hMSCs与Col及Col-HA支架体外复合构建软骨及软骨下骨的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
关节软骨以及软骨下骨的损伤是骨科临床的常见疾病。临床对关节软骨损伤治疗的手段不少,但效果都不太理想。研究表明,骨髓基质干细胞作为一种具有多向分化潜能的干细胞,在适当的条件下可以被诱导分化成为软骨细胞和成骨细胞。本实验主要利用骨髓基质干细胞的这一特性,对其进行成软骨和成骨诱导,建立诱导和鉴定体系;并在这基础上,把骨髓基质干细胞与生物支架材料复合培养,在体外构建工程软骨和软骨下骨修复体。本研究主要成果如下:
     (1)从人骨髓中成功分离出长梭形、漩涡状分布的贴壁细胞,并通过流式细胞术证明分离并纯化得到的贴壁细胞确实是人骨髓基质干细胞hMSCs。
     (2)分离得到的hMSCs在成软骨诱导液的培养条件下高密度培养,得到直径约为0.5 mm的细胞微团。通过阿辛蓝染色、II型胶原的免疫组织化学染色、糖胺聚糖定量qRT-PCR等方法,从组织化学和分子生物学的层面对诱导结果进行检测和验证,最终建立了hMSCs成软骨的诱导和鉴定体系。
     (3)分离得到的hMSCs使用成骨诱导液进行单层培养,对成骨诱导21天的细胞进行碱性磷酸酶ALP染色、茜素红染色和I型胶原的免疫组织化学染色、碱性磷酸酶定量和qRT-PCR等,在组织化学和分子生物学的水平上对诱导结果进行检测和验证,最后成功的建立了hMSCs成骨的诱导和鉴定体系。
     (4)把得到的hMSCs接种到生物支架材料上。利用前文建立的成软骨诱导和鉴定体系,对COL和COL-HA两种生物支架材料进行比较。结果显示,COL生物支架材料相对于COL-HA生物支架材料更适合用于软骨缺损的修复。
     把得到的hMSCs接种到生物支架材料上。利用前文建立成骨诱导和鉴定体系,对COL和COL-HA两种生物支架材料的成骨特性进行比较。比较结果显示,COL-HA生物支架材料相对于COL生物支架材料更适合用于软骨下骨或骨组织缺损的修复。
Articular cartilage and subchondral bone damage is a common orthopedic disease. There are not many treatments that can be used in articular cartilage injury in clinic, yet the effects are not very satisfactory. Studies have shown that bone marrow stromal cells,a kind of pluripotent stem cells,can be induced to differentiate into chondrocytes and osteoblasts under appropriate conditions. This experiment mainly used this feature of bone marrow stromal stem cells to find ways to induce them into chondrocytes and osteoblasts, and also established the induction and appraisal system; Then, on this basis,the bone marrow stromal cells were cultured with the scaffold biomaterials,and the engineering cartilage and subchondral bone restorations were constructed in vitro. The results of this study are as follows:
     (1) The adherent cells, with long spindle shapes and whirllike distributions, which were successfully isolated from human bone marrow, have also been proved to be human bone marrow stromal cells (hMSCs) by flow cytometry.
     (2) The isolated hMSCs were cultured with high density in the chondrocytes inducing culture solution,then the micromass with a rough diameter of 0.5 mm were obtained.Through alcian blue staining, type II collagen immunohistochemical staining,glycosaminoglycan quantitative, qRT-PCR and other methods,the results of induction were tested on histochemistry and molecular biology levels, ultimately the inducing and identifying systems of hMSCs differentiating into cartilage were established.
     (3) The isolated hMSCs were cultured in osteogenic inducing solution by monolayer culture.Cells cultured for 21 days were used to do the experiments of alkaline phosphatase ALP staining, alizarin red staining and type I collagen immunohistochemical staining, quantitative alkaline phosphatase ,qRT-PCR and other methods, the results of induction were tested and verified on histochemistry and molecular biology levels, ultimately the inducing and identifying systems of hMSCs differentiating into osteoblasts were established.
     (4) The hMSCs were then seeded in the scaffolds of biomaterials. Using the previously established inducing and identifying systems of hMSCs,the scaffolds of the COL and COL-HA were compared in the properties of differentiating into cartilage. The results showed that COL scaffolds were more suitable for cartilage defect repair than the COL-HA scaffolds.
     (5) The hMSCs were seeded in the scaffolds of biomaterials. Using the previously established inducing and identifying systems of hMSCs,the scaffolds of the COL and COL-HA were compared in the properties of differentiating into osteoblasts. The results showed that COL-HA scaffolds were more suitable for the subchondral bone or bone defects repair than the COL scaffolds.
引文
[1] Hardingham T., Articular cartilage [M]. Oxford, UK: Oxford textbook of rheumatology. 2004.
    [2] Kuettner K.E., Biochemistry of articular cartilage in health and disease [J]. Clinical Biochemistry, 1992. 25(3): p. 155-163.
    [3] Dowthwaite G.P., et al., The surface of articular cartilage contains a progenitor cell population [J]. J Cell Sci, 2004. 117(6): p. 889-897.
    [4] Hayes A.J., et al., The development of articular cartilage: evidence for an appositional growth mechanism [J]. Anatomy and Embryology, 2001. 203(6): p. 469-479.
    [5] Sandell L.J. and Aigner T., Articular cartilage and changes in arthritis - An introduction: Cell biology of osteoarthritis [J]. Arthritis Research, 2001. 3(2): p. 107-113.
    [6] Luyten F.P., Mesenchymal stem cells in osteoarthritis [J]. Current Opinion in Rheumatology, 2004. 16(5): p. 599-603.
    [7] Tuan R.S., Boland G. and Tuli R., Adult mesenchymal stem cells and cell-based tissue engineering [J]. Arthritis Research & Therapy, 2003. 5(1): p. 32-45.
    [8] Heng B.C., Cao T. and Lee E.H., Directing stem cell differentiation into the chondrogenic lineage in vitro [J]. Stem Cells, 2004. 22(7): p. 1152-1167.
    [9] Mackay A.M., et al., Chondrogenic differentiation of cultured human mesenchymal stem cells from marrow [J]. Tissue Engineering, 1998. 4(4): p. 415-428.
    [10] Pittenger M.F., et al., Multilineage potential of adult human mesenchymal stem cells [J]. Science, 1999. 284(5411): p. 143-147.
    [11] Ball S.G., Shuttleworth A.C. and Kielty C.M., Direct cell contact influences bone marrow mesenchymal stem cell fate [J]. International Journal of Biochemistry & Cell Biology, 2004. 36(4): p. 714-727.
    [12] Seo M.J., et al., Differentiation of human adipose stromal cells into hepatic lineage in vitro and in vivo [J]. Biochemical and Biophysical Research Communications, 2005. 328(1): p. 258-264.
    [13] Wislet-Gendebien S., et al., Plasticity of cultured mesenchymal stem cells: Switch from nestin-positive to excitable neuron-like phenotype [J]. Stem Cells, 2005. 23(3): p. 392-402.
    [14] Barry F., et al., Chondrogenic differentiation of mesenchymal stem cells from bone marrow: Differentiation-dependent gene expression of matrix components [J]. Experimental Cell Research, 2001. 268(2): p. 189-200.
    [15] DeLise A.M., Fischer L. and Tuan R.S., Cellular interactions and signaling in cartilage development [J]. Osteoarthritis and Cartilage, 2000. 8(5): p. 309-334.
    [16] Murdoch A.D., et al., Chondrogenic differentiation of human bone marrow stem cells in transwell cultures: Generation of Scaffold-free cartilage [J]. Stem Cells, 2007. 25: p. 2786-2796.
    [17] Sekiya I., et al., Dexamethasone enhances SOX9 expression in chondrocytes [J]. Journal of Endocrinology, 2001. 169(3): p. 573-579.
    [18] Huang W., et al., Signaling and transcriptional regulation in osteoblast commitment and differentiation [J]. Frontiers in Bioscience, 2007. 12: p. 3068-3092.
    [19] Kwan M.D., et al., Cell-based therapies for skeletal regenerative medicine [J]. Human Molecular Genetics, 2008. 17: p. R93-R98.
    [20] Barry F.P. and Murphy J.M., Mesenchymal stem cells: clinical applications and biological characterization [J]. The International Journal of Biochemistry & Cell Biology, 2004. 36(4): p. 568-584.
    [21] Caplan A.I., Mesenchymal stem cells [J]. Journal of Orthopaedic Research, 1991. 9(5): p. 641-650.
    [22] Marks SC H.D., The structure and development of bone [M]. San Diego, CA: Academic Press. 1996.
    [23] Bauer T.W. and Muschler G.F., Bone graft materials - An overview of the basic science [J]. Clinical Orthopaedics and Related Research, 2000(371): p. 10-27.
    [24] Boden S.D., et al., Use of Recombinant Human Bone Morphogenetic Protein-2 to Achieve Posterolateral Lumbar Spine Fusion in Humans: A Prospective, Randomized Clinical Pilot Trial 2002 Volvo Award in Clinical Studies [J]. Spine, 2002. 27(23): p. 2662-2673.
    [25] Cowan J.A.J., et al., Changes in Utilization of Spinal Fusionin the United States [J]. Neurosurgery, 2006. 59(1): p. 15-20 10.1227/01.neu.0000243276.09094.5f.
    [26] Stevens M.M., et al., In vivo engineering of organs: the bone bioreactor [J]. Proc Natl Acad Sci U S A, 2005. 102(32): p. 11450-5.
    [27] Silber J.S., et al., Donor Site Morbidity After Anterior Iliac Crest Bone Harvest for Single-Level Anterior Cervical Discectomy and Fusion [J]. Spine, 2003. 28(2): p. 134-139.
    [28] Lord C., et al., Infection in bone allografts. Incidence, nature, and treatment [J]. Journal of Bone and Joint Surgery-American Volume, 1988. 70(3): p. 369-376.
    [29] Pittenger M.F. and Martin B.J., Mesenchymal stem cells and their potential as cardiac therapeutics [J]. Circulation Research, 2004. 95(1): p. 9-20.
    [30] Spees J.L., et al., Internalized antigens must be removed to prepare hypoimmunogenic mesenchymal stem cells for cell and gene therapy [J]. Molecular Therapy, 2004. 9(5): p. 747-756.
    [31] Zuk P.A., et al., Human adipose tissue is a source of multipotent stem cells [J]. Molecular Biology of the Cell, 2002. 13(12): p. 4279-4295.
    [32] Lee M.W., et al., Mesenchymal stem cells from cryopreserved human umbilical cord blood [J]. Biochemical and Biophysical Research Communications, 2004. 320(1): p. 273-278.
    [33] Miura M., et al., SHED: Stem cells from human exfoliated deciduous teeth [J]. Proceedings of the National Academy of Sciences of the United States of America, 2003. 100(10): p. 5807-5812.
    [34] Toma J.G., et al., Isolation of multipotent adult stem cells from the dermis of mammalian skin [J]. Nature Cell Biology, 2001. 3(9): p. 778-784.
    [35] Kuznetsov S.A., et al., Circulating skeletal stem cells [J]. Journal of Cell Biology, 2001. 153(5): p. 1133-1139.
    [36] Dell'Accio F., De Bari C. and Luyten F.P., Microenvironment and phenotypic stability specify tissue formation by human articular cartilage-derived cells in vivo [J]. Experimental Cell Research, 2003. 287(1): p. 16-27.
    [37] Barbero A., et al., Plasticity of clonal populations of dedifferentiated adult human articular chondrocytes [J]. Arthritis and Rheumatism, 2003. 48(5): p. 1315-1325.
    [38] de la Fuente R., et al., Dedifferentiated adult articular chondrocytes: a population of human multipotent primitive cells [J]. Experimental Cell Research, 2004. 297(2): p. 313-328.
    [39] Liechty K.W., et al., Human mesenchymal stem cells engraft and demonstrate site-specific differentiation after in utero transplantation in sheep [J]. Nature Medicine, 2000. 6(11): p. 1282-1286.
    [40] Horwitz E.M., et al., Isolated allogeneic bone marrow-derived mesenchymal cells engraft and stimulate growth in children with osteogenesis imperfecta: Implications for cell therapy of bone [J]. Proceedings of the National Academy of Sciences of the United States of America, 2002. 99(13): p. 8932-8937.
    [41] Anselme K., et al., In vitro control of human bone marrow stromal cells for bone tissue engineering [J]. Tissue Engineering, 2002. 8(6): p. 941-953.
    [42] Stute N., et al., Autologous serum for isolation and expansion of human mesenchymal stem cells for clinical use [J]. Experimental Hematology, 2004. 32(12): p. 1212-1225.
    [43] Wakitani S., et al., Mesenchymal cell-based repair of large, full-thickness defects of articular cartilage [J]. Journal of Bone and Joint Surgery-American Volume, 1994. 76(4): p. 579-592.
    [44] Sekiya I., et al., Expansion of human adult stem cells from bone marrow stroma: Conditions that maximize the yields of early progenitors and evaluate their quality [J]. Stem Cells, 2002. 20(6): p. 530-541.
    [45] Wang D.W., et al., Influence of oxygen on the proliferation and metabolism of adipose derived adult stem cells [J]. Journal of Cellular Physiology, 2005. 204(1): p. 184-191.
    [46] Angele P., et al., Cyclic hydrostatic pressure enhances the chondrogenic phenotype of human mesenchymal progenitor cells differentiated in vitro [J]. Journal of Orthopaedic Research, 2003. 21(3): p. 451-457.
    [47] Karsenty G. and Wagner E.F., Reaching a genetic and molecular understanding of skeletal development [J]. Developmental Cell, 2002. 2(4): p. 389-406.
    [48] Capdevila J. and Belmonte J.C.I., Patterning mechanisms controlling vertebrate limb development [J]. Annual Review of Cell and Developmental Biology, 2001. 17: p. 87-132.
    [49] Steck E., et al., Induction of intervertebral disc-like cells from adult mesenchymal stem cells [J]. Stem Cells, 2005. 23(3): p. 403-411.
    [50] Yang X., et al., TGF-beta/Smad3 signals repress chondrocyte hypertrophic differentiation and are required for maintaining articular cartilage [J]. Journal of Cell Biology, 2001. 153(1): p. 35-46.
    [51] Gelse K., et al., Articular cartilage repair by gene therapy using growth factor-producing mesenchymal cells [J]. Arthritis and Rheumatism, 2003. 48(2): p. 430-441.
    [52] Brittberg M., et al., TREATMENT OF DEEP CARTILAGE DEFECTS IN THE KNEE WITH AUTOLOGOUS CHONDROCYTE TRANSPLANTATION [J]. New England Journal of Medicine, 1994. 331(14): p. 889-895.
    [53] Furumatsu T., et al., Smad3 induces chondrogenesis through the activation of SOX9 via CREB-binding protein/p300 recruitment [J]. Journal of Biological Chemistry, 2005. 280(9): p. 8343-8350.
    [54] Kypriotou M., et al., SOX9 exerts a bifunctional effect on type II collagen gene (COL2A1) expression in chondrocytes depending on the differentiation state [J]. DNA and Cell Biology, 2003. 22(2): p. 119-129.
    [55] Iwamoto M., et al., The balancing act of transcription factors C-1-1 and Runx2 in articular cartilage development [J]. Biochemical and Biophysical Research Communications, 2005. 328(3): p. 777-782.
    [56] Day T.F., et al., Wnt/beta-catenin signaling in mesenchymal progenitors controls osteoblast and chondrocyte differentiation during vertebrate skeletogenesis [J]. Developmental Cell, 2005. 8(5): p. 739-750.
    [57] Reyes M., et al., Purification and ex vivo expansion of postnatal human marrow mesodermal progenitor cells (Retracted article. See vol. 113, pg. 2370, 2009) [J]. Blood, 2001. 98(9): p. 2615-2625.
    [58] Niemeyer P., et al., Evaluation of Mineralized Collagen andα-Tricalcium Phosphate as Scaffolds for Tissue Engineering of Bone Using Human Mesenchymal Stem Cells [J]. Cells Tissues Organs, 2004. 177(2): p. 68-78.
    [59] Bruder S.P., et al., The effect of implants loaded with autologous mesenchymal stem cells on the healing of canine segmental bone defects [J]. Journal of Bone and Joint Surgery-American Volume, 1998. 80A(7): p. 985-996.
    [60] Perka C., et al., Segmental bone repair by tissue-engineered periosteal cell transplants with bioresorbable fleece and fibrin scaffolds in rabbits [J]. Biomaterials, 2000. 21(11): p. 1145-1153.
    [61] Kon E., et al., Autologous bone marrow stromal cells loaded onto porous hydroxyapatite ceramic accelerate bone repair in critical-size defects of sheep long bones [J]. Journal of Biomedical Materials Research, 2000. 49(3): p. 328-337.
    [62] Quarto R., et al., Repair of Large Bone Defects with the Use of Autologous Bone Marrow Stromal Cells [J]. N Engl J Med, 2001. 344(5): p. 385-386.
    [63] Bianco P. and Gehron Robey P., Marrow stromal stem cells [J]. The Journal of Clinical Investigation, 2000. 105(12): p. 1663-1668.
    [64] Satomura K., et al., Osteogenic imprinting upstream of marrow stromal cell differentiation [J]. Journal of Cellular Biochemistry, 2000. 78(3): p. 391-403.
    [65] Arinzeh T.L., et al., Allogeneic mesenchymal stem cells regenerate bone in a critical-sized canine segmental defect [J]. Journal of Bone and Joint Surgery-American Volume, 2003. 85A(10): p. 1927-1935.
    [66] Lu L.C., et al., Biodegradable polymer scaffolds for cartilage tissue engineering [J]. Clinical Orthopaedics and Related Research, 2001(391): p. S251-S270.
    [67] Chiang H.S., et al., Repair of porcine articular cartilage defect with autologous chondrocyte transplantation [J]. Journal of Orthopaedic Research, 2005. 23(3): p. 584-593.
    [68] Bouwmeester S.J.M., et al., Long-term results of rib perichondrial grafts for repair of cartilage defects in the human knee [J]. International Orthopaedics, 1997. 21(5): p. 313-317.
    [69] Hendrickson D.A., et al., CHONDROCYTE-FIBRIN MATRIX TRANSPLANTS FOR RESURFACING EXTENSIVE ARTICULAR-CARTILAGE DEFECTS [J]. Journal of Orthopaedic Research, 1994. 12(4): p. 485-497.
    [70] Rahfoth B., et al., Transplantation of allograft chondrocytes embedded in agarose gel into cartilage defects of rabbits [J]. Osteoarthritis and Cartilage, 1998. 6(1): p. 50-65.
    [71] Fu? M., et al., Characteristics of human chondrocytes, osteoblasts and fibroblasts seeded onto a type I/III collagen sponge under different culture conditions: A light, scanning and transmission electron microscopy study [J]. Annals of Anatomy - Anatomischer Anzeiger, 2000. 182(4): p. 303-310.
    [72] Nehrer S., et al., Canine chondrocytes seeded in type I and type II collagen implants investigated in vitro [J]. Journal of Biomedical Materials Research, 1997. 38(2): p. 95-104.
    [73] Ronziere M.C., et al., Ascorbate modulation of bovine chondrocyte growth, matrix protein gene expression and synthesis in three-dimensional collagen sponges [J]. Biomaterials, 2003. 24(5): p. 851-861.
    [74] Toolan B.C., et al., Effects of growth-factor-enhanced culture on a chondrocyte-collagen implant for cartilage repair [J]. Journal of Biomedical Materials Research, 1996. 31(2): p. 273-280.
    [75] Samuel R.E., et al., Delivery of Plasmid DNA to Articular Chondrocytes via Novel Collagen–Glycosaminoglycan Matrices [J]. Human Gene Therapy, 2002. 13(7): p. 791-802.
    [76] Baragi V.M., et al., Transplantation of adenovirally transduced allogeneic chondrocytes into articular cartilage defects in vivo [J]. Osteoarthritis and Cartilage, 1997. 5(4): p. 275-282.
    [77] Wakitani S., et al., Present status of and future direction for articular cartilage repair [J]. Journal of Bone and Mineral Metabolism, 2008. 26(2): p. 115-122.
    [78] Grigolo B., et al., Transplantation of chondrocytes seeded on a hyaluronan derivative (Hyaff (R)-11) into cartilage defects in rabbits [J]. Biomaterials, 2001. 22(17): p. 2417-2424.
    [79] Gao R.Z., et al., Repair of osteochondral defect with tissue-engineered two-phase composite material of injectable calcium phosphate and hyaluronan sponge [J]. Tissue Engineering, 2002. 8(5): p. 827-837.
    [80] Solchaga L.A., et al., Treatment of osteochondral defects with autologous bone marrow in a hyaluronan-based delivery vehicle [J]. Tissue Engineering, 2002. 8(2): p. 333-347.
    [81] Chenite A., et al., Novel injectable neutral solutions of chitosan form biodegradable gels in situ [J]. Biomaterials, 2000. 21(21): p. 2155-2161.
    [82] Frenkel S.R. and Di Cesare P.E., Scaffolds for articular cartilage repair [J]. Annals of Biomedical Engineering, 2004. 32(1): p. 26-34.
    [83] Caterson E.J., et al., Polymer/alginate amalgam for cartilage-tissue engineering [J]. Reparative Medicine: Growing Tissues and Organs, 2002. 961: p. 134-138.
    [84] Woodfield T.B., et al., Scaffolds for tissue engineering of cartilage [J]. Crit Rev Eukaryot Gene Expr, 2002. 12(3): p. 209-36.
    [85] Healy K.E., Rezania A. and Stile R.A., Designing biomaterials to direct biological responses [J]. Bioartificial Organs Ii: Technology, Medicine, and Materials, 1999. 875: p. 24-35.
    [86] Kus W.M., et al., Carbon fiber scaffolds in the surgical treatment of cartilage lesions [J]. Ann Transplant, 1999. 4(3-4): p. 101-2.
    [87] Temenoff J.S., et al., Effect of poly(ethylene glycol) molecular weight on tensile and swelling properties of oligo(poly(ethylene glycol) fumarate) hydrogels for cartilage tissue engineering [J]. Journal of Biomedical Materials Research, 2002. 59(3): p. 429-437.
    [88] Ng K.W., et al., A layered agarose approach to fabricate depth-dependent inhomogeneity in chondrocyte-seeded constructs [J]. Journal of Orthopaedic Research, 2005. 23(1): p. 134-141.
    [89] Schek R.M., et al., Engineered Osteochondral Grafts Using Biphasic Composite Solid Free-Form Fabricated Scaffolds [J]. Tissue Engineering, 2004. 10(9-10): p. 1376-1385.
    [90] Sherwood J.K., et al., A three-dimensional osteochondral composite scaffold for articular cartilage repair [J]. Biomaterials, 2002. 23(24): p. 4739-4751.
    [91] Mankani M.H., et al., In vivo bone formation by human bone marrow stromal cells: Effect of carrier particle size and shape [J]. Biotechnology and Bioengineering, 2001. 72(1): p. 96-107.
    [92] Goshima J., Goldberg V.M. and Caplan A.I., THE ORIGIN OF BONE FORMED IN COMPOSITE GRAFTS OF POROUS CALCIUM-PHOSPHATE CERAMIC LOADED WITH MARROW-CELLS [J]. Clinical Orthopaedics and Related Research, 1991(269): p. 274-283.
    [93] Ohgushi H., Goldberg V.M. and Caplan A.I., HETEROTOPIC OSTEOGENESIS IN POROUS CERAMICS INDUCED BY MARROW-CELLS [J]. Journal of Orthopaedic Research, 1989. 7(4): p. 568-578.
    [94] Jiang C.C., et al., Repair of porcine articular cartilage defect with a biphasic osteochondral composite [J]. Journal of Orthopaedic Research, 2007. 25: p. 1277-1290.
    [95] Hench L.L. and Polak J.M., Third-Generation Biomedical Materials [J]. Science, 2002. 295(5557): p. 1014-1017.
    [96] Kretlow J.D. and Mikos A.G., Review: Mineralization of Synthetic Polymer Scaffolds for Bone Tissue Engineering [J]. Tissue Engineering, 2007. 13(5): p. 927-938.
    [97] Liu C.Z. and Czernuszka J.T., Development of biodegradable scaffolds for tissue engineering: a perspective on emerging technology [J]. Materials Science and Technology, 2007. 23: p. 379-391.
    [98] Zijderveld S.A., et al., Maxillary sinus floor augmentation using a beta-tricalcium phosphate (Cerasorb) alone compared to autogenous bone grafts [J]. Int J Oral Maxillofac Implants, 2005. 20(3): p. 432-40.
    [99] Jell G. and Stevens M., Gene activation by bioactive glasses [J]. Journal of Materials Science: Materials in Medicine, 2006. 17(11): p. 997-1002.
    [100] Tsigkou O., et al., Enhanced differentiation and mineralization of human fetal osteoblasts on PDLLA containing Bioglass (R) composite films in the absence of osteogenic supplements [J].Journal of Biomedical Materials Research Part A, 2007. 80A(4): p. 837-851.
    [101] Liao S.S., Cui F.Z. and Zhu Y., Osteoblasts Adherence and Migration through Three-dimensional Porous Mineralized Collagen Based Composite: nHAC/PLA [J]. Journal of Bioactive and Compatible Polymers, 2004. 19(2): p. 117-130.
    [102] Pereira M.M., et al., Preparation of bioactive glass-polyvinyl alcohol hybrid foams by the sol-gel method [J]. Journal of Materials Science-Materials in Medicine, 2005. 16(11): p. 1045-1050.
    [103] Caplan A. and Bruder S., Mesenchymal stem cells: building blocks for molecular medicine in the 21st century [J]. Trends in Molecular Medicine, 2001. 7(6): p. 259-264.
    [104] Schaefer D., et al., Tissue engineering with mesenchymal stem cells for cartilage and bone regeneration [J]. Der Chirurg; Zeitschrift f r alle Gebiete der operativen Medizen, 2000. 71(9): p. 1001.
    [105] Gage F., Mammalian neural stem cells [J]. Science, 2000. 287(5457): p. 1433.
    [106] Hunziker E.B., Articular cartilage repair: basic science and clinical progress. A review of the current status and prospects [J]. Osteoarthritis and Cartilage, 2002. 10(6): p. 432-463.
    [107] Magne D., et al., Mesenchymal stem cell therapy to rebuild cartilage [J]. Trends in Molecular Medicine, 2005. 11(11): p. 519-526.
    [108] Maegawa N., et al., Enhancement of osteoblastic differentiation of mesenchymal stromal cells cultured by selective combination of bone morphogenetic protein-2 (BMP-2) and fibroblast growth factor-2 (FGF-2) [J]. Journal of Tissue Engineering and Regenerative Medicine, 2007. 1(4): p. 306-313.
    [109] Mauck R.L., Yuan X. and Tuan R.S., Chondrogenic differentiation and functional maturation of bovine mesenchymal stem cells in long-term agarose culture [J]. Osteoarthritis and Cartilage, 2006. 14(2): p. 179-189.
    [110] Johnstone B. and Yoo J.U., Autologous mesenchymal progenitor cells in articular cartilage repair [J]. Clinical Orthopaedics and Related Research, 1999(367): p. S156-S162.
    [111] Bell D.M., et al., SOX9 directly regulates the type-II collagen gene [J]. Nature Genetics, 1997. 16(2): p. 174-178.
    [112] Pratap J., et al., Cell growth regulatory role of Runx2 during proliferative expansion of preosteoblasts [J]. Cancer Research, 2003. 63(17): p. 5357-5362.
    [113] Shur I., et al., Adhesion molecule expression by osteogenic cells cultured on various biodegradable scaffolds [J]. Journal of Biomedical Materials Research Part A, 2005. 75A(4): p. 870-876.
    [114] Rosso F., et al., From cell-ECM interactions to tissue engineering [J]. Journal of Cellular Physiology, 2004. 199(2): p. 174-180.
    [115] Meinel L., et al., Engineering cartilage-like tissue using human mesenchymal stem cells and silk protein scaffolds [J]. Biotechnology and Bioengineering, 2004. 88(3): p. 379-391.
    [116] Stroker A.W S.C.H., Martins-Green M, Bissel M.J., Designer microenvironment for the analysis of the cell and tissue function. [J]. Curr Opin Cell Biol, 1990. 2: p. 864-874.
    [117] Wegner M., From head to toes: the multiple facets of Sox proteins [J]. Nucleic Acids Research, 1999. 27(6): p. 1409-1420.
    [118] Foster J.W., et al., CAMPOMELIC DYSPLASIA AND AUTOSOMAL SEX REVERSAL CAUSED BY MUTATIONS IN AN SRY-RELATED GENE [J]. Nature, 1994. 372(6506): p. 525-530.
    [119] Lefebvre V., et al., SOX9 is a potent activator of the chondrocyte-specific enhancer of the pro alpha 1(II) collagen gene [J]. Molecular and Cellular Biology, 1997. 17(4): p. 2336-2346.