胶原矿化仿生骨联合骨形态发生蛋白2相关多肽促进骨再生的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分BMP-2相关多肽促进三维培养的骨髓基质干细胞成骨分化及矿化的实验研究
     目的评价BMP-2相关多肽诱导体外三维培养的骨髓基质干细胞(bone marrowstromal cells,BMSCs)成骨分化及矿化的能力。
     方法原代培养大鼠BMSCs,细胞传至第3代时,将细胞消化收集,与Cytodex~(TM) 3微载体三维培养体系复合培养,完全培养基培养1d后,将培养基换为成骨诱导培养基,实验组培养基加入终浓度为200μg/ml的BMP-2相关多肽,对照组不加多肽。复合培养7天和14天后,进行死/活细胞染色,观察微载体三维培养体系中BMSCs的存活情况,通过检测细胞内钙含量和碱性磷酸酶(alkaline phosphatase,ALP)染色评价BMSCs成骨分化情况,并进行钙黄绿素染色评价细胞矿化情况。
     结果细胞培养7天和14天后,BMSCs在实验组和对照组微载体三维培养体系中均存活良好,差异无统计学意义(P>0.05);实验组钙含量明显高于对照组,差异具有统计学意义(P<0.05),实验组ALP阳性细胞明显多于对照组,钙黄绿素染色结果表明实验组与对照组相比细胞矿化明显。
     结论BMP-2相关多肽能够有效促进体外三维培养的BMSCs成骨分化及矿化。
     第二部分纳米羟基磷灰石/胶原/聚乳酸/BMP-2相关多肽复合材料的制备、特征及其对骨髓基质干细胞生物学行为的影响
     目的制备纳米羟基磷灰石/胶原/聚乳酸/BMP-2相关多肽复合材料,观察其特征并评价其对大鼠骨髓基质干细胞粘附、增殖及分化等生物学行为的影响。
     方法用生物仿生自组装的方法制备纳米羟基磷灰石/胶原复合材料(nano-Hydroxyapatite/collagen,nHAC),在此基础上联合聚乳酸(poly lacticacid,PLA)制备胶原矿化骨仿生骨基质材料——纳米羟基磷灰石/胶原/聚乳酸(nano-Hydroxyapatite/collagen/poly lactic acid,nHAC/PLA),用X射线衍射仪分析其晶体结构,扫描电镜观察其表面微观形貌,将纳米羟基磷灰石/胶原/聚乳酸与BMP-2活性多肽复合,构建纳米羟基磷灰石/胶原/聚乳酸/BMP-2相关多肽复合材料。取第三代BMSCs接种到材料上,以未结合多肽的纳米羟基磷灰石/胶原/聚乳酸作为对照,采用MTT法检测BMSCs在材料表面的增殖;沉淀法检测BMSCs在材料表面的粘附率;扫描电镜观察比较BMSCs在材料表面的生长形态;通过检测细胞中的碱性磷酸酶活性及钙离子浓度,观察BMSCs在材料表面的分化情况。
     结果X射线衍射分析结果显示,纳米羟基磷灰石/胶原/聚乳酸复合材料的主要成分是羟基磷灰石(HA);扫描电镜结果显示:该复合材料是一种疏松多孔结构,孔径从几十微米至300μm不等,并且孔与孔之间有连通。细胞实验结果表明:纳米羟基磷灰石/胶原/聚乳酸/BMP-2相关多肽复合材料与单纯纳米羟基磷狄石/胶原/聚乳酸相比,能够促进BMSCs的粘附和向成骨细胞方向,差异具有统计学意义(P<0.05),而对BMSCs的增殖能力没有影响(P>0.05)。
     结论BMP-2活性多肽可以显著改善纳米羟基磷灰石/胶原/聚乳酸复合材料的细胞相容性和生物活性,负载BMP-2活性多肽的纳米羟基磷灰石/胶原/聚乳酸复合材料是一种理想的骨组织工程支架材料。
     第三部分纳米羟基磷灰石/胶原/聚乳酸/BMP-2相关多肽仿生骨基质材料异位成骨的实验研究
     目的评价纳米羟基磷灰石/胶原/聚乳酸/BMP-2相关多肽仿生骨基质材料的异位成骨能力。
     方法制备纳米羟基磷灰石/胶原/聚乳酸/BMP-2相关多肽复合材料,采用高效液相色谱仪检测不同时间点BMP-2相关多肽的释放量,观察BMP-2相关多肽的体外释放规律。将48只成年雄性SD大鼠随机分为四组,在A组、B组、C组大鼠背部肌肉内分别植入3mg、2mg、1mg的BMP-2相关多肽与纳米羟基磷灰石/胶原/聚乳酸复合材料;在D组大鼠背部肌肉内植入单纯纳米羟基磷灰石/胶原/聚乳酸,于4周和8周两个时间点将大鼠分批处死,经CT三维重建、组织学观察及钙含量测定检测植入材料的异位成骨情况。
     结果体外释放实验结果显示BMP-2相关多肽释放规律为:第1天表现为爆发性释放,释放量为29.57%,以后缓慢持续释放,至21d累积释放量达65.98%。A、B、C组,在各时间点的CT三维重建、组织学观察及钙含量检测结果均表明其异位成骨能力优于D组,差异有统计学意义(P<0.01),其中A、B两组的异位成骨能力差异无统计学意义(P>0.05),但两组均优于C组,差异有统计学意义(P<0.01)。
     结论BMP-2相关多肽以纳米羟基磷灰石/胶原/聚乳酸支架材料为载体能够缓慢释放。BMP-2相关多肽可以显著增强纳米羟基磷灰石/胶原/聚乳酸的骨诱导活性,这种骨诱导性存在一定的剂量效应关系。纳米羟基磷灰石/胶原/聚乳酸/BMP-2相关多肽复合材料能够诱导异位骨形成,是一种具有良好骨诱导性的仿生骨修复材料。
     第四部分纳米羟基磷灰石/胶原/聚乳酸/BMP-2相关多肽仿生骨基质材料促进大鼠颅骨缺损修复的实验研究
     目的探讨纳米羟基磷灰石/胶原/聚乳酸/BMP-2相关多肽仿生骨基质材料促进大鼠颅骨缺损修复的可行性和有效性。
     方法成年SD大鼠24只,在大鼠顶骨左、右两侧分别制备直径5mm的颅骨缺损,左侧设为实验组,植入纳米羟基磷灰石/胶原/聚乳酸/BMP-2相关多肽复合材料,对侧设为对照组,植入纳米羟基磷灰石/胶原/聚乳酸,于4和12周时间点将大鼠分批处死,进行大体观察、CT三维重建、组织学观察、扫描电镜观察和透射电镜观察,取术后12周的标本进行Masson三染、免疫组化染色和生物力学检测,比较各组材料促进骨再生修复骨缺损的能力。
     结果CT三维重建结果显示:实验组4周时可见片状高密度影,12周时可见骨缺损完全愈合。对照组4周时仅骨缺损边缘可见轻微的片状致密影,12周时高密度影有所增强,面积增大,接近缺损面积的1/2,未能完全修复骨缺损。组织学观察结果显示术后4周,实验组骨缺损处可见大量新骨生成,而对照组仅有少量新骨生成;术后12周,实验组可见大部分支架材料降解,新生骨与宿主骨之间达到完全骨性结合,对照组支架材料部分降解,残余支架被新生骨组织包围。在各时间点,实验组新骨形成面积百分比均大于对照组,差异有统计学意义(P<0.05)。扫描电镜结果显示:4周时两组材料部分降解,可见成骨细胞黏附和类骨质形成,实验组材料与正常骨组织有部分键合,对照组材料与正常骨组织间存在明显间隙;12周时实验组材料大部分降解并由板层骨取代,骨缺损完全修复,对照组骨缺损部分修复。透射电镜结果显示:4周时实验组材料内部可见功能活跃,代谢旺盛的成骨细胞,分泌的胶原排列无序,12周时可见大量成骨细胞,在骨小梁表面成层排列,部分成骨细胞演变为骨细胞,胶原排列有序紧密。对照组在材料周围仅见少量成骨细胞,其分泌胶原功能不活跃。术后12周时,Masson三染结果显示实验组骨缺损处存在大量红色的成熟钙化组织,对照组仅见少量绿色的新生骨样组织。骨钙素和骨桥蛋白免疫组化染色结果进一步印证了HE染色和Masson三染的发现,实验组可见大量骨钙素阳性和骨桥蛋白阳性的新生骨组织,明显多于对照组骨钙素阳性和骨桥蛋白阳性的骨组织。生物力学检测结果显示:实验组最大压力载荷和载荷/应变比值均明显高于对照组差异有统计学意义(P<0.01)。
     结论纳米羟基磷灰石/胶原/聚乳酸/BMP-2相关多肽复合材料促进骨缺损修复能力明显强于单纯纳米羟基磷灰石/胶原/聚乳酸,纳米羟基磷灰石/胶原/聚乳酸/BMP-2相关多肽复合材料是一种优良的具有骨诱导活性的骨缺损修复材料。
PartⅠEffect of BMP-2-related peptide on osteogenic differentiation andmineralization of BMSCs cultured in three-dimensional system
     Objective To evaluate the effect of BMP-2-related peptide on osteogenic differentiationand mineralization of BMSCs cultured in three-dimensional system
     Methods BMSCs were harvested from 4-week-old SD rats and cultured with normalmedium containing low-glucose Dulbecco's modified Eagle's medium (DMEM), 10% fetalbovine serum (FBS) and 1% antibiotics. The 3rd generation BMSCs were dissociated.collected and cultured with Cytodex~(TM) 3 collagen microcarrier in three-dimensional system.After one day, the medium was changed to osteogenetic differentiation medium whichconsisted of the culture media previously described, supplemented with 10mMβ-glycerophosphate and 50 mg/ml ascorbic acid. In the experimental group, the medium wasadded to 200μg/ml BMP-2-related compared with the control group. After 7d and 14d. thecell survival of BMSCs was determined by a fluorescent live/dead assay. The calciumcontents and alkaline phosphatase(ALP) staining were measured to assess the differentiationof BMSCs towards osteoblasts. The mineralization of BMSCs was determined by calceinstaining.
     Results BMSCs cultured with Cytodex~(TM) 3 collagen microcarrier grew well in bothexperimental group and control group. There was no statistical significance between the twogroups (P>0.05).The result of calcium contents and ALP staining suggested theexperimental group was significant higher than the control group(P<0.05). The result ofcalcein staining showed that the mineralization level of BMSCs in the experimental groupwas significant higher than that in the control group.
     Conclusion BMP-2-derived peptide can promote osteogenic differentiation andmineralization of BMSCs cultured in three-dimensional system effectively.
     PartⅡPreparation and characteristic of scaffold based onmineralized collagen loaded with synthetic BMP-2-related peptide andits effect on biological behavior of bone marrow stromal cells
     Objective In this study, a new biomimetic bone tissue engineering scaffold material, thescaffold based mineralized collagen loaded with BMP-2-related peptide was prepared. Theeffect of BMP-2-related peptide on the adhesion, proliferation and differentiation of BMSCswere investigated.
     Methods The scaffold material nano-hydroxyapatite/collagen/poly(lactic acid)(nHAC/PLA) was developed by biomimetic synthesis.The hierarchical microstructure of thescaffold material was analyzed by X-ray diffraction. The microcosmic appearance of thescaffold was observed by scanning electron microscope. BMP-2-related peptide wasintroduced into the porous nHAC/PLA scaffold. The third generation of BMSCs was seededonto the scaffolds and the scaffold without BMP-2-related peptide as a control. The adhesionof BMSCs was assessed by precipitation method. The proliferative ability of BMSCs weremeasured by MTT assay and scanning electron microscope. The alkaline phosphatase activities and calcium contents were measured to assess the differentiation of BMSCstowards osteoblasts.
     Results The result of X-ray diffraction suggested that the inorganic phase in themineralized collagen scaffold was determined as HA. The results of scanning electronmicroscope showed that the surface of the scaffold was porous and the pores wereinterconnected. The pore sizes were from several 10μm to about 300μm. The abilities ofadhesion and differentiation to osteoblast of the BMSCs in the experimental group weresignificantly greater than those in the control group (P<0.05), but with regard to the abilitiesof proliferation of the BMSCs. there is no significant difference between the experimentalgroup and the control group(P>0.05).
     Conclusion The synthetic BMP-2-related peptide could improve biocompatibility andbioactivity of the nHAC/PLA scaffold material. The nHAC/PLA scaffold loaded withBMP-2-related peptide is a kind of ideal scaffold material for bone tissue engineering.
     PartⅢEctopic osteogenesis of scaffold based on mineralizedcollagen loaded with synthetic BMP-2-related peptide
     Objective To evaluated the ectopic osteogenetic capacity of the scaffold based onmineralized collagen loaded with synthetic BMP-2-related peptide.
     Methods The scaffold material nano-hydroxyapatite/collagen/poly(lactic acid)(nHAC/PLA) was prepared. BMP-2-related peptide was introduced into the porousnHAC/PLA scaffold. For observing the releasing character of BMP-2-related peptide.thereleased peptide content from the scaffold was detected using high performance liquidchromatography at different set times. 48 SD rats were allocated into four groups randomly.Four kinds of scaffold materials were respectively implanted subcutaneously into rats. Group A: the nHAC/PLA scaffold loaded with 3 mg BMP-2-related peptide, Group B: thenHAC/PLA scaffold loaded with 2 mg BMP-2-related peptide, Groups C: the nHAC/PLAscaffold loaded with 1 mg BMP-2-related peptide, Groups D: the nHAC/PLA scaffold alone.At the 4th and 8th weeks after implantation, the rats were sacrificed in batch and the sampleswere harvested. Their osteogenic capability was detected by CT scan and histologicalobservation.
     Results The releasing character of BMP-2-related was that an initial burst releasing(29.57%) was observed over the first day, followed by a sustained release and reached 65.98% after 21 days. The results of CT scan and histological observation demonstrated that theosteogenic capability of 3 mg, 2 mg and 1 mg of the BMP-2-related peptide was superior tothe implants without the BMP-2-related peptide(P<0.05). There was no significant differencebetween implants with 3 mg and 2 mg BMP-2-related peptide(P>0 05), but the osteogeniccapability of the two dosage groups was significantly better than that of the 1 mggroup(P<0.05).
     Conclusion BMP-2-related peptide can increase the osteoinduction of nHAC/PLAscaffold and the BMP-2-related peptide induced ectopic bone formation in a dose-dependentmanner. The nHAC/PLA scaffold loaded with the BMP-2-related peptide is a kind of idealscaffold material with good osteoinductivity.
     PartⅣRepair of cranial bone defects with scaffold based onmineralized collagen loaded with synthetic BMP-2-related peptide
     Objective To investigate the osteogenetic capacity of nHAC/PLA loaded with aBMP-2-related peptide biomimetic scaffold materials.
     Methods Rat cranial defects were created on both sides of the parietal bone of 24 adult Sprague-Dawley rats. BMP-2-related peptide combined with nHAC/PLA scaffold wereimplanted on the left side as experimental group, leaving the other side implanted withnHAC/PLA scaffold alone as control group. Up to the 4~(th) and 12~(th) weeks, the rats were killedin batch respectively. Macroscopic observation, three-dimensional reconstruction of computedtomography, histological observation and scanning electron microscope observation wereperformed on these samples. Biomechanics detection, Masson trichome staining, andimmunohistochemical analysis were performed on the 12~(th) week's sample additionally.
     Results Three-dimensional reconstruction of computed tomography indicated thatthere were radiodense areas in the left dorsal regions of each rat. but the density of theradiodense areas of experimental group were obviously denser than the density of controlgroup at the 4~(th) week. The defects completety healed at the 12~(th) week in the experimentalgroup that was treated with BMP-2-related peptide loaded nHAC/PLA, while the completebone healing rate in control group was just 1/2. Histological observation showed a largeamount of osteoid tissue and new bone had been observed in the experimental groups at the4th week. While the control group showed only minimal new bone formation at the defectmargins. At the 12th week, in the experimental group, the bony-union between new bone andhost bone was observed. Meanwhile. the composite was almost completely degraded. In thecontrol group, there were still slight amounts of new bone, the scaffolds were only partlydegraded and the residual materials were surrounded by areas of new bone formation. Thepercentage of bone formation areas in the experimental group was superior to the controlgroup at 4~(th) and 12~(th) weeks, the differences were statistically significant (P<0.05). Scanningelectron microscope demonstrated that the bone defects were repaired completely in theexperimental group, where most composite was degraded and replaced by lamellar bone,compared with partly repaired in the control group. Masson trichome staining at the 12~(th) weekshowed that massive calcified bones stained red color were observed in the experimentalgroup. However, in the control group there was only slight amounts of fresh-formed bonestained blue color. The results of immunohistochemical staining for osteocalcin (OCN) and osteopontin (OPN) further supported the H&E and Masson trichrome staining findings.Positive OCN and OPN staining were found throughout the overall region of the regeneratedbone in the experimental group. In contrast, the regenerated tissue from the control groupshowed much lower OCN and OPN immunoreactivity than the experimental group.Biomechanics detection indicated the maximum compression loading and loading/strain ratioon repairing tissue of defects in the experimental group was obviously superior to those in thecontrol group. The differences were also statistically significant (P<0.01)
     Conclusion The osteogenic capability of BMP-2-related peptide loaded nHAC/PLA isobviously superior to nHAC/PLA alone. BMP-2-related peptide loaded nHAC/PLAbiomimetic scaffold material can be a potential repairing material for bone defects.
引文
1. Wozney JM, Rosen V, Celeste AJ,et al. Novel regulators of bone formation: molecular clones and activities. Science. 1988 Dec 16;242(4885): 1528-34.
    2. Derner R. Anderson AC.The bone morphogenic protein. Clin Podiatr Med Surg. 2005 Oct:22(4):607-18
    3. Simpson AH. Mills L, Noble B.The role of growth factors and related agents in accelerating fracture healing. J Bone Joint Surg Br. 2006 Jun;88(6):701-5.
    4. De Biase P, Capanna R. Clinical applications of BMPs. Injury. 2005 Nov;36 Suppl 3:S43-6.
    5. Garrison KR, Donell S, Ryder J, et al. Clinical effectiveness and cost-effectiveness of bone morphogenetic proteins in the non-healing of fractures and spinal fusion: a systematic review. Health Technol Assess. 2007 Aug;l 1(30): 1-150
    6. Munoz-Sanjuan I. Brivanlou AH. Neural induction, the default model and embryonic stem cells. Nat Rev Neurosci. 2002 Apr:3(4):271-80.
    7. Knight PG. Glister C. TGF-beta superfamily members and ovarian follicle development. Reproduction. 2006 Aug:132(2):191-206.
    8. Chen D, Zhao M. Mundy GR.Bone morphogenetic proteins. Growth Factors. 2004 Dec;22(4):233-41.
    9. Wozney JM.The bone morphogenetic protein family and osteogenesis. Mol Reprod Dev.1992 Jun;32(2): 160-7.
    10. Na K. Kim SW. Sun BK, et al. Osteogenic differentiation of rabbit mesenchymal stem cells in thermo-reversible hydrogel constructs containing hydroxyapatite and bone morphogenic protein-2 (BMP-2). Biomaterials. 2007 Jun;28(16):2631-7.
    11. Tondreau T, Lagneaux L. Dejeneffe M.et al. Isolation of BM mesenchymal stern cells by plastic adhesion or negative selection: phenotype, proliferation kinetics and differentiation potential. Cytotherapy. 2004. 6(4):372-379.
    12. Deliloglu-Gurhan SI, Vatansever HS. Ozdal-Kurt F.et al. Characterization of osteoblasts derived from bone marrow stromal cells in a modified cell culture system. Acta Histochem. 2006:108(l):49-57.
    13. Boden SD. Bioactive factors for bone tissue engineering. Clin Orthop 1999;367:S84-94.
    14. Kato M, Namikawa T. Terai H. et al. Ectopic bone formation in mice associated with a lactic acid/dioxanone/ethylene glycol copolymer-tricalcium phosphate composite with added recombinant human bone morphogenetic protein-2. Biomaterials. 2006 Jul:27(21):3927-33.
    15. Wozney JM, Rosen V. Bone morphogenetic protein and bone morphogenetic protein gene family in bone formation and repair. Clin Orthop 1998:346:26-37.
    16. Luyten, F.P., et al., 1989. Purification and partial amino acid sequence of osteogenin. a protein initiating bone differentiation. J. Biol. Chem. 264. 13377- 13380
    17. Hanamura H, Higuchi Y, Nakagawa M, et al. Solubilized bone morphogenetic protein (BMP) from mouse osteosarcoma and rat demineralized bone matrix. Clin Orthop Relat Res. 1980:148:281-290.
    18. Schliephake H. Weich HA. Dullin C,et al. Mandibular bone repair by implantation of rhBMP-2 in a slow release carrier of polylactic acid-an experimental study in rats. Biomaterials. 2008 Jan:29(l):103-10.
    19. Gugala Z, Olmsted D. Osteoinductive by ex vivo adenovirus-mediated BMP-2 delivery is independent of cell type. Gene Ther. 2003, 10(16): 1289-1295.
    20. Kirsch T. Sebald W, Dreyer MK.Crystal structure of the BMP-2-BRIA ectodomain complex.Nat Struct Biol. 2000 Jun:7(6):492-6.
    21. Chan MC, Nguyen PH, Davis BN, et al. A novel regulatory mechanism of the bone morphogenetic protein (BMP) signaling pathway involving the carboxyl-terminal tail domain of BMP type II receptor. Mol Cell Biol. 2007 Aug:27(16):5776-89.
    22. Kotzsch A. Nickel J. Seher A. et al. Structure analysis of bone morphogenetic protein-2 type I receptor complexes reveals a mechanism of receptor inactivation in juvenile polyposis syndrome. J Biol Chem. 2008 Feb 29:283(9):5876-87.
    23. Saito A, Suzukib Y, Ogata SI. Activation of osteo-progenitor cells by a novel synthetic peptide derived from the bone morphogenetic protein-2 knuckle epitope. Biochimica et Biophysica Acta, 2003. 1651 (1-2) : 60- 67.
    24. Leong WF. Zhou T, Lim GL, Li B. Protein palmitoylation regulates osteoblast differentiation through BMP-induced osterix expression. PLoS ONE. 2009:4(l):e4135.
    25. Baksh D, Song L, Tuan RS. Adult mesenchymal stem cells: characterization. differentiation, and application in cell and gene therapy. J Cell Mol Med 2004:8:301-16.
    26. Kim J. Kim IS. Cho TH, et al. Bone regeneration using hyaluronic acid-based hydrogel with bone morphogenic protein-2 and human mesenchymal stem cells. Biomaterials.2007 Apr;28(10):1830-7.
    27. Datta N, Holtorf HL. Sikavitsas Ⅵ, Jansen JA, Mikos AG. Effect of bone extracellular matrix synthesized in vitro on the osteoblastic differentiation of marrow stromal cells. Biomaterials. 2005 Mar:26(9):971-7.
    28. Tondreau T. Lagneaux L. Dejeneffe M.et al. Isolation of BM mesenchymal stem cells by plastic adhesion or negative selection: phenotype. proliferation kinetics and differentia- tion potential. Cytotherapy. 2004, 6(4):372-379.
    29. Deliloglu-Gurhan SI. Vatansever HS, Ozdal-Kurt F.et al. Characterization of osteoblasts derived from bone marrow stromal cells in a modified cell culture system. Acta Histochem. 2006:108(l):49-57.
    30. Shur I. Marom R, Lokiec F, et al. Identification of cultured progenitor cells from human marrow stroma. J Cell Biochem. 2002;87(l):51-57.
    31. Modder UI, Khosla S. Skeletal stem/osteoprogenitor cells: current concepts, alternate hypotheses, and relationship to the bone remodeling compartment. J Cell Biochem.2008 Feb 1:103(2):393-400.
    32. Simmons PJ, Gronthos S, Zannettino A, et al. Isolation, characterization and functional activity of human marrow stromal progenitors in hemopoiesis. Prog Clin Biol Res. 1994:389:271-80.
    33. Malda J. Kreijveld E, Temenoff JS, van Blitterswijk CA, Riesle J. Expansion of human nasal chondrocytes on macroporous microcarriers enhances redifferentiation. Biomaterials 2003;24(28):5153-5161.
    34. Botchwey EA, Pollack SR. Levine EM, Laurencin CT. Bone tissue engineering in a rotating bioreactor using a microcarrier matrix system. J Biomed Mater Res. 2001 May;55(2):242-53.
    35. Cook JL, Kreeger JM, Payne JT, Tomlinson JL. Three-dimensional culture of canine articular chondrocytes on multiple transplantable substrates.Am J Vet Res. 1997 Apr: 58(4):419-24.
    36. Bagley J, Rosenzweig M. Marks DF, Pykett MJ. Extended culture of multipotent hematopoietic progenitors without cytokine augmentation in a novel three-dimensional device. Exp Hematol. 1999 Mar; 27(3):496-504.
    37. Fernandes AM. Fernandes TG, Diogo MM, et al. Mouse embryonic stem cell expansion in a microcarrier-based stirred culture system. J Biotechnol. 2007,31:132(2):227-36.
    38. Chiu B. Wan J Z, Abley D. et al. Induction of vascular endothelial phenotype and cellular p roliferation from human cord blood stem cells cultured in simulated microgravity. Acta Astronaut. 2005, 56 ( 9-12): 918 - 922.
    39. Malda J, van Blitterswijk C A, GrojecM. et al. Expansion of bovine chondrocnes on microcarriers enhances redifferentiation. Tissue Eng, 2003, 9 (5) : 939 - 948.
    40. Peter SJ, Liang CR, Kim DJ. et al. Osteoblastic phenotype of rat marrow stromal cells cultured in the presence of dexamethasone, beta-glycerolphosphate, and L-ascorbic acid. J Cell Biochem. 1998 Oct l;71(l):55-62.
    41. van der Zande M, Walboomers XF. Briest A, et al. The effect of combined application of TGFbeta-1, BMP-2. and COLLOSS E on the development of bone marrow derived osteoblast-like cells in vitro. J Biomed Mater Res A. 2008 Sep:86(3):788-95
    1. Jones JR, Lee PD, Hench LL. Hierarchical porous materials for tissue engineering. Philos Transact A Math Phys Eng Sci. 2006 Jan 15;364(1838):263-81.
    2. Cui FZ, ZhangY, Wen HB, Zhu XD. Microstructure evolution in external callus of human long bone. Materials Science & Engineering C. 2000, 11:27-33.
    3. Du C, Cui FZ, Zhu XD, K. de Groot. Three-dimensional nano-Hap/collagen matrix loading with osteogenic cells in organ culture. J Biomed Mater Res 1999, 44:407-415.
    4. Kikuchi M, Itoh S, Ichinose S, Shinomiya K, Tanaka J. Self-organization mechanism in a bone-like hydroxyapatite/collagen nanocomposite synthesized in vitro and its biological reaction in vivo. Biomaterials 2001; 22: 1705-1711.
    5. Itoh S, Kikuchi M, Koyama Y, Takakuda K, Shinomiya K, Tanaka J. Development of an artificial vertebral body using a novel biomaterial, hydroxyapatite/collagen composite. Biomaterials. 2002, 23(19): 3919-3926.
    6. Chang MC, Ikoma T, Kikuchi M, Tanaka J. Preparation of a porous hydroxyapatite/collagen nanocomposite using glutaraldhyde as a crosslinkage agent. J Mater Sci Lett. 2001, 20(13): 1199-1201.
    7. Wang RZ, Cui FZ, Lu HB, Wen HB, Ma CL, Li HD. Synthesis of Nanophase Hydroxyapatite collagen composite. Journal of Materials Science Letters. 1995, 14:490-492.
    8. Du C, Cui FZ, Zhang W, Feng QL, Zhu XD, K. de Groot. Formation of calcium phosphate/collagen composites through mineralization of collagen matrix. J Biomed Mater Res. 2000, 50: 518-527.
    9. Du C, Cui FZ, Feng QL, et al. Tissue response to nano-hydroxyapatite/ collagen composite implants in marrow cavity. J Biomed Mater Res. 1998, 42: 540-548.
    10. Wang Y, Cui FZ, Zhai Y, et al. Investigations of the initial stage of recombinant human-like collagen mineralization. Mat Sci Eng C-Bio S 2006; 26(4):635-638.
    11. Lutolf MP, Hubbell JA. Synthetic biomaterials as instructive extracellular microenvironments for morphogenesis in tissue engineering. Nat Biotechnol,2005, 23(1): 47-55.
    12. Lieb E, Hacker M, Tessmar J, et al. Mediating specific cell adhesion to low-adhesive diblock copolymers by instant modification with cyclic RGD peptides. Biomaterials. 2005 May;26(15):2333-41.
    13. Ho MH, Wang DM, Hsieh HJ, et al. Preparation and characterization of RGD-immobilized chitosan scaffolds. Biomaterials. 2005 Jun;26(16):3197-206.
    14. Massia SP, Rao SS, Hubbell JA. Covalently immobilized laminin peptide Tyr-Ile-Gly Ser-Arg (YIGSR) supports cell spreading and co-localization of the 67-kilodalton laminin receptor with alphaactinin and vinculin. J Biol Chem 1993;268:8053-9.
    15. Santiago LY, Nowak RW, Peter Rubin J, et al. Peptide-surface modification of poly(caprolactone) with laminin-derived sequences for adipose-derived stem cell applications. Biomaterials. 2006 May;27(15):2962-9.
    16. Lin X, Takahashi K, Liu Y, et al. Enhancement of cell attachment and tissue integration by a IKVAV containing multi-domain peptide. Biochim Biophys Acta. 2006 Sep; 1760(9): 1403-10.
    17. Lee JY, Choo JE, Park HJ, et al. Synthetic peptide-coated bone mineral for enhanced osteoblastic activation in vitro and in vivo. J Biomed Mater Res A. 2008 Dec l;87(3):688-97
    18. Saito A, Suzuki Y, Ogata S, et al. Activation of osteo-progenitor cells by a novel synthetic peptide derived from the bone morphogenetic protein-2 knuckle epitope. Biochim Biophys Acta 2003; 1651 (1-2):60-7.
    19. Lin X, Pena LA, Zamora PO, et al. Augmentation of demineralized bone matrix (DBM) mineralization by a synthetic growth factor mimetic. J Orthop Res 2006;24( 11):2051 -8.
    20. Kirsch T, Sebald W. Dreyer MK. Crystal structure of the BMP-2-BRIA ectodomain complex. Nat Struct Biol, 2000, 7(6):492-496.
    21. Saito A, Suzukib Y, Ogata SI. Activation of osteo-progenitor cells by a novel synthetic peptide derived from the bone morphogenetic protein-2 knuckle epitope. Biochimica et Biophysica Acta, 2003, 1651(1-2): 60-67.
    22. Duan Z, Zheng Q, Guo X, Yuan Q, Chen S. Experimental research on ectopic osteogenesis of BMP-2-derived peptide P24 combined with PLGA copolymers. J Huazhong Univ Sci Technolog Med Sci; 27(2) : 179-182.
    23. Guo XD, Song YL, Zheng QX. Surface modification of biomimetic PLGA-[ASP-PEG] matrix with RGD containing peptides: a new non-viral vector for gene transfer and tissue engineering. J Wuhan Univer Technol: Mater Sci Ed, 21(3): 4143.
    24. Wozney J, Seeherman H. Protein-based tissue engineering in bone and cartilage repair. Curr Opin Biotechnol, 2004, 15: 392-398.
    25. Lee JY, Choo JE, Choi YS, et al. Characterization of the surface immobilized synthetic heparin binding domain derived from human fibroblast growth factor-2 and its effect on osteoblast differentiation. J Biomed Mater Res A. 2007 Dec 15;83(4):970-9.
    26. Shin H, Jo S, Mikos AG. Biomimetic materials for tissue engineering. Biomaterials. 2003;24(24):4353-64.
    27. Fujisawa R, Wada Y, Nodasaka Y, et al. Acidic am(?)no acid-rich sequences as binding sites of osteonectin to hydroxyapatite crystals. Biochim Biophys Acta 1996;1292(l):53-60.
    28. Kasugai S, Fujisawa R, Waki Y, et al. Selective drug delivery system to bone: small peptide (Asp)6 conjugation. J Bone Miner Res 2000;15(5):936-43.
    29. Fromigu(?) O, Marie PJ, Lomri A. Bone morphogenetic protein-2 and transforming growth factor-beta2 interact to modulate human bone marrow stromal cell proliferation and differentiation. J Cell Biochem, 1998;68(4):411-426.
    30. Peter SJ, Liang CR, Kim DJ, et al. Osteoblastic phenotype of rat marrow stromal cells cultured in the presence of dexamethasone, beta-glycerolphosphate, and L-ascorbic acid. J Cell Biochem. 1998 Oct l;71(1):55-62.
    31. van der Zande M, Walboomers XF, Briest A, et al. The effect of combined application of TGFbeta-1, BMP-2, and COLLOSS E on the development of bone marrow derived osteoblast-like cells in vitro. J Biomed Mater Res A. 2008 Sep;86(3):788-95
    1. Du C , Cui FZ, Feng QL, et al. Tissue reponse to nano-hydroxyapayiye/collagen composite implants in marrow cavity. J Biomed Mater Res, 1998,42(4) :540-548.
    2. Du C , Cui FZ , Zhu XD , et al. Three-dimemsional nano/HAp/ collagen matrix loading osteogenic cells in organ culture. J Biomed Mater Res ,1999,44(4) :407-415.
    3. Wang Y, Cui FZ, Zhai Y, et al. Investigations of the initial stage of recombinant human-like collagen mineralization. Mat Sci Eng C-Bio S 2006;26:635-638.
    4. Yang CL, Hillas PJ, Baez JA, et al. The application of recombinant human collagen in tissue engineering. Biodrugs 2004; 18(2): 103-119.
    5. Kikuchi M, Itoh S, Ichinose S, et al. Self-organization mechanism in abone-tike hydroxyapatite/collagen nanocomposite synthesized in vitro and its biological reaction in vivo. Biomaterials 2001;22(13): 1705-1711
    6. Ignjatovic N, Tomic S, Dakic M, et al. Synthesis and properties of hydroxyapatite/poly-L-lactide composite biomaterials. Biomaterials 1999;20 (9) :809-816.
    7. Boden SD 2005 The ABCs of BMPs. Orthop Nurs. 2005;24(1):49-52; quiz 53-4
    8. Malafaya P, Silva G, Baran E. Drug delivery therapies Ⅱ: strategies for delivering bone regenerating factors. Curr Opin Soli star Mat Sei. 2002; 6, 297-312
    9. Wozney J, Seeherman H. Protein-based tissue engineering in bone and cartilage repair. Curr Opin Biotechnol, 2004, 15(5): 392-398.
    10. Niu X, Feng Q, Wang M, Preparation and characterization of chitosan microspheres for controlled release of synthetic oligopeptide derived from BMP-2. J Microencapsul. 2008 Sep 15:1-9.
    11.段智霞,郑启新,郭晓东,白玉,袁泉,陈顺广.骨形成蛋白2活性多肽体外定向诱导骨髓间充质干细胞向成骨方向分化的剂量依赖性研究.中国修复重建外科杂志.2007,21(10):1118-1122.
    12. Lieberman JR, Daluiski A, Einhorn TA. The role of growth factors in the repair of bone. Biology and clinical applications. J Bone Jt Surg 2002;84-A: 1032-44.
    13. Reddi AH. Bone morphogenetic proteins: from basic science to clinical applications. J Bone Joint Surg Am. 2001;83-A Suppl l(Pt l):S1-6.
    14. Aspenberg P, Jeppsson C, Wang JS, et al. Transforming growth factor beta and bone morphogenetic protein 2 for bone ingrowth: a comparison using bone chambers in rats. Bone. 1996 Nov;19(5):499-503.
    15. Janssens K, ten Dijke P, Janssens S, Van Hul W. Transforming growth factor-betal to the bone. Endocr Rev. 2005 Oct;26(6):743-74.
    16. Wang JS. Basic fibroblast growth factor for stimulation of bone formation in osteoinductive or conductive implants. Acta Orthop Scand Suppl. 1996 Apr;269:l-33.
    17. Cheng H, Jiang W, Phillips F, et al. Osteogenic activity of the fourteen type of human bone morphogenic proteins(BMPs). J Bone Joint Surg Am, 2004, 86-A (1):141-147.
    18. Boden SD. The ABCs of BMPs. Orthop Nurs, 2005, 24(1): 49-52; quiz 53-4.
    19. Karageorgiou V, Kaplan D. Porosity of 3D biomaterial scaffolds and osteogenesis. Biomaterials 2005;26(27):5474-91.
    20. Saito N, Murakami N, Takahashi J,et al. Synthetic biodegradable polymers as drug delivery systems for bone morphogenetic proteins. Adv Drug Deliv Rev 2005;57(7): 1037-48.
    21. Habraken WJ, Wolke JG., Jansen JA. Ceramic composites as matrices and scaffolds for drug delivery in tissue engineering. Adv Drug Deliv Rev 2007;59(4-5):234-48.
    22. Stallmann HP, Faber C, Bronckers AL, et al. In vitro gentamicin release from commercially available calcium-phosphate bone substitutes influence of carrier type on duration of the release profile. BMC Musculoskelet Disord 2006;7:18
    23. Fujisawa R, Wada Y, Nodasaka Y, Kuboki Y. Acidic amino acid-rich sequences as binding sites of osteonectin to hydroxyapatite crystals. Biochim Biophys Acta 1996;1292(l):53-60.
    24. Kasugai S, Fujisawa R, Waki Y, Miyamoto K, Ohya K. Selective drug delivery system to bone: small peptide (Asp)6 conjugation. J Bone Miner Res 2000;15(5):936-43.
    25. Yuan H, Kurashina K, de Bruijn JD, Li Y, de Groot K, Zhang X. A preliminary study on osteoinduction of two kinds of calcium phosphate ceramics. Biomaterials 1999;20(19): 1799-806
    1. Rezwan K, Chen QZ, Blaker JJ, et al. Biodegradable and bioactive porous polymer/inorganic composite scaffolds for bone tissue engineering. Biomaterials. 2006 Jun;27(18):3413-31.
    2. Bonzani IC, George JH, Stevens MM.Novel materials for bone and cartilage regeneration. Curr Opin Chem Biol. 2006 Dec;10(6):568-75
    3. El-Ghannam A.Bone reconstruction: from bioceramics to tissue engineering. Expert Rev Med Devices. 2005 Jan;2(l):87-101.
    4. Khan Y, Yaszemski MJ, Mikos AG,et al. Tissue engineering of bone: material and matrix considerations. J Bone Joint Surg Am. 2008 Feb;90 Suppl 1:36-42
    5. Oliveira JM, Rodrigues MT, Silva SS, et al. Novel hydroxyapatite/chitosan bilayered scaffold for osteochondral tissue-engineering applications: Scaffold design and its performance when seeded with goat bone marrow stromal cells. Biomaterials. 2006 Dec;27(36):6123-37.
    6. Wahl DA, Czernuszka JT.Collagen-hydroxyapatite composites for hard tissue repair. Eur Cell Mater. 2006 Mar 28; 11:43-56.
    7. Liao SS, Guan K, Cui FZ, et al. Lumbar spinal fusion with a mineralized collagen matrix and rhBMP-2 in a rabbit model. Spine 2003;28:1954-1960.
    8. Wang Y, Cui FZ, Hu K, et al. Bone regeneration by using scaffold based on mineralized recombinant collagen. J Biomed Mater Res B. 2007, 86B: 29-35.
    9. Liao SS, Watari F, Uo M, et al.The preparation and characteristics of a carbonated hydroxyapatite/collagen composite at the room temperature. J Biomed Mater Res A,2005, 74B: 817-21
    10. Habibovic P, de Groot K. Osteoinductive biomaterials-properties and relevance in bone repair. J Tissue Eng Regen Med. 2007 Jan-Feb;l(l):25-32.
    11. Masahiro Y, Hidetomi T, Yuuki Let al. Repair of an intercalated long bone defect with a synthetic biodegradable bone-inducing implant.Biomaterials 2005;26:5145 - 5152.
    12. Habibovic P, Kruyt MC, Juhl MV,et al. Comparative in vivo study of six hydroxyapatite-based bone graft substitutes. J Orthop Res. 2008 Oct;26(10): 1363-70.
    13. Liao SS, Cui FZ, Zhang W,et al. Hierarchically biomimetic bone scaffold materials: Nano-HA/collagen/PLA composite. J Biomed Mater Res B Appl Biomater. 2004 May 15;69(2):158-65.
    14. Liao SS, Cui FZ.In Vitro and in Vivo Degradation of Mineralized Collagen-Based Composite Scaffold:Nanohydroxyapatite/Collagen/Poly(L-lactide). Tissue Eng. 2004 Jan-Feb;10(l-2):73-80.
    15. Lee JY, Choo JE, Park HJ, et al. Synthetic peptide-coated bone mineral for enhanced osteoblastic activation in vitro and in vivo. J Biomed Mater Res A. 2008 Dec l;87(3):688-97
    16. Suzuki Y, TaniharaM, Suzuki K, et al. Alginate hydrogel linked with synthetic oligopeptedi derived from BMP-2 allows ectopic osteoinduction in vivo. J Biomed Mater Res, 2000, 50(3): 405-409.
    17. Lin X, Pena LA, Zamora PO, et al. Augmentation of demineralized bone matrix (DBM) mineralization by a synthetic growth factor mimetic. J Orthop Res 2006;24(ll):2051-8.
    18. Saito A, Suzuki Y, Ogata S, et al. Prolonged ectopic calcification induced by BMP-2-derived synthetic peptide. J Biomed Mater Res A, 2004, 70(1): 115-121.
    19. Saito A, Suzuki Y, Ogata S, et al. Accelerated bone repair with the use of a synthetic BMP-2-derived peptide and bone-marrow stromal cells. J Biomed Mater Res A, 2005,72(1): 77-82.
    20. Bin Wu, Qixin Zheng, Xiaodong Guo, et al. Preparation of scaffold based on mineralized recombinant human-like collagen laoding with synthetic BMP-2-derived peptide and its ectopic osteogenesis in vivo. Biomed Mater. 2008 Dec;3(4):44111.
    21. Duan Z, Zheng Q, Guo X, et al. Experimental research on ectopic osteogenesis of BMP-2-derived peptide P24 combined with PLGA copolymers. J Huazhong Univ Sci Technolog Med Sci. 2007 Apr;27(2): 179-82.
    22.段智霞,郑启新,郭晓东,白玉,袁泉,陈顺广.骨形成蛋白2活性多肽体外定向诱导骨髓间充质干细胞向成骨方向分化的剂量依赖性研究.中国修复重建外科杂志.2007,21(10):1118-1122.
    23. Burdick JA, Frankel D, Dernell WS,et al. An initial investigation of photocurable three-dimensional lactic acid based scaffolds in a critical-sized cranial defect. Biomaterials 2003;24(9):1613-20.
    24. Hong SJ, Kim CS, Han DK, et al. fibrin-fibronectin/beta-tricalcium phosphate/recombinant human bone morphogenetic protein-2 system on bone formation in rat calvarial defects. Biomaterials 2006;27(20):3810-6.
    25. Jones L, Thomsen JS, Mosekilde L, et al. Biomechanical evaluation of rat skull defects, 1, 3, and 6 months after implantation with osteopromotive substances. J Craniomaxillofac Surg. 2007 Dec;35(8):350-7.
    26. Khatiwala CB, Kim PD, Peyton SR, et al. ECM Compliance Regulates Osteogenesis by Influencing MAPK Signaling Downstream of RhoA and ROCK. J Bone Miner Res. 2008 Dec 29.
    27. Kasten P, Vogel J, Luginbuhl R, et al. Ectopic bone formation associated with mesenchymal stem cells in a resorbable calcium deficient hydroxyapatite carrier. Biomaterials, 2005, 26(29): 5879-5889.
    28. Li D, Dai K, Tang T.Effects of dextran on proliferation and osteogenic differentiation of human bone marrow-derived mesenchymal stromal cells. Cytotherapy. 2008; 10(6):587-96.
    29. Katono T, Kawato T, Tanabe N, et al. Sodium butyrate stimulates mineralized nodule formation and osteoprotegerin expression by human osteoblasts. Arch Oral Biol. 2008 Oct;53(10):903-9.
    30. Mikos AG, Mclntire LV, Anderson JM, et al. Host response to tissue engineered devices. Adv Drug Deliv Rev. 1998 Aug 3;33(1-2):111-139.
    31. Kato M, Namikawa T, Terai H, et al. Ectopic bone formation in mice associated with a lactic acid/dioxanone/ethylene glycol copolymer-tricalcium phosphate composite with added recombinant human bone morphogenetic protein-2. Biomaterials. 2006 Jul;27(21):3927-33.
    32. Kaneko H, Arakawa T, Mano H, et al. Direct stimulation of osteoclastic bone resorption by bone morphogenetic protein (BMP)-2 and expression of BMP receptors in mature osteoclasts. Bone 2000;27:479 - 86.
    1. Stevenson S. Enhancement of fracture healing with autogenous and allogeneic bone grafts. Clin Orthop Relat Res 1998(355 Suppl):S239-46.
    2. Banwart JC, Asher MA, Hassanein RS. Iliac crest bone graft harvest donor site morbidity. A statistical evaluation. Spine 1995;20(9):1055-60.
    3. Yaszemski MJ, Payne RG, Hayes WC, et al. Evolution of bone transplantation: molecular, cellular and tissue strategies to engineer human bone. Biomaterials 1996;17(2):175-85.
    4. Kirker-Head C, Karageorgiou V, Hofmann S, et al. BMP-silk composite matrices heal critically sized femoral defects. Bone 2007;41(2):247-55
    5. Zandonella C. Tissue engineering: The beat goes on. Nature, 2003,27;421(6926):884-6.
    6. D.W. Hutmacher, Scaffolds in tissue engineering bone and cartilage, Biomaterials 2000,21, 2529-2543.
    7. Carson JS, Bostrom MP. Synthetic bone scaffolds and fracture repair. Injury. 2007;38 Suppl 1:S33-7.
    8. Hench LL, Polak JM. Third-generation biomedical materials. Science, 2002, 295: 1014-1017.
    9. Oakes BW. Orthopaedic tissue engineering: from laboratory to clinic, Med J Aust. 2004;180(5 Suppl): S35-8.
    10. Rezwan K, Chen QZ, Blaker JJ, et al. Biodegradable and bioactive porous polymer/inorganic composite scaffolds for bone tissue engineering. Biomaterials. 2006 Jun;27(18):3413-31
    11. Chang BS, Lee CK, Hong KS, et al. Osteoconduction at porous hydroxyapatite with various pore configurations. Biomaterials. 2000 Jun;21(12):1291-8.
    12. El-Ghannam A. Bone reconstruction: from bioceramics to tissue engineering. Expert Rev Med Devices. 2005 Jan;2(l):87-101.
    13. Rezwan K, Chen QZ, Blaker JJ, et al. Biodegradable and bioactive porous polymer/inorganic composite scaffolds for bone tissue engineering. Biomaterials. 2006 Jun;27(18):3413-31.
    14. Yokoyama A, Gelinsky M, Kawasaki T, et al. Biomimetic porous scaffolds with high elasticity made from mineralized collagen-an animal study. J Biomed Mater Res B Appl Biomater. 2005 Nov;75(2):464-72.
    15. Suzuki O, Kamakura S, Katagiri T, et al. Bone formation enhanced by implanted octacalcium phosphate involving conversion into Ca-deficient hydroxyapatite. Biomaterials. 2006 May;27(13):2671-81.
    16. Gollwitzer H, Thomas P, Diehl P, et al. Biomechanical and allergological characteristics of a biodegradable poly(D,L-lactic acid) coating for orthopaedic implants. J Orthop Res 2005;23:802-9.
    17. Liu X, Ma PX. Polymeric scaffolds for bone tissue engineering. Ann Biomed Eng 2004;32(3):477-86.
    18. Nair LS, Laurencin CT.Polymers as biomaterials for tissue engineering and controlled drug delivery. Adv Biochem Eng Biotechnol. 2006; 102:47-90.
    19. Costa-Pinto AR, Salgado AJ, Correlo VM, et al.Adhesion, proliferation, and osteogenic differentiation of a mouse mesenchymal stem cell line (BMC9) seeded on novel melt-based chitosan/polyester 3D porous scaffolds.Tissue Eng Part A. 2008 Jun; 14(6): 1049-57
    20. Mohanty AK, Misra M, Hinrichsen G Biofibres, biodegradable polymers and biocomposites: an overview. Macromol Mater Eng 2000;276-277:10-24.
    21. Chen GQ, Wu Q. The application of polyhydroxyalkanoates as tissue engineering materials. Biomaterials 2005;26:6565-78.
    22. Middleton JC, Tipton AJ. Synthetic biodegradable polymers as orthopaedic devices. Biomaterials 2000;21:2335-46.
    23. Di Martino A, Sittinger M, Risbud MV. Chitosan: a versatile biopolymer for orthopaedic tissue-engineering. Biomaterials 2005; 26:5983-90.
    24. Kirker-Head C, Karageorgiou V, Hofmann S, et al. BMP-silk composite matrices heal critically sized femoral defects. Bone. 2007 Aug;41(2):247-55.
    25. Machado CB, Ventura JM, Lemos AF, et al. 3D chitosan-gelatin-chondroitin porous scaffold improves osteogenic differentiation of mesenchymal stem cells. Biomed Mater.2007 Jun;2(2):124-31.
    26. Takahashi Y, Yamamoto M, Tabata Y. Osteogenic differentiation of mesenchymal stem cells in biodegradable sponges composed of gelatin and beta-tricalcium phosphate. Biomaterials. 2005 Jun;26(17):3587-96.
    27. Andrew SD, Phil GC, Marra KG The influence of polymer blend composition on the degradation of polymer/hydroxyapatite biomaterials.J Mater Sci: Mater Med 2001;12:673-7.
    28. Rich J, Jaakkola T, Tirri T, Narhi T, Yli-Urpo A, Seppala J. In vitro evaluation of poly([var epsilon]-caprolactone-co-DL-lactide)/bioactive glass composites. Biomaterials 2002;23:2143-50.
    29. Boccaccini AR, Maquet V. Bioresorbable and bioactive polymer/ Bioglass(R) composites with tailored pore structure for tissue engineering applications. Compos Sci Technol 2003;63:2417-29.
    30. Liao S, Ngiam M, Watari F, et, al.Systematic fabrication of nano-carbonated hydroxyapatite/collagen composites for biomimetic bone grafts. Bioinspir Biomim. 2007 Sep;2(3):37-41.
    31. McManus AJ, Doremus RH, Siegel RW, et al. Evaluation of cytocompatibility and bending modulus of nanoceramic/polymer composites. J Biomed Mater Res A, 2005;72(1): 98-106.
    32. Liao S, Wang W, Uo M, et al. A three-layered nano-carbonated hydroxyapatite/collagen/PLGA composite membrane for guided tissue regeneration. Biomaterials 2005;26(36): 7564-7571.
    33. Li X, Feng Q, Liu X, et al. Collagen-based implants reinforced by chitin fibres in a goat shank bone defect model. Biomaterials, 2006, 27:1917-1923
    34. Garcia AJ, Keselowsky BG. Biomimetic surfaces for control of cell adhesion to facilitate bone formation. Crit Rev Eukaryot Gene Expr, 2002; 12(2): 151-62.
    35. Morra M, Cassinelli C. Biomaterials surface characterization and modification. Int J Artif Organs. 2006 Sep;29(9):824-33.
    36. Vasita R, Shanmugam I K, Katt DS. Improved biomaterials for tissue engineering applications: surface modification of polymers. Curr Top Med Chem. 2008;8(4):341-53.
    37. Keselowsky BG, Collard DM, Garc(?)a AJ. Surface chemistry modulates focal adhesion composition and signaling through changes in integrin binding. Biomaterials. 2004;25(28):5947-54.
    38. Liu H, Slamovich EB, Webster TJ. Increased osteoblast functions among nanophase titania/poly(lactide-co-glycolide) composites of the highest nanometer surface roughness. J Biomed Mater Res A. 2006; 78(4):798-807.
    39. Moroni L, Lee LP. Micropatterned hot-embossed polymeric surfaces influence cell proliferation and alignment. J Biomed Mater Res A. 2009 Mar l;88(3):644-53.
    40. Shin H, Jo S, Mikos AG. Modulation of marrow stromal osteoblast adhesion on biomimetic oligo(poly(ethylene glycol) fumarate) hydrogels modified with Arg-Gly-Asp peptides and a poly(ethylene glycol) spacer. J Biomed Mater Res 2002;61: 169-179.
    41. Panitch A, Yamaoka T, Fournier MJ,et al. Design and biosynthesis of elastin-like artificial extracellular matrix proteins containing periodically spaced fibronectin CS5 domains. Macromolecules 1999;32:1701-3.
    42. Santiago LY, Nowak RW, Peter Rubin J, et al. Peptide-surface modification of poly(caprolactone) with laminin-derived sequences for adipose-derived stem cell applications. Biornaterials. 2006: 27(15):2962-9.
    43. Harbers GM, Healy KE.The effect of Iigand type and density on osteoblast adhesion, proliferation, and matrix mineralization. J Biomed Mater Res A. 2005: 75(4):855-69.
    44. Nelson M, Balasundaram G, Webster TJ. Increased osteoblast adhesion on nanoparticulate crystalline hydroxyapatite functionalized with KRSR. Int J Nanomedicine. 2006:1(3):339-49.
    45. Yuan Q, Guo XD, Zheng QX, et al. Bioinspired growth of hydroxyapatite nanocrystals on PLGA- (PEG- ASP)n scaffolds modified with oligopeptide derived from BMP-2. Key engineering materials; 2007, 334-335:1261-1264.
    46. Richert L, Boulmedais F, Lavalle P, et al.Improvement of stability and cell adhesion properties of polyelectrolyte multilayer films by chemical cross-linking.Biomacromolecules. 2004;5(2): 284-94.
    47. Li B, Chen J, Wang JH. RGD peptide-conjugated poly(dimethylsiloxane) promotes adhesion, proliferation, and collagen secretion of human fibroblasts. J Biomed Mater Res A. 2006 Dec 15;79(4):989-98.
    48. Kikuchi M, Itoh S, Ichinose S, et al. Self-organization mechanism in a bone-like hydroxyapatite/collagen nanocomposite synthesized in vitro and its biological reaction in vivo. Biomaterials 2001;22:1705-1711
    49. Clarke KL, Graves SE, Wong AT-C, et al. Investigation into the formation and mechanical properties of a bioactive material based on collagen and calcium phosphate. J Mater Sci Mater Med, 1993, 4: 107-110.
    50. Yokoyama A, Gelinsky M, Kawasaki T, et al. Biomimetic porous scaffolds with high elasticity made from mineralized collagen-An animal study. J Biomed Mater Res B Appl Biomater, 2005, 75: 464-472.
    51. Liao SS, Cui FZ, Zhang W, et al.; Hierarchically biomimetic bone scaffold materials: nano-HA/collagen/PLA composite. J Biomed Mater Res B Appl Biomater 2004, 69(2):158-165.
    52. Liao SS, Cui FZ. In vitro and in vivo degradation of mineralized collagen-based composite scaffold: nanohydroxyapatite/collagen/poly(L-lactide). Tissue Eng. 2004;10(l-2):73-80.
    53. Li WJ, Tuli R, Huang X, et al. Multilineage differentiation of human mesenchymal stem cells in a three-dimensional nanofibrous scaffold. Biomaterials 2005; 26: 5158-5166.
    54. Bhattarai N, Edmondson D, Veiseh O, et al. Electrospun chitosan-based nanofibers and their cellular compatibility. Biomaterials. 2005; 26(31): 6176-84.
    55. Bolgen N, Menceloglu YZ, Acatay K, et al. In vitro and in vivo degradation of non-woven materials made of poly (epsilon-caprolactone) nanofibers prepared by electrospinning under different conditions. J Biomater Sci PolymEd, 2005,16(12):1537-1555.
    56. Holmes TC. Novel peptide-based biomaterial scaffolds for tissue engineering. Trends Biotechnol, 2002,20(1): 16- 21.
    57. Hua FJ, Kim GE, Lee JD, et al. Macroporous poly(L-lactide) scaffold: Preparation of a macroporous scaffold by liquid-liquid phase separation of a PLLA-diocane-water system. J Biomed Mater Res, 2002, 63(2):161-167.
    58. Yang KF, Leong ZD, Chuac K. The design of scaffolds for use in tissue engineering: Part Ⅱ. Rapid prototyping techniques. Tissue Eng. 2002(8): 1-11.
    59. Weigel T, Schinkel G, Lendlein A. Design and preparation of polymeric scaffolds for tissue engineering. Expert Rev Med Devices. 2006;3(6):835-51.
    60. Seitz H, Rieder W, Irsen S, et al. Three-dimensional printing of porous ceramic scaffolds for bone tissue engineering. J Biomed Mater Res B Appl Biomater. 2005 Aug;74(2):782-8.