机械牵张应力对成骨细胞生物特性的影响及蛋白组学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
机械力学刺激是骨代谢的重要调节因素,适宜的牵张应力刺激可以在正畸牙移动、牵张成骨以及骨折修复等许多临床治疗中刺激骨组织自身的生长与重建,达到形成新骨的目的。成骨细胞是一种对应力敏感的细胞,来自多潜能的间充质干细胞,与骨基质形成及钙化密切相关,在骨形成的过程中起主要作用。因此,深入研究成骨细胞的力学信号转导机制对于阐明正畸矫治中骨改建的机理非常重要,但目前机械牵张应力刺激成骨细胞的力学信号转导机制尚不清楚,有待进一步研究。
     研究发现,周期性的力学刺激比持续性的力学刺激更能促进成骨细胞的增殖与分化,而碱性磷酸酶(ALP)、骨桥蛋白(OPN)、骨钙蛋白(OC)等的合成以及矿化结节的形成都是成骨细胞分化的经典标志物,它们共同增进细胞间的连接和信息的传递,促进成骨细胞的成熟。最近有研究表明,Wnt信号转导通路的受体Lrp5缺失会引起骨质疏松,而获得性Lrp5突变会导致骨硬化症,即Wnt信号通路对于骨骼发育以及骨量的维持和调控都非常重要。β-catenin是该通路的核心因子,它的表达与变化受到细胞内外许多激素和蛋白的调节,来共同发挥与成骨相关的信号转导的作用。C3H1OT1/2细胞系过度表达β-catenin蛋白会引起成骨细胞的早期分化标志ALP的表达及活性增加,这说明β-catenin在成骨前体细胞及成骨细胞增殖分化过程中发挥着重要作用,而给Lrp5转基因小鼠的长骨进行四点弯曲加载可以上调Wnt/β-catenin通路目标基因的表达,这提示Wnt/β-catenin信号通路在成骨细胞对牵张应力加载的反应过程中可能发挥着重要作用。
     近年来,蛋白质组学的研究方法在对蛋白表达谱的检测和定量、翻译后修饰的识别,以及蛋白质之间相互作用等方面取得了重要进展,而机械应力对成骨细胞的影响正是通过多因子多通路的相互作用构成的网络来控制的,传统的研究手段只能针对某一种因子或蛋白质,无法全面地呈现参与这个过程的所有蛋白质,因此,蛋白质组学为我们提供了一个新的研究成骨细胞力学信号转导机制的平台。
     本研究通过Flexcell牵张应力加载系统,对体外培养的人成骨样细胞系Saos-2细胞加载机械牵张力,拟采用免疫组化、RT-PCR、免疫印迹、蛋白质双向电泳、生物质谱等方法观察机械牵张应力对成骨细胞细胞增殖及骨特异性分化指标的影响;研究机械牵张应力对成骨细胞Wnt/β-catenin信号通路的影响以及β-catenin在力学信号转导过程中的定位和作用;获取机械牵张应力刺激成骨细胞后的蛋白质双向凝胶电泳图谱,并对差异蛋白质点进行质谱鉴定。研究内容如下:
     1.机械牵张应力对成骨细胞增殖和分化的影响
     目的:研究机械牵张应力对成骨细胞增殖和分化能力的影响。方法:人成骨样细胞系Saos-2购自美国培养物保存中心(ATCC号:HTB-85),采用Flexcell牵张应力加载系统,分别用不同大小应变值的张应力(0%,6%,12%,24%)以及不同的刺激时间(0h,4h,8h,12h,24h)对成骨样细胞Saos-2进行力学刺激。用MTT法检测细胞受力后的增殖变化;用ALP试剂盒检测细胞受力后ALP活性的变化;用半定量RT-PCR检测骨钙蛋白(OC)、骨桥蛋白(OPN)的mRNA的表达;在这个过程中进行力学刺激,分别在第10天和第20天,用茜素红染色观察矿化结节形成。结果:当应变值为12%时,力学刺激对成骨样细胞Saos-2增殖以及ALP活性的促进作用最强(P<0.01)。应变值为12%的力学刺激呈时间依赖性明显上调了成骨样细胞Saos-2的增殖、ALP活性以及骨桥蛋白和骨钙蛋白mRNA的表达(P<0.01);茜素红染色结果显示,牵张应力刺激组较对照组更加容易形成矿化结节。结论:大小适宜的牵张应力可以促进成骨细胞的增殖以及分化指标如ALP活性、骨桥蛋白和骨钙蛋白mRNA的转录水平、矿化结节的形成等,说明机械牵张应力对于成骨细胞的增殖和分化发挥着重要的调控作用。
     2.机械牵张应力对成骨细胞Wnt/β-catenin信号通路的影响
     目的:研究机械牵张应力对成骨细胞Wnt/β-catenin信号通路的影响以及β-catenin在力学信号转导过程中的定位和作用。方法:采用Flexcell牵张应力加载系统,用12%大小的应力值对成骨样细胞Saos-2进行力学刺激。作用1h、2h和4h后,用免疫荧光的方法检测β-catenin的表达和在细胞上定位的变化;用半定量RT-PCR检测β-catenin mRNA表达的变化;用质粒转染的方法检测荧光素酶报告基因Tcf转录的情况;用半定量RT-PCR检测Wnt/β-catenin通路下游基因COX-2,cyclinD1, c-fos, c-Jun mRNA表达的情况;用免疫共沉淀的方法检测β-catenin和E-Cadherin的结合情况。结果:对照组的β-catenin主要表达于胞膜,在牵拉刺激1h、2h和4h后β-catenin大量聚集于胞核,核内β-catenin荧光强度明显强于对照组,而各实验组间无显著性差异;实验组与对照组之间β-catenin mRNA表达的水平没有显著性差异(P>0.05);细胞受力后细胞Tcf报告基因的转录活性与对照组相比显著提高(P<0.01);实验组的四种下游基因COX-2,cyclinD1, c-fos, c-Jun的mRNA表达水平均较对照组有显著提高(P<0.01);实验组β-catenin和E-Cadherin的蛋白质水平与对照组相比都没有显著改变(P>0.05),但是β-catenin与E-Cadherin的结合水平显著降低(P<0.01)。结论:12%牵张应力加载会引起成骨细胞内β-catenin的核移位,刺激核内转录因子Tcf的表达,激活Wnt/β-catenin信号通路,促进下游目的基因转录水平的提高,成骨细胞胞膜上的β-catenin/E-Cadherin复合体在牵张力的作用下解聚并造成β-catenin入核则可能是机械信号转导的内在机制之一。
     3.机械牵张应力刺激成骨细胞的蛋白质双向凝胶电泳
     目的:研究机械牵张应力刺激成骨细胞后蛋白质双向凝胶电泳表达的差异。方法:采用Flexcell牵张应力加载系统,用12%大小的应力值对成骨样细胞Saos-2进行力学刺激24h后,进行细胞裂解,Bradford法蛋白质定量,蛋白质双向凝胶电泳,凝胶硝酸银染色,并使用凝胶分析软件ImageMaster 2D对蛋白点进行分析。结果:对照组和加力组分别得到1031±41和928±25个蛋白质点。总蛋白质点在细胞受到牵张力后有所减少。两组蛋白电泳基本类似,蛋白点集中分布于pI 6 -10间的区域,通过软件对差异蛋白点的光密度、点大小以及三维观察等作图像分析,比值大于2或小于0.5被认为是差异蛋白点,共检测出30个差异表达蛋白点。结论:通过蛋白质双向凝胶技术结合硝酸银染色可以得到分辨率较高,可重复性较好的成骨细胞牵张应力加载的差异表达蛋白质图谱,为进一步进行质谱鉴定奠定了良好的基础。
     4.机械牵张应力刺激成骨细胞差异蛋白质点的质谱鉴定与分析
     目的:获得差异蛋白点的肽质量指纹图谱后进行质谱鉴定,根据鉴定结果推测这些差异蛋白质在成骨细胞受到机械牵张应力后所发挥的作用。方法:蛋白质原位酶解后制备样品,样品脱盐,使用MALDI-TOF质谱仪进行分析,将获得的蛋白质肽质量指纹数据通过Mascot搜索引擎在NCBI数据库中进行检索,并确定出蛋白质的各种信息。结果:送检30个差异蛋白点经MALDI-TOF质谱获得了肽质量指纹图,进入蛋白数据库鉴定出26个相应蛋白质,按照功能分类大致与以下生物活动相关:应激反应,能量代谢,细胞增殖,细胞骨架重建,信号转导及成骨分化。结论:成骨细胞对机械牵张应力的反应是一个非常复杂的过程,牵张应力会引起成骨细胞应激反应,能量代谢,细胞增殖,细胞骨架重建,信号转导及成骨分化等许多方面的改变,每一种生物学功能的实现都涉及到很多种蛋白质的参与和调控。这些鉴定结果为以后研究这些差异蛋白在正畸骨组织改建中的生物学功能确定了目标。
The skeleton is a very complex tissue which can regulate its mass and architecture to adapt to functional environment. Orthodontic tooth movement results from alveolar bone remodeling process induced by mechanical strain. Osteoblasts, osteocytes and osteoclasts are specialized cells that orchestrate the process. As the osteoblast is highly sensitive to mechanical stimuli,it plays the leading role in the bone remodeling process. However,the mechanism of how these mechanical load is translated into intracellular signals is not very clear.
     In order to better understand the mechanotransdution process , we investigated proliferation and biological characteristics of osteoblasts under mechanical strain. Osteoblasts secrete alkaline phosphatase (ALP), osteopotin(OPN) and osteocalcin (OC) which involve in bone modeling. Recently, Wnt/β-catenin signaling has been shown to play a particularly crucial role in bone formation, bone growth and remodeling. Many studies have shown canonical Wnt/β-catenin signaling could promote osteoblast differentiation, proliferation, and mineralization. The central player of Wnt signaling isβ-catenin, which is a transcription cofactor with Tcf/Lef in the Wnt pathway and a structural adaptor protein linking cadherins to the actin cytoskeleton in cell-cell adhesion. The cytoplasmic accumulation ofβ-catenin leads toβ-catenin entering the nucleus and heterodimerizing with Lef/Tcf transcription factors to regulate Wnt target genes including COX-2, c-myc, cyclin D1 and so on. Previous studies have shown that Wnt/β-catenin signaling is a component of osteoblastic cell early responses to load-bearing.
     On the other hand, a proteomics approach,in which entire proteins in tissue or cells are identified and quantified directly,has been shown to be a valuable way to bring insight into the molecular basis of signal transduction. Compare the proteins of the osteoblasts in different conditions: mechanical strained and unstrained group,which will help us to find the key signal transduction protein and understand the responsive mechanism of the osteoblasts under the mechanical strain. Therefore in the study of this part, we quantitatively and qualitatively analyzed the differentially expressed proteins in Saos-2 osteoblastic cells of 24h after mechanical strain loading by two-dimensional gel electrophoresis, matrix-assisted laser desorption ionization-time of flight mass spectrometry(MALDI-TOF-MS), computer informatics and computer network communications technology. The aim of our study was to elucidate the molecular mechanisms of osteoblast signal transduction under mechanical strain.
     In the present study, Saos-2 osteoblastic cells were subjected to mechanical strain using Flexcell strain loading system and observed the effects of mechanical strain on cellular proliferation, differentiation. In addition, Wnt/β-catenin signal transduction pathway that mediated cellular responses to mechanical strain was investigated using different biological techniques. Furthermore, proteins from samples in the Saos-2 osteoblastic cells obtained under mechanical strain for 24h were subjected to two-dimensional polyacrylamide gel electrophoresis (2-DE) and matrix assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF MS) analysis. The research works are as follows:
     1. Effects of mechanical strain on proliferation and differentiation of Saos-2 osteoblastic cells
     Objective: To investigate the effects of mechanical strain on proliferation and differentiation of Saos-2 osteoblastic cells. Methods: Saos-2 osteoblastic cells were subjected to 0%,6%,12%,24% elongation for 0h,4h,8h,12h,24h by using Flexcell strain loading system simultaneously. MTT colorimetric method was used to assess cellular proliferation;Biochemical analysis was used to study the effects of mechanical strain on alkaline phosphatase (ALP) activity;semi quatative RT-PCR was used to examine mRNA level of osteocalcin and osteopotin. Alizarin Red-S method was used to study the mineralization of Saos-2 osteoblastic cells. Results: The proliferation and ALP activity of Saos-2 osteoblastic cells were significantly increased after mechanical strain treatment,12% elongation rate showed the strongest stimulatory effects (P<0.01). The expression of OC,OPN mRNA and the formation of mineralization nodules in Saos-2 osteoblastic cells were promoted by 12% mechanical strain elongation rate. Conclusion: Our data indicated that mechanical strain stimulation increased the proliferation and differentiation markers such as ALP activity , mRNA expression level of OC and OPN,and the formation of mineralization nodules in Saos-2 osteoblastic cells. Mechanical strain may play a very important role in proliferation and differentiation of osteoblasts.
     2. The role of Wnt/β-catenin signaling in mechanotransduction of Saos-2 osteoblastic cells
     Objective:To investigate the effects of mechanical strain onβ-catenin in Saos-2 osteoblastic cells and to examine whether mechanical stimuli modulate Wnt/β-catenin signaling and its mechanism. Method:Saos-2 osteoblastic cells were subjected to 12% elongation by using Flexcell strain loading system. Cells were immediately fixed and processed for immuno?uorescence and tested for translocation ofβ-catenin.β-catenin and target genes of Wnt/β-catenin signaling COX-2, cyclinD1, c-fos, c-Jun mRNA expression were examined by RT-PCR. Saos-2 osteoblastic cells were co-transfected with a wild type or mutant Tcf luciferase reporter gene and Renilla luciferase plasmid. Posttransfection cells were subjected to 1 hour of 12% elongation. Luciferase activities were then assayed.β-catenin and E-Cadherin activities were determined by Western Blot analysis. The interaction betweenβ-catenin and E-Cadherin was determined by Co-immunoprecipitation. Result: In cells subjected to mechanical strain, there appeared to be more nuclearβ-catenin than in cells held in static culture. Mechanical strain induced a significant increase in Tcf reporter gene activity (P<0.01). The expression of target genes COX-2, cyclinD1, c-fos, c-Jun mRNA in Saos-2 osteoblastic cells were promoted by 12% mechanical strain elongation (P<0.01). Co-immunoprecipitation analysis revealed less E-cadherin associated withβ-catenin in cells subjected to mechanical strain (P<0.01). Conclusion:Our data indicate that 12% elongation mechanical strain can activate Wnt/β-catenin signaling and decreases the interaction betweenβ-catenin and E-Cadherin in Saos-2 osteoblastic cells. Wnt/β-catenin signaling plays an important role in mechanotransduction of osteblasts.
     3. Two-dimensional electrophoresis analysis of Saos-2 osteoblastic cells stimulated by mechanical strain
     Objective: To establish two-dimensional eletrophoresis (2-DE) images for Saos-2 osteoblastic cells stimulated by mechanical strain. Methods: Saos-2 osteoblastic cells were subjected to 12% elongation for 24 hours by using Flexcell strain loading system. Cells were immediately lysated and the total protein of the Saos-2 osteoblastic cells was extracted. Total protein content was determined in cell cultures lysates using Bradford protein assay. 2-DE was carried out according to procedures. The silver stained 2-DE were scanned and analyzed with ImageMaster 2D software. Results: Saos-2 osteoblastic cells stimulated by mechanical strain showed significant difference in a 2-DE system compared with control group. A total of 1031±41or 928±25 protein spots were resolved by 2-DE of controls or experimental groups extractions,respectively. We found 30 statistically significant change amount of protein compared with controls samples. Conclusion: The Saos-2 osteoblastic cells stimulated by mechanical strain could express the differentially expressed proteins, and 2-DE technique is effective to investigate mechanics of osteoblasts in bone remodeling.
     4. MALDI-TOF-MS analysis of differential expression protein in Saos-2 osteoblastic cells stimulated by mechanical strain
     Objective: To identify the differentially expressed proteins of Saos-2 osteoblastic cells under mechanical strain loading and to clarify the major proteins involved in the molecular mechanism of osteoblasts under mechanical strain loading. Methods: Matrix-assisted laser-desorprtion ionization time of flight mass spectrotmetry (MALDI-TOF-MS) were used to separate and identify proteins in the whole cell lysate and peptide mass fingerprinting (PMF).The proteins involved in Saos-2 osteoblastic cells under mechanical strain loading were identified and searched with proteome NCBI database. Result: The PMFs of 30 proteins were obtained through MALDI-TOF-MS analysis and 26 proteins were further analyzed with the protein and peptide databases. These bone remodeling associated proteins fell into 6 groups, including Stress reaction (cyclophilin, Chain A, Dopamine Quinone Conjugation To Dj-1), energy metabolism(mitochondrial ATP synthase, Alpha-enolase), cell proliferation( NUMA1, peroxiredoxin 1), reconstruction of cytoskeleton(Cofilin 1), signaling(Protein phosphatase 1, Nuclear receptor interacting protein 1, Proteasome Activator) and osteogenesis(Elongation factor 2, eukaryotic initiation factor 2, Annexin I). Conclusion: Our study provided fundamental information on the differential expression of proteins of osteoblast under mechanical strain. These proteins described here may play important roles in mechanisms of biological bone remodeling process.
引文
1. Karlsson MK, Johnell O, Obrant KJ. Is bone mineral density advantage maintained long-term in previous weight lifters? Calcif Tissue Int, 1995; 57(5): 325 -328.
    2. Turner CH, Forwood MR, Yoshikawa T. Mechanical loading thresholds for lamellar and woven bone formation. J Bone Miner Res, 1994; 9(1): 87- 97.
    3. Wallace JM, Rajachar RM, Allen MR, Bloomfield SA, Robey PG, et al. Exercise-induced changes in the cortical bone of growing mice are bone-and gender-specific. Bone, 2007; 40(4): 1120-7.
    4. Liedert A, Kaspar D, Blakytny R, Claes L, Ignatius A. Signal transduction pathways involved in mechanotransduction in bone cells. Biochem Biophys Res Commun. 2006; 349(1): 1-5.
    5. LeBlane A, Shackelford L, Sehneider V . Future human bone research in space. Bone, 1998; 22: 113-116.
    6. Adams GR, Caiozzo VJ, Baldwin KM. Skeletal muscle unweighting: spaceflight and ground-based models.J Appl Physiol. 2003; 95(6): 2185-201.
    7. Borer KT. Physical activity in the prevention and amelioration of osteoporosis in women: interaction of mechanical, hormonal and dietary factors. Sports Med. 2005; 35(9): 779-830.
    8. Akhouayri O, Lafage-Proust MHRattner A, Laroche N, Caillot-Augusseau A, et al. Effects of static or dynamic mechanical stresses on osteoblast phenotype expression in three-dimensional contractile collagen gels. J Cell Biochem. 1999; 76(2): 217-30.
    9.戚孟春,胡静,韩立赤,邹淑娟,王大章.成骨细胞在机械力刺激下细胞骨架及细胞形态改变的体外研究.中国口腔颌面外科杂志. 2004; 2(03):181-184.
    10. Zhuang H, Wang W, Tahernia AD, Levitz CL, Luchetti WT, et al. Mechanical strain-induced proliferation of osteoblastic cells parallels increased TGF-beta 1 mRNA. Biochem Biophys Res Commun. 1996; 229(2): 449-53.
    11. Weyts FA, Bosmans B, Niesing R, van Leeuwen JP, Weinans H. Mechanical control of human osteoblast apoptosis and proliferation in relation to differentiation. Calcif Tissue Int. 200; 72(4): 505-12.
    12. Winter LC, Walboomers XF, Bumgardner JD, Jansen JA. Intermittent versus continuous stretching effects on osteoblast-like cells in vitro. J Biomed Mater Res A. 2003; 67(4); 1269-75.
    13. Pavlin D, Dove SB, Zadro R, Gluhak-Heinrich J. Mechanical loading stimulates differentiation of periodontal osteoblasts in a mouse osteoinduction model: effect on type I collagen and alkaline phosphatase genes. Calcif Tissue Int. 2000; 67 (2): 163-72.
    14. Nagatomi J, Arulanandam BP, Metzger DW, Meunier A, Bizios R. Cyclic pressure affects osteoblast functions pertinent to osteogenesis. Ann Biomed Eng. 2003; 31 (8): 917-23.
    15. Kaspar D, Seidl W, Neidlinger-wilke C. Dynamic cell stretching increases human osteoblast proliferation and CICP synthesis but decreases osteocalcin synthesis and alkaline phosphatase activity. J Biomechanics. 2000; 33(1): 45-51.
    16.唐丽灵,王远亮,潘君,蔡绍皙.成梯度增加的拉伸刺激对成骨细胞胶原合成的影响.生物化学与生物物理进展. 2002;29 (5):750-753.
    17. Kawashima H, Ikegame M, Shimomura J, Ishibashi O, Komori T, et al. Tensile stress induced osteoblast differentiation and osteogenesis in mouse calvarial suture in culture: possible involvement of BMP-4 and other genes. J Gravit Physiol. 2000; 7(2): 121-2.
    18. Cillo JE Jr,, Gassner R, Koepsel RR, Buckley MJ. Growth factor and cytokine gene expression in mechanically strained human osteoblast-like cells: implications for distraction osteogenesis. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2000; 90(2): 147-54.
    19.李良,陈孟诗,邓力,毛咏秋,吴文超等.力学刺激对大鼠成骨细胞Integrinsα2,β1,β3表达和细胞增殖、合成功能的影响.生物医学工程学杂志. 2003;20 (2)∶187-192.
    20. Kanno T, Takahashi T, Ariyoshi W, Tsujisawa T, Haga M, et al. Tensile mechanical strain up-regulates Runx2 and osteogenic factor expression in human periosteal cells: implications for distraction osteogenesis. J Oral Maxillofac Surg. 2005; 63(4): 499-504.
    21. Kanno T, Takahashi T, Tsujisawa T, Ariyoshi W, Nishihara. Mechanical stress-mediated Runx2 activation is dependent on Ras/ERK1/2 MAPK signaling in osteoblasts. J Cell Biochem. 2007; 101(5): 1266-77.
    22. Kletsas D, Basdra EK, Papavassiliou AG. Effect of protein kinase inhibitors on the stretch-elicited c-Fos and c-Jun up-regulation in human PDL osteoblast-like cells. J Cell Physiol. 2002; 190(3): 313-21.
    23. Peverali FA, Basdra EK, Papavassiliou AG. Stretch-mediated activation of selective MAPK subtypes and potentiation of AP-1 binding in human osteoblastic cells. Mol Med. 2001; 7(1): 68-78.
    24. Duncan RL, Turner CH. Mechanotransduction and the functional response of bone to mechanical strain. Calcif Tissue Int. 1995; 57(5): 344-58.
    25. Saunders MM, You J, Zhou Z, Li Z, Yellowley CE, et al. Fluid flow-induced prostaglandin E2 response of osteoblastic ROS 17/2.8 cells is gap junction-mediated and independent of cytosolic calcium. Bone. 2003; 32(4): 350-6.
    26. Kuroki Y, Shiozawa S, Kano J, Chihara K. Competition between c-fos and 1,25(OH)2 vitamin D3 in the transcriptional control of type I collagen synthesis in MC3T3-E1 osteoblastic cells. J Cell Physiol. 1995; 164(3): 459-64.
    27. Byers BA, Pavlath GK, Murphy TJ, Karsenty G, García AJ. Cell-type-dependent up-regulation of in vitro mineralization after overexpression of the osteoblast-specific transcription factor Runx2/Cbfal. J Bone Miner Res. 2002; 17(11): 1931-44.
    28. Kokkinos PA, Zarkadis IK, Kletsas D, Deligianni D. Effects of physiological mechanical strains on the release of growth factors and the expression of differentiation marker genes in human osteoblasts growing on Ti-6Al-4V. J Biomed Mater Res A. 2008 Jun 3. [Epub ahead of print]
    29. He H, Ping F. The SIE, SRE, CRE, and FAP-1 four intracellular signal pathways between stimulus and the expression of c-fos promoter. J Cell Biochem. 2009; 106(5): 764-768.
    30. Tu Q, Pi M, Quarles LD. Calcyclin mediates serum response element (SRE) activation by an osteoblastic extracellular cation-sensing mechanism. J Bone Miner Res. 2003; 18(10): 1825-33.
    31. Kousteni S, Han L, Chen JR, Almeida M, Plotkin LI, et al. Kinase-mediated regulation of common transcription factors accounts for the bone-protective effects of sex steroids. J Clin Invest. 2003; 111(11): 1651-64.
    32. Jalali S, Li YS, Sotoudeh M, Yuan S, Li S, et al. Shear stress activates p60src-Ras-MAPK signaling pathways in vascular endothelial cells. Arterioscler Thromb Vasc Biol. 1998; 18(2): 227-34.
    33. Capulli M, Rufo A, Teti A, Rucci N. Global transcriptome analysis in mouse calvarial osteoblasts highlights sets of genes regulated by modeled microgravity and identifies a mechanoresponsive osteoblast gene signature". J Cell Biochem. 2009 Mar 13. [Epub ahead of print]
    34. Kadow-Romacker A, Hoffmann JE, Duda G, Wildemann B, Schmidmaier G. Effect of Mechanical Stimulation on Osteoblast- and Osteoclast-Like Cells in vitro. Cells Tissues Organs. 2008 Nov 25. [Epub ahead of print]
    35. Kreke MR, Sharp LA, Lee YW, Goldstein AS. Effect of intermittent shear stress on mechanotransductive signaling and osteoblastic differentiation of bone marrow stromal cells. Tissue Eng Part A. 2008; 14(4): 529-37.
    36. Ozawa H, Abe E, Shibasaki Y, Fukuhara T, Suda T. Electric fields stimulate DNA synthesis of mouse osteoblast-like cells (MC3T3-E1) by a mechanism involving calcium ions. J Cell Physiol. 1989; 138(3): 477-83.
    37. Owan I, Burr DB, Turner CH. Mechanotransduction in bone: osteoblasts are more responsive to fluid forces than mechanical strain. Am J Physiol.1997; 273(342-3): C810-C815.
    38. Giancotti FG, Ruoslahti E. integrin signaling. Scienee. 1999; 285(5430): 1028-1032.
    39. Pommurenke H, Schmidt C, Durr F. The mode of mechanical integrin Stressing controls intracellular signaling in osteoblasts. J Bone Miner Res. 2002; 17(4): 603-611.
    40. KatsumiA, OrrAW, TzimaE. integrins in mechanotransduction. J Biol Chem. 2004; 279(13): 12001一12004.
    41. Pavalko FM, Chen NX, Turner CH. Fluid shear-induced mechnical Signaling in MC3T3-El osteoblasts requires cytoskeleton-integrin interactions. Am J Pysiol cell Pysiol. 1998; 275(6 Pt l): C1591-C1601.
    42. Westbroek I, Ajubi NE, Alblas MJ, Semeins CM, Klein-Nulend J, et al. Differential stimulation of prostaglandin G/H synthase-2 in osteocytes and other osteogenic cells by pulsating fluid flow. Biochem Biophys Res Commun. 2000; 268(2): 414-9.
    43. Ziros PG, Gil AP, Georgakopoulos T, Habeos I, Kletsas D, et al. The bone-specific transcriptional regulator Cbfa1 is a target of mechanical signals in osteoblastic cells. J Biol Chem. 2002; 277(26): 23934-41.
    44. Tseng H, Berk BC. Fluid shear stress simulates mitogen-activated protein kinase in bovine aortic endothelial cells. Circulation. 1993; 88: 8l-84.
    45. Rawadi G, Vayssière B, Dunn F, Baron R, Roman-Roman S. BMP-2 controls alkaline phosphatase expression and osteoblast mineralization by a Wnt autocrine loop. J Bone Miner Res. 2003; 18(10): 1842-5.
    46. Jackson A, Vayssière B, Garcia T, Newell W, Baron R, et al. Gene array analysis of Wnt-regulated genes in C3H10T1/2 cells. Bone. 2005; 36(4); 585-98.
    47. Caetano-Lopes J, Canh?o H, Fonseca JE. Osteoblasts and bone formation.Acta Reumatol Port. 2007; 32(2): 103-10.
    48. Levasseur R, Lacombe D, de Vernejoul MC. LRP5 mutations in osteoporosis-pseudoglioma syndrome and high-bone-mass disorders.Joint Bone Spine. 2005; 72(3): 207-14.
    49. Golan T, Yaniv A, Bafico A, Liu G, Gazit A. The human Frizzled 6 (HFz6) acts as a negative regulator of the canonical Wnt. beta-catenin signaling cascade. J Biol Chem. 2004; 279(15): 14879-88.
    50. Yang L, Yamasaki K, Shirakata Y, Dai X, Tokumaru S, et al. Bone morphogenetic protein-2 modulates Wnt and frizzled expression and enhances the canonical pathway of Wnt signaling in normal keratinocytes. J Dermatol Sci. 2006; 42(2): 111-9.
    51. Mbalaviele G, Sheikh S, Stains JP, Salazar VS, Cheng SL, et al. Beta-catenin and BMP-2 synergize to promote osteoblast differentiation and new bone formation. J Cell Biochem. 2005; 94(2): 403-18.
    52. Bain G, Müller T, Wang X, Papkoff J. Activated beta-catenin induces osteoblast differentiation of C3H10T1/2 cells and participates in BMP2 mediated signal transduction. Biochem Biophys Res Commun. 2003; 301(1): 84-91.
    53. Kulkarni NH, Onyia JE, Zeng Q, Tian X, Liu M, Halladay DL, Frolik CA. Orally bioavailable GSK-3 dual inhibitor increases markers of cellular differentiation in vitro and bone mass in vivo. J Bone Miner Res. 2006; 21(6): 910–920.
    54. Smith E, Frenkel B. Glucocorticoids inhibit the transcriptional activity of LEF/TCF in differentiating osteoblasts in a glycogen synthase kinase-3beta-dependent and -independent manner. J Biol Chem. 2005; 280(3): 2388-94.
    55. Sakamoto I, Kishida S, Fukui A, Kishida M, Yamamoto H, et al. A novelbeta-catenin-binding protein inhibits beta-catenin-dependent Tcf activation and axis formation. J Biol Chem. 2000; 275(42): 32871-8.
    56. Fukushima H, Yamamoto H, Itoh F, Horiuchi S, Min Y, et al. Frequent alterations of the beta-catenin and TCF-4 genes, but not of the APC gene, in colon cancers with high-frequency microsatellite instability. J Exp Clin Cancer Res. 2001; 20(4): 553-9.
    57. Salazar VS, Mbalaviele G, Civitelli R. The pro-osteogenic action of beta-catenin requires interaction with BMP signaling, but not Tcf/Lef transcriptional activity. J Cell Biochem. 2008; 104(3): 942-52.
    58. Kidd AR 3rd, Miskowski JA, Siegfried KR, Sawa H, Kimble J. A beta-catenin identified by functional rather than sequence criteria and its role in Wnt/MAPK signaling. Cell. 2005; 121(5): 761-72.
    59. Galindo, Kahler RA, Teplyuk NM, Stein JL, Lian JB, et al. Cell cycle related modulations in Runx2 protein levels are independent of lymphocyte enhancer-binding factor 1 (Lef1) in proliferating osteoblasts. J Mol Histol. 2007; 38(5): 501-6.
    60. Nelson WJ, Nusse R. Convergence of Wnt, beta-catenin, and cadherin pathways. Science. 2004; 303(5663): 1483-7.
    61. Jamora C, Fuchs E. Intercellular adhesion, signalling and the cytoskeleton. Nat Cell Biol. 2002; 4(4): E101-8.
    62. Roura S, Miravet S, Piedra J. Regulation of E-cadherin/Catenin association by tyrosine phosphorylation. J Biol Chem. 1999; 274(51): 36734-40.
    63. Mbalaviele G, Sheikh S, Stains JP, Salazar VS, Cheng SL, et al. Beta-catenin and BMP-2 synergize to promote osteoblast differentiation and new bone formation. J Cell Biochem. 2005; 94(2): 403-18.
    64. Wasinger VC, Wilkins MR, Duncan MW, Harris R, Williams KL, et al. Progress with gene-product mapping of the Mollicutes: Mycoplasma genitalium. Electrophoresis. 1995; 16(7): 1090-4.
    65. Wilkins MR, Sanchez JC, Humphery-Smith I, Hochstrasser DF, Williams KL, et al. Progress with proteome projects: why all proteins expressed by a genome should be identified and how to do it. Biotechnol Genet Eng Rev. 1996; 13: 19-50.
    66. Yan JX, Tonella L, Sanchez JC, Wilkins MR, Williams KL, et al. The Dictyostelium discoideum proteome-the SWISS-2D PAGE database of the multicellular aggregate (slug).Electrophoresis. 1997; 18(3-4): 491-7.
    67. Traini M, Gooley AA, Ou K, Wilkins MR, Williams KL, et al. Towards an automated approach for protein identification in proteome projects. Electrophoresis. 1998; 19(11): 1941-9.
    68. Breen EJ, Hopwood FG, Williams KL, Wilkins MR. Automatic poisson peak harvesting for high throughput protein identification. Electrophoresis. 2000; 21(11): 2243-51.
    69. Gooley AA, Ou K, Russell J, Wilkins MR, Sanchez JC, Williams KL. A role for Edman degradation in proteome studies. Electrophoresis. 1997; 18(7): 1068-72.
    70. Gevaert K, Vandekerckhove J. Protein identification methods in proteomics. Electrophoresis. 2000; 21(6): 1145-54.
    71. Choi JS, Kim DS, Lee J, Suh KH, Park YM,et al. Proteome analysis of light-induced proteins in Synechocystis sp. PCC 6803: identification of proteins separated by 2D-PAGE using N-terminal sequencing and MALDI-TOF MS. Mol Cells. 2000; 10(6): 705-11.
    72. Gong Y, Wang N, Wu F, Cass CE, Damaraju S, et al. Proteome profile of human breast cancer tissue generated by LC-ESI-MS/MS combined with sequential protein precipitation and solubilization. J Proteome Res. 2008; 7(8): 3583-90.
    73. Mueller DR, Voshol H, Waldt A, Wiedmann B, Van Oostrum J. LC-MALDI MS and MS/MS-an efficient tool in proteome analysis. Subcell Biochem. 2007; 43: 355-80.
    74. Gaspari M, Verhoeckx KC, Verheij ER, vander Greef J. Integration of two-dimensional LC-MS with multivariate statistics for comparative analysis of proteomic samples. Anal Chem. 2006; 78(7): 2286-96.
    75. Shiio Y, Donohoe S, Yi EC, Goodlett DR, Aebersold R, et al .Quantitative proteomic analysis of Myc oncoprotein function. EMBO J. 2002; 21(19): 5088-96. 76. Andersen JS, Matic I, Vertegaal AC. Identification of SUMO target proteins by quantitative proteomics. Methods Mol Biol. 2009; 497: 19-31.
    77. Puig O, Caspary F, Rigaut G, Rutz B, Séraphin B.The tandem affinity purification (TAP) method: a general procedure of protein complex purification. Methods. 2001; 24(3): 218-29.
    78. Veraksa A, Bauer A, Artavanis-Tsakonas S. Analyzing protein complexes in Drosophila with tandem affinity purification-mass spectrometry. Dev Dyn. 2005 Mar; 232(3): 827-3479
    79. Cho WC. Proteomics technologies and challenges. Genomics Proteomics Bioinformatics. 2007; 5(2): 77-85.
    80. Lv LL, Liu BC. High-throughput antibody microarrays for quantitative proteomic analysis. Expert Rev Proteomics. 2007; 4(4): 505-13.
    81. Scott A, Khan KM, Duronio V, Hart DA. Mechanotransduction in human bone: in vitro cellular physiology that underpins bone changes with exercise. Sports Med. 2008; 38(2): 139-60.
    82. Liu X, Zhang X, Luo ZP. Strain-related collagen gene expression in human osteoblast-like cells. Cell Tissue Res. 2005; 322(2): 331-4.
    83. Marotti G, Palumbo C. The mechanism of transduction of mechanical strains into biological signals at the bone cellular level. Eur J Histochem. 2007;51 Suppl 1:15-9.
    84. Rubin J, Rubin C, Jacobs CR. Molecular pathways mediating mechanical signaling in bone. Gene. 2006; 367: 1-16.
    85. Bhatt KA, Chang EI, Warren SM, Lin SE, Gurtner G Uniaxial mechanical strain: an in vitro correlate to distraction osteogenesis. J Surg Res. 2007; 143(2): 329-36.
    86. Bonewald LF. Osteocytes as dynamic multifunctional cells. Ann N Y Acad Sci. 2007 Nov; 1116: 281-90.
    87. Frost HM. Perspectives:bones mechanical usage windows. J Bone Miner Res. l992; 19: 257-27l.
    88.唐丽灵,王远亮,谷俐,蔡绍皙,潘君.不同应变水平拉伸对成骨细胞生理功能的影响.重庆大学学报(自然科学版).2003;26 (03):67-70.
    89.唐林,林珠,李永明,王华.不同大小机械牵张力对成骨细胞增殖及碱性磷酸酶的影响.解放军医学杂志. 2006;31(06):580-581.
    90.胡静,邹淑娟.机械牵张对人成骨细胞样细胞增殖能力的影响.实用口腔医学杂志. 2002;18(5):447-448.
    91. Koike M, Shimokawa H, Kanno Z. Effects of mechanical strain on proliferation and differentiation of bone marrow stromal cell line ST2. J Bone Miner Metab. 2005; 23(4): 219-225.
    92.侯晋,段小红,吴军正,汪卫国.持续性静压力对成骨样细胞MC3T3-E1生物学特性的影响.临床口腔医学. 2004;20(1): 9-11.
    93. Boyden LM,Mao J,Belsky J,Mitzner L,Farhi A,et al. High bone density due to a mutation in LDL-receptor-related protein 5. N Engl J Med. 2002; 346(20): 1513-21.
    94. Robinson JA,Chatterjee-Kishore M,Yaworsky PJ,Cullen DM,Zhao W,et al. Wnt/beta-catenin signaling is a normal physiological response to mechanical loading in bone. J Biol Chem. 2006; 281(42): 31720-8.
    95. Norvell SM, Alvarez M, Bidwell JP, Pavalko FM. Fluid shear stress induces beta-catenin signaling in osteoblasts. Calcif Tissue Int. 2004; 75(5): 396-404.
    96. Case N, Ma M, Sen B, Xie Z, Gross TS. Beta-catenin levels influence rapid mechanical responses in osteoblasts. J Biol Chem. 2008; 283(43): 29196-205.
    97. Chou HY, Howng SL, Cheng TS, Hsiao YL, Lieu AS. GSKIP is homologous to the Axin GSK3beta interaction domain and functions as a negative regulator of GSK3 beta. Biochemistry. 2006; 45(38): 11379-89.
    98. Goodwin M, Yap AS. Classical cadherin adhesion molecules: coordinating cell adhesion, signaling and the cytoskeleton. J Mol Histol. 2004; 35(8-9): 839-44.
    99. Adkison JB, Miller GT, Weber DS, Miyahara T, Ballard ST, et al. Differential responses of pulmonary endothelial phenotypes to cyclical stretch. Microvasc Res. 2006; 71(3): 175-84.
    100. Giorgianni F, Desiderio DM, Beranova-Giorgianni S. Proteome analysis using isoelectric focusing in immobilized pH gradient gels followed by mass spectrometry. Electrophoresis. 2003; 24(1-2): 253-9.
    101.周波,罗玉萍,龚熹,李思光.亲环蛋白的结构、定位和生物学功能.细胞生物学杂志. 2008;30:291-296.
    102. Chen AP, Wang GL, Qu ZL, Lu CX, Liu N, et al. Ectopic expression of ThCYP1, a stress-responsive cyclophilin gene from Thellungiella halophila, confers salt tolerance in fission yeast and tobacco cells. Plant Cell Rep. 2007; 26(2): 237-45.
    103. Senior AE. ATP synthase: motoring to the finish line. Cell. 2007;130(2):220-1.
    104. Paron I, D'Elia A, D'Ambrosio C, Scaloni A, D'Aurizio F, et al. A proteomic approach to identify early molecular targets of oxidative stress in human epithelial lens cells. Biochem J. 2004; 378(Pt 3): 929-37.
    105. Feister HA, Onyia JE, Miles RR, Yang X, Galvin R, et al. The expression of the nuclear matrix proteins NuMA, topoisomerase II-alpha, and -beta in bone and osseous cell culture: regulation by parathyroid hormone. Bone. 2000; 26(3); 227-34.
    106. Vorum H, Hensechke P, Enghild JJ, Riazati M, Rice GE. Proteomic analysis of hyperoxia-induced responses in the human choriocarcinoma cell line JEG-3. Proteomics. 2004; 4(3): 861-7.
    107. Ishii T, Yanagawa T. Stress-induced peroxiredoxins. Subcell Biochem. 2007; 44: 375-84.
    108. Li B, Ishii T, Tan CP, Soh JW, Goff SP. Pathways of induction of peroxiredoxin I expression in osteoblasts: roles of p38 mitogen-activated protein kinase and protein kinase C. J Biol Chem. 2002; 277(14): 12418-22.
    109.赵微,苏玉虹,巴彩凤,朱宝芹. Cofilin蛋白功能及活性调节.中国生物化学与分子生物学报. 2007;23 (9):706-710.
    110. Delorme V, Machacek M, DerMardirossian C, Anderson KL, Wittmann T, et al. Cofilin activity downstream of Pak1 regulates cell protrusion efficiency by organizing lamellipodium and lamella actin networks. Dev Cell. 2007; 13(5): 646-62.
    111. Schmidt KN, Traenckner EB, Meier B, Baeuerle PA. Induction of oxidative stress by okadaic acid is required for activation of transcription factor NF-kappa B. J Biol Chem. 1995; 270(45): 27136-42.
    112. Imai Y, Kondoh S, Kouzmenko A, Kato S. Regulation of bone metabolism by nuclear receptors. Mol Cell Endocrinol. 2008 Aug 22. [Epub ahead of print]
    113. Yang Y, Lu N, Zhou J, Chen ZN, Zhu P. Cyclophilin A up-regulates MMP-9 expression and adhesion of monocytes/macrophages via CD147 signalling pathway in rheumatoid arthritis. Rheumatology (Oxford). 2008; 47(9): 1299-310.
    114. Shakibaei M, John T, Schulze-Tanzil G, Lehmann I, Mobasheri A. Suppression of NF-kappaB activation by curcumin leads to inhibition of expression of cyclo-oxygenase-2 and matrix metalloproteinase-9 in human articular chondrocytes: Implications for the treatment of osteoarthritis. Biochem Pharmacol. 2007; 73(9): 1434-45.
    115. Kitching R, Qi S, Li V, Raouf A, Vary CP, et al. Coordinate gene expression patterns during osteoblast maturation and retinoic acid treatment of MC3T3-E1 cells. J Bone Miner Metab. 2002; 20(5): 269-80.
    116. Wei J, Sheng X, Feng D, McGrath B, Cavener DR. PERK is essential for neonatal skeletal development to regulate osteoblast proliferation and differentiation. J Cell Physiol. 2008; 217(3): 693-707.
    117. Rescher U, Gerke V. Annexins--unique membrane binding proteins with diverse functions. J Cell Sci. 2004; 117(Pt 13): 2631-9.
    118. Alldridge LC, Harris HJ, Plevin R, Hannon R, Bryant CE. The annexin protein lipocortin 1 regulates the MAPK/ERK pathway. J Biol Chem. 1999; 274(53): 37620-8.
    119. Byers BA, Pavlath GK, Murphy TJ, Karsenty G, García AJ. Cell-type-dependent up-regulation of in vitro mineralization after overexpression of the osteoblast-specific transcription factor Runx2/Cbfal. J Bone Miner Res. 2002; 17(11): 1931-44.
    120. Morinobu M, Nakamoto T, Hino K, Tsuji K, Shen ZJ, et al. The nucleocytoplasmic shuttling protein CIZ reduces adult bone mass by inhibiting bone morphogenetic protein-induced bone formation. J Exp Med. 2005; 201(6): 961-70.
    121. Tsukahara S, Ikeda R, Goto S, Yoshida K, Mitsumori R, et al. Tumour necrosis factor alpha-stimulated gene-6 inhibits osteoblastic differentiation of human mesenchymal stem cells induced by osteogenic differentiation medium and BMP-2. Biochem J. 2006; 398(3): 595-603
    122. Bastow ER, Byers S, Golub SB, Clarkin CE, Pitsillides AA, et al. Hyaluronan synthesis and degradation in cartilage and bone. Cell Mol Life Sci. 2008; 65(3): 395-413