RNA干扰抑制ACP1对前列腺癌T3B细胞的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的构建包含有ACP1小干扰RNA序列的真核表达载体,并将构建的载体转染入前列腺癌T3B细胞中,检测ACP1在pGenesil-1/ACP1-shRNA转染的T3B中的表达,研究ACP1基因被下调后,前列腺癌T3B细胞的生物学特性变化。
     方法针对人ACP1基因开放阅读框序列选择干扰目的片段,据干扰目的片段设计小发卡状RNA序列,人工合成设计好的片段,将合成片段与pGenesil-1质粒连接,构成克隆质粒。将重组的质粒转化入大肠杆菌DH5-α,进行扩增,经纯化、酶切、测序鉴定插入片段完整正确。用脂质体介导的基因转染技术将pGenesil-1/ACP1-shRNA质粒转染入T3B细胞,G418筛选得到稳定克隆,以RT-PCR方法在mRNA水平检测ACP1表达,以Western Blot方法检测蛋白水平的表达。将细胞分为PC-3组、T3B组、pGenesil-1转染组、pGenesil-1/ACP1-shRNA转染组,通过MTT法测生长曲线,流式细胞术测细胞周期和凋亡,粘附实验测粘附能力,划痕实验测迁移能力,Transwell法测侵袭能力。
     结果成功构建了人ACP1-shRNA真核表达载体。筛选到成功转染,并能稳定表达的单克隆株,与对照组比较mRNA由0.45±0.03下降到0.09±0.02,蛋白相对表达由0.65±0.02下降到0.21±0.03,mRNA下调80%,蛋白下调76%,与对照组相比,下调ACP1后,前列腺癌细胞生长及细胞周期无明显变化,粘附能力明显下降,迁移能力和侵袭能力皆下降。
     结论经shRNA对ACP1进行下调,可见ACP1在mRNA和蛋白水平均表达均得到有效抑制,ACP1下调后前列腺癌细胞的粘附、迁移、侵袭能力,对增殖无影响。
Objective To construct ACP1 short hairpin RNA eukaryotic expression vector,transfect reconstructed plasmid into prostatic carcinoma cell T3B, and to detect theexpression of ACP1 in T3B and PC-3. Study the biology characteristics changes ofprostatic carcinoma cells after down-regulation of ACP1.
     Methods Selected the target gene fragment according the open reading frame ofACP1, and designed the short hairpin RNA which synthesized and inserted intopGenesil-1 vector to form cloning plasmid. The recombinant plasmid was identifiedby restriction enzyme digestion and sequencing analysis after E. coli transformation,amplification and purification. Plasmid pGenesil-1/ACP1-shRNA was transfected intoT3B cells with Lipoinfectamin~(TM) 2000 and then the stably transfected positive cloneswere screened with G418. The mRNA expression of ACP1 was detected by RT-PCRand protein by Western Blot. T3B group, pGenesil-1 group and pGenesil-1/ACP1-shRNA group, PC-3 group cells were detected on growth, cell circle by FCM,capacity of adhesion, migration and invasion.
     Results Recombinant human ACP1-shRNA eukaryotic expression vector wasconstructed successfully The stably transfected positive clones was successfullyscreened which could express reconstructed ACP1-shRNA stably. The ACP1 mRNAof shRNA transfected group decreased from 0.45±0.03 to 0.09±0.02, compared withcontrol group; ACP1 protein expression dropped from 0.65±0.02 to 0.21±0.03.mRNA was down-regulated 80%, and protein 76%. Compared with pGenesil-1 group,cell growth rate and cell cycle of pGenesil-1/ACP1-shRNA group cells didn't change, the capacity of adhesion, migration and invasion decreased dramatically.
     Conclusion The expression of ACP1 mRNA and protein was suppressed efficientlyby means of siRNA. Down-regulation of ACP1 could suppress the capacity ofadhesion, migration and invasion in prostatic carcinoma cells, and had no effect oncell proliferation.
引文
1. Yang L, Li L, Chen Y, et al. Cancer incidence and mortality estimates and prediction for year 2000 and 2005 in China. Chinese J Health Stat 2005;22:218-232.
    2. Bubendorf L, Schopfer A, Wagner U, et al. Metastatic patterns of prostate cancer: an autopsy study of 1589 patients. Hum Pathol 2000;31:578-583.
    3. Sarmishtha D, Juhua C, Natalya V, et al. Molecular pathwa for cancer metastasis to bone. J Biol Chem 2003;278:39044-39050.
    4. Chinni SR, Sivalogan S, Dong Z, et al. CXCL12/CXCR4 signaling actiaties Akt-1 and MMP-9 expression in prostate cancer cells: the role of bone micro environment- associated CXCL12. Prostate 2006;66:32-48.
    5. Tenta R, Sourla A, Lembessis P, et al. Bone microenvironment-related growth factors, zoledronic acid and dexamethasone differentially modulate PTHrP expression in PC-3 prostate cancer cells. Horm Metab Res 2005;37:593-601.
    6.廖晖,陈安民,郭风劲,et al.不同骨转移潜能人前列腺癌细胞亚株的筛选.中国癌症杂志 2007;17:231-235.
    7.宋登新,陈安民,郭风劲,et al.人前列腺癌细胞骨转移潜能差异表达蛋白的研究.中华医学杂志 2008;88:1197-1201.
    8. Hopkinson D, Spencer N, Harris H. Red cell acid phosphatase variants: a new human polymorphism. Nature 1963; 199:969-971.
    9. Bryson GL, Massa H, Trask BJ, et al. Gene structure, sequence, and chromosomal localization of the human red cell-type low-molecular-weight acid phosphotyrosyl phosphatase gene, ACP1. Genomics 1995;30:133-140.
    10.Dissing J, Johnsen AH, Sensabaugh GF. Human red cell acid phosphatase (ACP1). The amino acid sequence of the two isozymes Bf and Bs encoded by the ACP1~*B allele. J Biol Chem 1991;266:20619-20625.
    11. Miller DT, Read, R, Rusconi J, et al. The drosophila primo locus encodes two low-molecular-weight tyrosine phosphatases. Gene 2000;243:l-9.
    12. Poole AW, Jones ML. A SHPing tale: perspectives on the regulation of SHP-1 and SHP-2 tyrosine phosphatases by the C-erminal tail. Cell signal 2005;17:1323-1332.
    13. Nell BG, Gu H, Pao L. The 'Shp'ing news: SH2 domain-containing tyrosine phosphatases in cell signaling. Trends Biochem Sci 2003;28:284-293.
    14. Spina C, Saccucci P, Bottini E, et al. ACP1 genetic polymorphism and colon cancer. Cancer Genet Cytogenet 2008; 186:61-62.
    15. Malentacchi F, Marzocchini R, Gelmini S, et al. Up-regulated expression of low molecular weight protein tyrosine phosphatases in different human cancers.Biochem Biophys Res Commun 2005;334:875-883.
    16. Alho I, Clara Bicho M, Carvalho R, et al. Low molecular weight protein tyrosine phosphatase genetic polymorphism and susceptibility to cancer development.Cancer Genet Cytogenet 2008; 181:20-24.
    17. Chiarugi P, Cirri P, Raugei G, et al. Low M(r) phosphotyrosine protein phosphatase interacts with the PDGF receptor directly via its catalytic site.Biochem Biophys Res Commun 1996;219:21-25.
    18. Taddei ML, Chiarugi P, Cirri P, et al. Beta-catenin interacts with low-molecular-weight protein tyrosine phosphatase leading to cadherin-mediated cell-cell adhesion increase. Cancer Res 2002;62:6489-6499.
    19. Parri M, Buricchi F, Giannoni E, et al. EphrinAl activates a Src/focal adhesion kinase-mediated motility response leading to rho-dependent actino/myosinn contractility. J Biol Chem 2007;282:19619-19628.
    20. Zambuzzi WF, Granjeiro JM, Parikh K, et al. Modulation of Src activity by low molecular weight protein tyrosine phosphatase during osteoblast differentiation.Cell Physiol Biochem 2008;22:497-506.
    21. Buricchi F, Giannoni E, Grimaldi G, et al. Redox regulation of ephrin/integrin cross-talk. Cell Adh Migr 2007; 1:33-42.
    1. Ferreira CV, Justo GZ, Souza AC, et al. Natural compounds as a source of protein tyrosine phosphatase inhibitors: application to the rational design of small-molecule derivatives. Biochimie 2006;88:1859-1873.
    2. Malentacchi F, Marzocchini R, Gelmini S, et al. Up-regulated expression of low molecular weight protein tyrosine phosphatases in different human cancers. Biochem Biophys Res Commun 2005;334:875-883.
    3. Alho I, Clara Bicho M, Carvalho R, et al. Low molecular weight protein tyrosine phosphatase genetic polymorphism and susceptibility to cancer development. Cancer Genet Cytogenet 2008; 181:20-24.
    4.宋登新,陈安民,郭风劲,et al.人前列腺癌细胞骨转移潜能差异表达蛋白的研究.中华医学杂志 2008;88:1197-1201.
    5. Denu JM, Dixon JE. Protein tyrosine phosphatases: mechanisms of catalysis and regulation. Curr Opin Chem Biol 1998;2:633-641.
    6. Raugei G, Ramponi G, Chiarugi P. Low molecular weight protein tyrosine phosphatases: small, but smart. Cell Mol Life Sci 2002;59:941-949.
    7. Spina C, Saccucci P, Bottini E, et al. ACP1 genetic polymorphism and colon cancer. Cancer Genet Cytogenet 2008; 186:61-62.
    8. Hannon GJ. RNA interference. Nature 2002;418:244-251.
    9. Hammond SM, Bernstein E, Beach D, et al. An RNA-directed nuclease mediates post-transcriptional gene silencing in Drosophila cells. Nature 2000;404:293-296.
    10. Stegmeier F, Hu G, Rickles RJ, et al. A lentiviral microRNA-based system for single-copy polymerase Ⅱ-regulated RNA interference in mammalian cells. Proc Nat1 Acad Sci U S A 2005;102:13212-13217.
    11. Sui G, Soohoo C, Affarei B, et al. A DNA vector-based RNAi technology to suppress gene expression in mammalian cells. Proc Nat Acad Sci USA 2002;99:5515-5520.
    12. Myers JW, Jones JT, Meyer T, et al. Recombinant Dicer efficiently converts large dsRNA into siRNAs suitable for gene silencing. Nat Biotechnol 2003;21:324-328.
    13. Miyagishi M, K. T. U6 promotor driven siRNAs with four undine 3'overhangs efficiently suppress targeted gene expression in mammalian cells.,. Nat Biotcchol 2002;20:497-500.
    14. Shinagawa T, S. I. Generation of Ski-knockdown mice by expressing a long double-stranded RNA from an RNA polymerase I promotor. Gene wev 2003;17:1340-1345.
    1. Jemal A, Siegel R, Ward E, et al. Cancer statisties. CA Caneer J Clin 2006;56:106-130.
    2. Yang L, Li L, Chen Y, et al. Cancer incidence and mortality estimates and prediction for year 2000 and 2005 in China. Chinese J Health Stat 2005;22:218-232.
    3. Bubendorf L, Schopfer A, Wagner U, et al. Metastatic patterns of prostate cancer: an autopsy study of 1589 patients. Hum Pathol 2000;31:578-583.
    4. Jacob K, Webber M, Benayahu D, et al. Osteonectin promote prostate ancer cell migration and invasion: a possible mechanism for metastasis to bone. Cancer Res 1999;59:4453-4457.
    5. Sarmishtha D, Juhua C, Natalya V, et al. Molecular pathwa for cancer metastasis to bone. J Biol Chem 2003;278:39044-39050.
    6. Taichman RS, Cooper C, Keller ET, et al. Use of the stromal cell-derived factor-1/ CXCR4 pathway in prostate cancer matastasis to bone. Cancer Res 2002;62:1832-1837.
    7. Chinni SR, Sivalogan S, Dong Z, et al. CXCL12/CXCR4 signaling actiaties Akt-1 and MMP-9 expression in prostate cancer cells: the role of bone micro environment- associated CXCL12. Prostate 2006;66:32-48.
    8. Tenta R, Sourla A, Lembessis P, et al. Bone microenvironment-related growth factors, zoledronic acid and dexamethasone differentially modulate PTHrP expression in PC-3 prostate cancer cells. Horm Metab Res 2005;37:593-601.
    9. dai J, Kitagawa Y, Zhang J, et al. Vascular edothelial growth factor contributes to the prostate cancer-induced osteoblast differentiation mediated by bone morphogenetic protein. Cancer Res 2004;64:994-999.
    10.廖晖,陈安民,郭风劲,et al.不同骨转移潜能人前列腺癌细胞亚株的筛选. 中国癌症杂志 2007;17:231-235.
    11.宋登新,陈安民,郭风劲,et al.人前列腺癌细胞骨转移潜能差异表达蛋白的研究.中华医学杂志 2008;88:1197-1201.
    12. Dissing J, Svensmark O. Human red cell acid phosphatase: purification and properties of the A, B and C isozymes. Biochim Biophys Acta 1990;1041:232-242.
    13. Hopkinson D, Spencer N, Harris H. Red cell acid phosphatase variants: a new human polymorphism. Nature 1963; 199:969-971.
    14. Bryson GL, Massa H, Trask BJ, et al. Gene structure, sequence, and chromosomal localization of the human red cell-type low-molecular-weight acid phosphotyrosyl phosphatase gene, ACP1. Genomics 1995;30:133-140.
    15. Heinrikson RL. Purification and characterization of a low molecular weight acid phosphatase from bovine liver. J Biol Chem 1969;244:299-307.
    16. Dissing J, Johnsen AH. Human red cell acid phosphatase (ACP1): the primary structure of the two pairs of isozymes encoded by the ACP1~*A and ACP1~*C alleles. Biochim Biophys Acta 1992; 1121:261-268.
    17. Lazaruk KD, Dissing J, Sensabaugh GF. Exon structure at the human ACP1 locus supports alternative splicing model for f and s isozyme generation. Biocheln Biophys Res Commun 1993; 196:440-446.
    18.Dissing J, Johnsen AH, Sensabaugh GF. Human red cell acid phosphatase (ACP1). The amino acid sequence of the two isozymes Bf and Bs encoded by the ACP1~*B allele. J Biol Chem 1991;266:20619-20625.
    19. Miller DT, Read, R, Ruseoni J, et al. The drosophila primo locus encodes two low-molecular-weight tyrosine phosphatases. Gene 2000;243:1-9.
    20. Mondesert O, Moreno S, Russell P. Low molecular weight protein-tyrosin phosphatases are highly conserved between fission yeast and man. J Biol Chem 1994;269:27996-27999.
    21. Poole AW, Jones ML. A SHPing tale: perspectives on the regulation of SHP-1 and SHP-2 tyrosine phosphatases by the C-erminal tail. Cell signal 2005;17:1323-1332.
    22. Nell BG, Gu H, Pao L. The 'Shp'ing news: SH2 domain-containing tyrosine phosphatases in cell signaling. Trends Biochem Sci 2003;28:284-293.
    23. Dalby B, Cates S, Harris A, et al. Advanced transfection with Lipfectamine2000 regent: primary neurons, siRNA and high-throughput applications. Methods 2004;33:95-103.
    1. Ferreira CV, Justo GZ, Souza AC, et al. Natural compounds as a source of protein tyrosine phosphatase inhibitors: application to the rational design of small-molecule derivatives. Biochimie 2006;88:l 859-1873.
    2. Malentacchi F, Marzocchini R, Gelmini S, et al. Up-regulated expression of low molecular weight protein tyrosine phosphatases in different human cancers.Biochem Biophys Res Commun 2005;334:875-883.
    3. Alho I, Clara Bicho M, Carvalho R, et al. Low molecular weight protein tyrosine phosphatase genetic polymorphism and susceptibility to cancer development.Cancer Genet Cytogenet 2008; 181:20-24.
    4. Chiarugi P. The redox regulation of LMW-PTP during cell proliferation or growth inhibition. IUBMB Life 2001 ;52:55-59.
    5. Chiarugi P, Cirri P, Raugei G, et al. Low M(r) phosphotyrosine protein phosphatase interacts with the PDGF receptor directly via its catalytic site.Biochem Biophys Res Commun 1996;219:21-25.
    6. Chiarugi P, Cirri P, Taddei ML, et al. Insight into the role of low molecular weight phosphotyrosine phosphatase (LMW-PTP) on platelet-derived growth factor receptor (PDGF-r) signaling. LMW-PTP controls PDGF-r kinase activity through TYR-857 dephosphorylation. J Biol Chem 2002;277:37331-37338.
    7. Cirri P, Chiarugi P, Taddei L, et al. Low molecular weight protein-tyrosine phosphatase tyrosine phosphorylation by c-Src during platelet-derived growth factor-induced mitogenesis correlates with its subcellular targeting. J Biol Chem 1998;273:32522-32527.
    8. Thomas GJ, Lewis MP, Hart IR, et al. Alpha V beta6 integrin promotes invasion of squamous carcinoma cells through up-regulation of matrix metalloproteinase-9.Int J Cancer 2001 ;92:641-650.
    9. Bail BL, Faouzi Z, Boussarie L, et al. Extracellular matrix compositon and integrin expression in early hepatocarcinogenesis in human cirrhotic liver. J Pathol 1997; 181:330-337.
    10. Liotta LA. Tumor invasion and metastases-role of the extracellular matrix. Cancer Res(?)986:1-7.
    11 廖晖,陈安民,郭风劲,et al.不同骨转移潜能人前列腺癌细胞亚株的筛选.中国癌症杂志 2007;17:231-235.
    12. Taddei ML, Chiarugi P, Cirri P, et al. Beta-catenin interacts with low-molecular-weight protein tyrosine phosphatase leading to cadherin-mediated cell-cell adhesion increase. Cancer Res 2002;62:6489-6499.
    13. Hall CL, Bafico A, Dai J, et al. Prostate cancer cells promote osteoblastic bone metastases through Wnts. Cancer Res 2005;65:7554-7560.
    14. Hall CL, Kang S, MacDougald OA, et al. Role of Wnts in prostate cancer bone metastases. J Cell Biochem 2006;97:661-672.
    1. Dissing J, Svensmark O. Human red cell acid phosphatase: purification and properties of the A, B and C isozymes. Biochim Biophys Acta 1990;1041:232-242.
    2. Hopkinson D, Spencer N, Harris H. Red cell acid phosphatase variants: a new human polymorphism. Nature 1963; 199:969-971.
    3. Bryson GL, Massa H, Trask BJ, et al. Gene structure, sequence, and chromosomal localization of the human red cell-type low-molecular-weight acid phosphotyrosyl phosphatase gene, ACP1. Genomics 1995;30:133-140.
    4. Heinrikson RL. Purification and characterization of a low molecular weight acid phosphatase from bovine liver. J Biol Chem 1969;244:299-307.
    5. Dissing J, Johnsen AH. Human red cell acid phosphatase (ACP1): the primary structure of the two pairs of isozymes encoded by the ACP1~*A and ACP1~*C alleles. Biochim Biophys Acta 1992; 1121:261-268.
    6. Lazaruk KD, Dissing J, Sensabaugh GF. Exon structure at the human ACP1 locus supports alternative splicing model for f and s isozyme generation. Biochem Biophys Res Commun 1993; 196:440-446.
    7. Dissing J, Johnsen AH, Sensabaugh GF. Human red cell acid phosphatase (ACP1).The amino acid sequence of the two isozymes Bf and Bs encoded by the ACP1~*B allele. J Biol Chem 1991 ;266:20619-20625.
    8. Miller DT, Read, R, Rusconi J, et al. The drosophila primo locus encodes two low-molecular-weight tyrosine phosphatases. Gene 2000;243:l-9.
    9. Mondesert O, Moreno S, Russell P. Low molecular weight protein-tyrosin phosphatases are highly conserved between fission yeast and man. J Biol Chem 1994;269:27996-27999.
    10. Poole AW, Jones ML. A SHPing tale: perspectives on the regulation of SHP-1 and SHP-2 tyrosine phosphatases by the C-erminal tail. Cell signal 2005;17:1323-1332.
    11. Nell BG, Gu H, Pao L. The 'Shp'ing news: SH2 domain-containing tyrosine phosphatases in cell signaling. Trends Biochem Sci 2003;28:284-293.
    12. Sensabaugh GF, Lazaruk KA. A TaqI site identifies the ~*A allele at the ACP1 locus. Hum Mol Genet 1993 ;2:1079.
    13. Bottini E, Bottini FG, Borgiani P, et al. Association between ACP1 and favism: a possible biochemical mechanism. Blood 1997;89:2613-2615.
    14. Gloria-Bottini F, Borgiani P, Amante A, et al. Genetic interactions and the environment: a study of ADA and ACP1 systems in the Sardinian population.Hum Hered 1995;45:129-134.
    15. Bottini E, Palmarino R, Lucarelli P, et al. ACP1 and human adaptability:association with past malarial morbidity in the Sardinian population. Am J Hum Biol 2001;13:753-760.
    16. Lara PN, Jr., Stadler WM, Longmate J, et al. A randomized phase ? trial of the matrix metalloproteinase inhibitor BMS-275291 in hormone-refractory prostate cancer patients with bone metastases. Clin Cancer Res 2006; 12:1556-1563.
    17. Mustelin T, Tasken K. Positive and negative regulation of T-cell activation through kinases and phosphatases. Biochem J 2003;371:15-27.
    18. Greco E, Bottini N, Canu G, et al. Skin testing correlates negatively with high-activity ACP1 ~*B/~*C genotype. Int Arch Allergy Immunol 2008; 145:48-53.
    19. Liu YG, Wu CG, Saccucci P, et al. ACP1 genotype and asthma in the Chinese Han population. Int Arch Allergy Immunol 2005; 137:263-264.
    20. Gloria-Bottini F, Bottini N, Renzetti G, et al. ACP1 and Th class of immunological disease: evidence of interaction with gender. Int Arch Allergy Immunol 2007; 143:170-176.
    21. Bottini N, Ammendola M, Gloria-Bottini F. ACP1 is associated with allergy. Allergy 2002;57:651-652.
    22. De Lorenzo A, Di Renzo L, Puja A, et al. A study of acid phosphatase locus 1 in women with high fat content and normal body mass index. Metabolism 2009;58:351-354.
    23. Bottini N, MacMurray J, Peters W, et al. Association of the acid phosphatase (ACP1) gene with triglyceride levels in obese women. Mol Genet Metab 2002;77:226-229.
    24. Gloria-Bottini F, Bottini N. The link between obesity and allergy: a role of ACP1 genetic polymorphism? Int J Obes (Lond) 2007;31:392-393.
    25. Banci M, Saccucci P, D'Annibale F, et al. ACP1 Genetic Polymorphism and Coronary Artery Disease: An Association Study. Cardiology 2009; 113:236-242.
    26. da Silva AP, Neves J, Bicho MC, et al. Activity of two enzymes associated with apoptosis and cell aging in arterial hypertension. Rev Port Cardiol 2006;25:189-195.
    27. Lucarini N, Verrotti A, Napolioni V, et al. Genetic polymorphisms and idiopathic generalized epilepsies. Pediatr Neurol 2007;37:157-164.
    28. Yoon DY, Rippel CA, Kobets AJ, et al. Dopaminergic polymorphisms in Tourette syndrome: association with the DAT gene (SLC6A3). Am J Med Genet B Neuropsychiatr Genet 2007;144B:605-610.
    29. Lepore A, Lucarini N, Evangelista MA, et al. Enzyme variability and neonatal jaundice. The role of adenosine deaminase and acid phosphatase. J Perinat Med 1989;17:195-201.
    30. Lucarini N, Gloria-Bottini F, Tucciarone L, et al. Role of genetic variability in neonatal jaundice. A prospective study on full-term, blood group-compatible infants. Experientia 1991;47:1218-1221.
    31. Bottini E, Carapella E, Scacchi R, et al. Serum haptoglobin appearance during neonatal period is associated with acid phosphatase (ACP1) phenotype. Early Hum Dev 1985; 10:237-243.
    32. Spina C, Saccucci P, Bottini E, et al. ACP1 genetic polymorphism and colon cancer. Cancer Genet Cytogenet 2008; 186:61-62.
    33. Malentacchi F, Marzocchini R, Gelmini S, et al. Up-regulated expression of low molecular weight protein tyrosine phosphatases in different human cancers.Biochem Biophys Res Commun 2005;334:875-883.
    34. Alho I, Clara Bicho M, Carvalho R, et al. Low molecular weight protein tyrosine phosphatase genetic polymorphism and susceptibility to cancer development.Cancer Genet Cytogenet 2008; 181:20-24.
    35. Chiarugi P, Cirri P, Raugei G, et al. Low M(r) phosphotyrosine protein phosphatase interacts with the PDGF receptor directly via its catalytic site.Biochem Biophys Res Commun 1996;219:21-25.
    36. Taddei ML, Chiarugi P, Cirri P, et al. Beta-catenin interacts with low-molecular-weight protein tyrosine phosphatase leading to cadherin-mediated cell-cell adhesion increase. Cancer Res 2002;62:6489-6499.
    37. Parri M, Buricchi F, Giannoni E, et al. EphrinAl activates a Src/focal adhesion kinase-mediated motility response leading to rho-dependent actino/myosin contractility. J Biol Chem 2007;282:19619-19628.
    38. Zambuzzi WF, Granjeiro JM, Parikh K, et al. Modulation of Src activity by low molecular weight protein tyrosine phosphatase during osteoblast differentiation.Cell Physiol Biochem 2008;22:497-506.
    39. Buricchi F, Giannoni E, Grimaldi G, et al. Redox regulation of ephrin/integrin cross-talk. Cell Adh Migr 2007; 1:33-42.
    40. Giannoni E, Raugei G, Chiarugi P, et al. A novel redox-based switch: LMW-PTP oxidation enhances Grb2 binding and leads to ERK activation. Biochem Biophys Res Commun 2006;348:367-373.