤亭亭, 等. 藻酸钙复合材料构建组织工程化骨及软骨的实验. 中国临床康复, 2005, 9(26): 237-239.
    [63] 王立春, 张旗涛, 张宏颖. 纤维蛋白凝胶基质材料用于组织工程修复兔关节软骨缺损与Ⅰ型胶原凝胶和混合凝胶性能特征的比较. 中国临床康复, 2005, 9(26): 116-118.
    [64] 范宏斌, 胡蕴玉, 吴红, 等. 转化生长因子明胶微球制备及体外缓释研究. 中国矫形外科杂志. 2005, 13(3): 208-211.
    [65] 卢华定, 蔡道章, 黄冬梅, 等.Ⅰ型胶原三维立体支架高密度培养软骨细胞的增殖及其分泌功能. 中国临床康复, 2005, 9(18): 62-65.
    [66] Wang Y, Kim HJ, Vunjak-Novakovic G, et al. Stem cell-based tissue engineering with silk biomaterials. Biomaterials, 2006, 27(36):6064-6082.
    [67] 刘彦清, 王炜, 曹宜林, 等. 卵磷脂、多聚赖氨酸和PLA包埋聚羟基乙酸与软骨细胞体外培养的实验研究. 实用美容整形外科杂志, 1997, 8 (5):225-227.
    [68] Puelacher WC, Wisser J, Vacanti CA, et al. Temporomandibular Jointdisc replacement made by tissue-engineered growth of cartilage. J OralMaxillofac Surg, 1994, 52:1172-1177.
    [69] Chu CR, Coutts RD, Yoshioka M, et al. Articular cartilage repair using allogeneic perichondrocyte-seeded biodegradable porous polylacticacid (PLA): a tissue-engineering study. J Biomed Mater Res, 1995, 29:1147-1154.
    [70] Lohmann CH, Schwartz Z, Niederauer GG, et al. Pretreatment with platelet derived growth factor-BB modulates the ability of costochondral resting zone chondrocyte incoporatedPLAPPGA scaffolds to form new cartilage in vivo. Biomaterials, 2000, 21:49-61.
    [71] Sims CD, Butler PE, Cao YL, et al. Tissue engineered neocartilage using plasma derived polymer substrates and chondrocytes. Plast Reconstr Surg, 1998, 10:1580-1585.
    [72] Ting V, Sims CD, Brecht LE, et al. In vitro prefabrication of human cartilage shapes using fibrin glue and human chondrocytes. Ann Plast Surg, 1998, 40:413-421.
    [73] Haisch A, Schultz O, Perka C, et al. Tissue engineering of human cartilage tissue for reconstructive surgery using biocompatible resorbable fibrin gel and polymer carriers. HNO, 1996, 44:624-629.
    [74] Aigner J, Tegeler J, Hutzler P, et al. Cartilage tissue engineering with novel nonwvoen structured biomaterial based on hyaluronic acid benzyl ester. J Biomed Mater Res, 1998, 42:172-181.
    [75] Huselman HJ, Masuda K, Hunziker EB , et al. Adult human chondrocytes cultured in alginate form a matrix similar to native human articular cartilage. Am J Physiol, 1996, 273 (3 Pt 1):C742-752.
    [76] Robinson D, Efrat M, Mendes DG, et al. Implant composed of carbon fiber mesh and bone marrow derived, chondrocytes enriched cultures for joint surface reconstruction. BullHosp J Dis, 1993, 53:75-88.
    [77] 张文涛, 卢世璧, 王继芳, 等. 组织工程软骨移植修复兔膝关节软骨缺损. 中华外科杂志, 1998, 36:591-593.
    [78] 陈书军,组织工程软骨的构建及修复关节软骨缺损的实验研究,第四军医大学博士学位论文. 2003. 16.
    [79] Kimura T, Yasui N, Ohsawa S, et al. Chondrocytes embedded in collagen gels maintain cartilage phenotype during long-term cultures. Clin Orthop Rel Res, 1984, 186:231.
    [80] Kawarmura S, Wakitani S, Kimura T, Maeda A, Caplan AI, Shino K, et al. Articular cartilage repair: Rabbit experients with a collagen gel-biomatrix and chondrocytes cultured in it. Acta Orthop Scand, 1998; 69:56-62.
    [81] Frenkel S, Toolan B, Menche D, Pitman M, Pachence J. Chondrocyte transplantation using a collagen bilayer matrix for cartilage repair. J Bone Joint Surg, 1997; 79B: 831-836.
    [82] diaz-flores l, Rodriguez e, gayoso mj, Gutierrez r. Growth of two types of cartilage after implantation of free autogeneic perichondrial grafts. Clin Orthop, 1988, (234):267-279.
    [83] Bulstra SK, Homminga GN, Buurman WA, Terwindt-Rouwenhorst E, van der Linden AJ. The potential of adult human perichondrium to form hyaline cartilage in vitro. J Orthop Res, 1990, 8(3):328-335.
    [84] Chu CR, Coutts RD, Yoshioka M, Harwoodd FL, Monosov AZ, Amiel D. Articular cartilage repair using allogeneic perichondrocyte-seeded biodegradable porous polylactic acid (PLA): a tissue-engineering study. J Biomed Mater Res, 1995, 29(9):1147-1154.
    [85] O’Driscoll SW, Fitzsimmons JS. The role of periosteum in cartilage repair. Clin Orthop, 2001, (391 Suppl): S190-207.
    [86] Evans MJ, Kaufman MH. Establishment inculture of pluripotential cell from mouse embryos. Nature, 1981, 292: 154-156.
    [87] Kramer J, Hegert C, Guan K. Embryonic stemcell-derived chondrogenic differentiation in vitro: activation by BMP-2 and BMP-4. Mech Dev, 2000, 92(2): 193-205.
    [88] Blunk T, Sieminski AL, Gooch KJ, Courter DL, Hollander AP, Nahir AM, Langer R, Vunjak-Novakovic G, Freed LE. Differential effects of growth factors on tissue-engineered cartilage. Tissue Eng, 2002, 8(1): 73-84.
    [89] Van Beuningen HM, Van der Kraan PM, Arntz OJ, Van den Berg WB. In vivo protection against interleukin-1-induced articular cartilage damage by transforming growth factor-1: age relate differences. Ann Rheum Dis, 1994; 53:593-600.
    [90] Glansbeek HJ,Van Beuningen HM, Vitters EL, Morris EA,Van der Kraan PM, Van den Berg WB. BMP-2 stimulates articular proteoglycan synthesis in vivo but is not able to counteract IL-1 effects on proteoglycan synthesis and content. Arthritis Rheum, 1997, 40: 1020-1028.
    [91] Glansbeek HJ, Van Beuningen HM, Vitters EL, Van der Kraan PM, Van den Berg WB. Stimulation of articular cartilage repair in established arthyritis by lacal administration of transforming growth factor ? into murine knee joints. Lab Invest, 1998, 78:133-142.
    [92] Van Osch GJ, Van den Berg WB, Hunziker EB, Hauselmann HJ. Differential effects of IGF-1 and TGF beta-2 on the assembly of proteoglycans in pericellular and territorial matrix by cultured bovine articular chondrocytes. Osteoarthritis Cartilage, 1998, 6(3):187-195.
    [93] Gelse K, Von Der Mark K, Aigner T, Park J, Schneider H. Articular cartilage repair by genetherapy using growth factor-producing mesenchymal cells. Arthritis Rheum, 2003, 48(2):430-441.
    [94] Hunziker EB, Rosenberg LC. Repair of partial-thickness defects in articular cartilage: cell recruitment from the synovial membrane. J Bone Joint Surg Am, 1996, 78(5): 721-733.
    [95] Cuevas P, Burgos J, Baird A. Basic fibriblast growth factor (FGF) promotes cartilage repair in vivo. Biochem Biophys Res Commun, 1988, 156 (2):611-618.
    [96] 牟元华. 新型一体化骨与软骨组织嵌层修复材料的设计与研制. 四川大学博士学位论文. 2006. 1-20.
    [97] Ringsdorf H. Structure and properties of pharmacologically active polymers J Polym Sci Polym Symp. 1975, 51, 135-153.
    [98] 宋淑华,卢英,旋化莲, 等. 医用硅橡胶与聚乙烯醇的细胞毒性试验. 中国医学生物工程学报. 1988, 7(21): 98.
    [99] 周述芳, 等. 聚乙烯醇(PVA)的安全性研究. 药学通报, 1987, 10: 594.
    [100] 郑振源, 等. 3H-聚乙烯醇在大鼠体内吸收分布与排泄的研究. 医药工业. 1986, 7:24.
    [101] 李玉宝. 生物医学材料. 化学工业出版社. 北京. 2003. 27.
    [102] 李玉宝, 顾宁, 魏于全. 纳米生物医药材料. 化学工业出版社. 北京. 2004. 3.
    [103] Y B Li, K. DE Groot, J Mater Sci. Mater. Med. 1994. 5: 326.
    [104] 徐润, 梁庆华. 明胶的生产及应用技术. 中国轻工业出版社. 1997. 28.
    [105] 章爱娣, 劳国强. 明胶生产工艺及设备. 中国轻工业出版社. 1996. 11.
    [106] 邱凯, 陈馨, 李天全, 等. 生物活性短肽RGD在骨组织诱导再生中的研究进展. 生物医学工程学杂志, 2003, 20 (3): 546-549.
    [107] 吴李国, 章悦庭, 蔡禄生, 胡绍华. 冷冻-解冻法制聚乙烯醇水凝胶研究进展. 化工新型材料. 2001, 29(11): 18-20.
    [108] 李希明, 等. 高含水聚乙烯醇弹性体. 高分子学报. 1989, 5: 519-523.
    [109] 柳明珠, 等. 聚乙烯醇水凝胶溶胀特性研究. 高分子学报, 1996, 2: 234-238.
    [1] 时述山, 胥少汀. 实用骨与软骨移植. 北京: 人民军医出版社,2002. P5
    [2] 郭大刚, 徐可为..生物医学工程学杂志, 2005, 22(3 ): 602-605.
    [3] Neil D, Adekunle O. Biomaterials, 1998, 19:1179-1188.
    [4] Stephanie J B, Kristi S A. Biomaterials, 2001, 22: 619-626.
    [5] 李玉宝. 纳米生物医药材料. 北京: 化学工业出版社, 2004. P40.
    [6] 腾谋勇, 黄明智,等.明胶科学与技术, 2001,21(4): 169-175.
    [7] Frank R, Dietmar S, et al. Urology, 2003, 61(1): 73-77.
    [8] Li YB, K. DE Groot. J Mater Sci: Mater. Med. 1994, 5, P326
    [9] 许凤兰, 李玉宝,等. 功能材料, 2004, 35(4): 509-512.
    [10] Yubao L, Wijn J, Cpat K, et al. Mate Sic Mater Med. 1994, (5): 252.
    [11] 韩颂军, 杨荣杰. 材料导报, 1997, 11(2): 43-45.
    [12] Cornwall GB, Hansson CM. J in Med. 1997, 8, P303
    [13] 吴丽君, 郭新明. 关节软骨伤病防治. 北京: 人民军医出版社, 2003. 1.
    [14] Kurkijarvi JE, Nissi MJ. Magnetic Resonance in Medicine 2004, 52, P41.
    [1] John PF, Seongbong J, Antonios GM, Reddi AH. Thermoreversible hydrogel scaffolds for articular cartilage engineering. J Biomed Mater Res, 2004,71A:268-274.
    [2] Tristan DC, John HP, Aleksander H. Bioengineering of elastic cartilage with aggregated porcine and human auricular chondrocytes and hydrogels containing alginate, collagen, and k-elastin. J Biomed Mater Res. 1999, 44:280-288.
    [3] Petrini P, Fare S, Piva A, Tanzi MC. Design, synthesis and properties of polyurethane hydrogels for tissue engineering. J Mater Sci: Mater Med. 2003,14:683-686.
    [4] Yu JY, Zhao F, Song XF, Yao KD, William WL, Leong JC. Preparation and characterization of hydroxyapatite/chitosan-gelatin network composite. J Appl Polym Sci. 2000,77:2929-2938.
    [5] Bigi A, Boanini E, Panzavolta S, Roveri N, Rubini K. Bonelike apatite growth on hydroxyapatite-gelatin sponges from simulated body fluid. J Biomed Mater Res. 2002, 59:709-714.
    [6] Wang MB, Li YB, Xu FL, Zhou G, Cheng L. Synthesis and characterization of n-HA/PVA/Gel composite. Key Engineering Materials. 2007, 330-332:471-474.
    [7] Li YB, De Groot K, De Wign J, Klein CPAT, Van Der Meer S. Morphology and composition of nanograde calcium phosphate needle-like crystals formed by simple hydrothermal treatment. J Mater Sci: Mater Med. 1994, 5:326-331.
    [8] Chow KS, Khor E, Wan ACA. Porous chitin matrixes for tissue engineering: fabrication and in vitro cytotoxic assessment. J Polym Res. 2001, 8:27-35.
    [9] Wang M, Chen LJ, Ni J, Weng J, Yue CY. Manufacture and evaluation of bioactive and biodegradable materials and scaffolds for tissue engineering. J Mater Sci: Mater Med. 2001, 12:855-860.
    [10] Mu YH, Li YB, Wang MB. Novel method to fabricate porous n-HA/PVA hydrogel scaffolds. Mater Sci Forum. 2006, 511:878-881.
    [11] Shukla S, Bajpai AK, Baipai J. Swelling controlled delivery of antibiotic from a hydrophilic macromolecular matrix with hydrophobic moieties. Macromol Res. 2003, 11:273-282.
    [12] Bajpai AK, Saini R. Preparation and characterization of biocompatible spongy cryogels of poly (vinyl alcohol)-gelatin and study of water sorption behaviour. Polym Int. 2005,54:1233-1242.
    [13] Yokoyama F, Masada I, Shimamura K, Ikava T, Monobe K. Morphology and structure of highly elastic poly (vinyl alcohol) hydrogel prepared by repeated freezing-and-melting. Colloid Polym Sci. 1986, 264:595-601.
    [14] Edith van den B, Constant G. Gelatin degradation at elevated temperature. Int J Biol Macromol. 2003, 32:129-138.
    [15] Barreto PLM, Pires ATN, Soldi V. Thermal degradation of edible films based on milk proteins and gelatin in inert atmosphere. Polym Degrad Stabil. 2003, 79:147-152.
    [16] Boyanova M, Stambolieva N, Apostolov AA, Fakirov S. Dissolution and enzymatic degradation studies before and after artificial ageing of silk- or linen-reinforced gelatin laminates, 1 non-enzymatic solubilization. Macromol Mater Eng. 2003, 288:399-406.
    [17] Boyanova M, stambolieva N, Apostolov AA, Fakirov S. Dissolution and enzymatic degradation studies before and after artificial ageing of silk- or linen-reinforced gelatin laminates, 2 enzymatic degradation. Macromol Mater Eng. 2003, 288:407-411.
    [18] Wei-Qi Y, Masanori O, Takashi N. Bone bonding in bioactive glass ceramics combined with bone matrix gelatin. J Biomed Mater Res. 1998, 42:258-265.
    [19] Huveneers-oorsprong MBM, Hoogenboom LAP, Kuiper HA. The use of the MTT test for determining the cytotoxicity of veterinary drugs in pig hepatocytes. Toxicology in Vitro. 1997, 11:385-392.
    [20] Fotakis G, Timbrell JA. In vitro cytotoxicity assays: Comparison of LDH, neutral red, MTT and protein assay in hepatoma cell lines following exposure to cadmium chloride. Toxicology Letters. 2006, 160:171-177.
    [21] China Standard, GB/ T 16886.5-1997, biological evaluation of medical devices-Part 5: Tests for cytotoxicity: in vitro methods.
    [22] Dalev P, Vassileva E, Mark JE, Fakirov S. Enzymatic degradation of formaldehyde- crosslinked gelatin. Biotechnology Techniques. 1998, 12:889-892.
    [1] Vasiliev AV, Makarov PV, Rogovaya OS. Biology Bulletin. 2005, 32:1.
    [2] Neill AO, Mannis MJ. Cornea, 2002, 21:1.
    [3] Chu W. Cornea, 2000, 19:754.
    [4] Ousley PJ, Terry MA. Cornea, 2002, 21:181.
    [5] Germain L, Carrier P, Auger, FA. Progress in Retinal and Eye Research, 2000, 19: 497.
    [6] Wang M, Chen LJ, Ni J, Weng J, Yue CY. J Mater Sci: Mater Med, 2001, 12:855.
    [7] Li YB, Xu FL. Preparation of nano-hydroxyapatite/polyvinyl alcohol composite hydrogel, Patent, CN: 10110815. 2003.
    [8] Li YB, Xu FL. Bioactive artificial cornea and its preparation method, Patent, CN:10021915. 2004.
    [9] Xu FL, Li YB, Wang XJ. J Mater Sci, 2004, 39:5669.
    [10] Chow KS, Khor E, Wan ACA. Journal of Polymer Research, 2001, 8:27.
    [11] Mineo W. Nippon Shokuhin Kogyo Gakkaishi, 1984, 31:38.
    [12] Petrini P, Fare S, Piva a, Tanzi MC. J Mater Sci: Mater Med, 2003, 14:683.
    [13] Mu YH, Li YB, Wang MB. Materials Science Forum, 2006, 511:878.
    [14] Shukla S, Bajpai AK, Bajpai J. J Makromol Res, 2003, 11:273.
    [15] Petrini P, Fare S, Piva A, Tanzi MC. J Mater Sci: Mater Med, 2003, 14:683.
    [16] Yokoyama F, Masada I, Shimamura K, IkawA T, Monobe K. Colloid Polym Sci, 1986, 264:595.
    [17] Huveneers-Oorsprong MBM, Hoogenboom LAP, Kuiper HA. Toxicology in Vitro, 1997, 11:385.
    [18] Fotakis G, Timbrell JA. Toxicology Letters, 2006, 160:171.
    [19] China, GB/ T 16886.5-1997.
    [20] Bosch E, Gielens C. International Journal of Biological Macromolecules, 2003, 32: 129.
    [21] Barreto PLM, Pires ATN, Soldi V. Polymer Degradation and Stability, 2003, 79: 147.
    [22] Boyanova M, Stambolieva N, Apostolov AA, Fakirov S. Maromol Mater Eng, 2003, 288:399.
    [23] Boyanova M, Stambolieva N, Apostolov AA, Fakirov S. Macromol Mater Eng, 2003, 288:407.