仿生合成丝素蛋白/羟基磷灰石复合支架材料的骨组织工程研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
理想支架材料的研究和运用是关乎骨组织工程成功与否的重要因素。支架材料在骨组织工程中的作用,是为新生骨组织提供生长所需的三维空间和力学支持。蚕丝丝素蛋白属于一种天然的纤维蛋白。丝素蛋白具有优良的生物相容性和力学性能,可以缓慢降解,在医药和生物技术等方面已有广泛应用、并取得了一些可喜的进展。但是现阶段将蚕丝蛋白应用于骨组织工程的相关研究还比较单一,主要停留在合成复合材料的方法性研究。所合成材料的结构特性还不能满足骨组织工程支架材料或骨替代材料的要求。
     本论文旨在研究丝素蛋白的矿化行为,并通过仿生矿化来制备三维多孔非编织丝素蛋白/羟基磷灰石支架,用于骨组织工程。
     首先,研究了丝素蛋白膜的矿化行为。将丝素膜浸泡在1.5×SBF、SCS和ASS三种矿化液中,比较不同的矿化处理过程对仿生矿化的影响。另外,SF膜经饱和Ca(OH)_2预矿化处理后,再浸泡于3种矿化液中,观察预矿化对整个仿生矿化的影响。样本经SEM、XRD、EDX、FTIR检测证明:SF膜可以通过1.5×SBF,SCS,ASS
An ideal scaffold material is one of an important factors leading to the success in the field of bone tissue engineering. The scaffold materials provide mechanical stability and maintain a three-dimensional space for the formation of new bone tissue with appropriate structure. Silk fibroin (SF) is a natural fibrous protein and has been proved as a promising material for a number of biomedical and biotechnological applications because of its excellent biological compatibility, mechanical strength and biodegradation. Mimicking and fabricating the hierarchical organization would be one of the future ways to improve the biocompatibility of calcium phosphate/organics composites and to simulate the biological bone from its micro/meso-structure.
    The Ph.D thesis is focused on the study of the mineralization behavior of fibroin in order to fabricate three dimensional porous
引文
1. Hollinger JO, Winn S, Bonadio J. Options for tissue engineering to address challenges of the ageing skeleton. Tissue Engin, 2000, 6(4): 341-350
    2. Yaszemski MJ, Payne RG, Hayes WC, et al. Evolution of bone transplantation: Molecular, cellular and tissue strategies to engineer human bone. Bioma terials, 1996, 17: 175-185
    3. Peppas HA, Lanser R. Hew challenges in biomaterials. Science, 1994, 263: 1715-1720
    4. Gisep A. Research on ceramic bone substitutes: current status. Injury, 2002, 33 Suppl 2: B88-92
    5.周磊.口腔种植学临床实践.西安:世界图书出版西安公司,2003:48
    6. Larry L. Hench and Julia M. Polak. Third-Generation Biomedical Materials. Science, 2002, 295: 10104, 1016-1017
    7. LeGeros RZ, Properties of Osteocunductive Biomaterials: Calcium Phosphates. Clinical Orthopaedics and Related Research, 2002, 395: 81-98
    8. Todumi DM., Manickam A. New advances in bone grafting alternatives. Current Opinion in Otolaryngology & Head and Neck Surgery, 2000, 8: 282-287
    9. Lu LC, Bradford LC, Michael JY. Synthetic bone substitutes. Current Opinion in Orthopedics, 2000, 11: 383-390
    10. Weiner S, Traub W, and Wagner HD. Lamellar Bone: Structure-Function Relations. Journal of Structural Biology, 1999, 126: 241-255
    11.杨维东.口腔颌面骨替代材料与骨组织工程.实用口腔医学杂志,1999,15(6):469—472
    12.方丽茹,翁文剑,沈鸽,等.骨组织工程支架及生物材料研究.生物医学工程学杂志,2003,20(1):148—152
    13.陈治清主编.口腔生物材料学.北京:化学工业出版社,2004.6
    14. Zhang YQ. Applications of natural silk protein sedcin in biomaterials. Biotechnology Advances, 2002, 20: 91-100
    15. Gregory HA, Diaz F, Jakuba Ce, et al. SiR-based biomaterials. Biomaterials, 2003, 24: 401-416
    16. Yamad K, Tsuboi Y, Itaya A, et al. AFM observation of silk fibroin on mica substrates: morphologies reflecting the secondary structures. Thin Solid Films, 2003, 440: 208-216
    17. Park KJ, Jin HH, Hyun CK. Antigenotoxicity of peptides produced from silk fibroin. Process Biochemistry, 2002, 38: 411-418
    18. INOUE SI, MAGOSHI J, TANAKA T, et al. Atomic Force Microscopy: Bombyx mori Silk Fibroin, Molecules and Their Higher Order Structure. J Polym Sci B: Polym Phys, 2000, 38: 1436-1439
    19. Hino T, Tanimoto M, Shimabayashi S. Change in secondary structure of silk fibroin during preparation of its microspheres by spray-drying and exposure to humid atmosphere. Journal of Colloid and Interface Science, 2003, 266: 68-73
    20. Santin M, Motta A, Freddi G. In vitro evaluation of the inflammatory potential of the silk fibruin, J Blomed Mater Res, 1999, 46: 382-389
    21. Saitoh H, Ohshima KI, Tsubouchi K, et al. X-ray structural study of noncrystalline regenerated Bombyx mori silk fibroin. International Journal of Biological Macromolecules, 2004, 34: 259-265
    22. Um IC, Kweon HY, Park YH, et al. Structural characteristics and properties of the regenerated silk fibroin prepared from formic acid. International Journal of Biological Macromolecules, 2001, 29: 91-97
    23. Takeuchi A, Ohtsuki C, Miyazaki T, et al. Deposition of bone-like apatite on silk fiber in a solution that mimics extracellular fluid. J Biomed Mater Res, 2003, 65A: 283-289
    24. Kong XD, Cui FZ, Wang XM, et al. Silk fibroin regulated mineralization of hydroxyapatite nanocrystals. Journal of Crystal Growth, 2004, 270: 197-202
    25. Kokubo T, Kushitani H, Sakka S, et al. Solutions able to reproduce in vivo surface-structure changes in bioactive glass-ceramic A-W. J Biomed Mater Res, 1990, 24: 721-34.
    26. Ducheyn P, Qiu Q. Bloactive ceramics: the effect of surface reactivity on bone formation and bone cell function. Blomaterials, 1999, 20(23-24): 2287-2303
    27. Radin S, Duchyene P. Effect of serum proteins on solutin-induced surface transformation of bioactive ceramics, J. Biomed. Mater. Res, 1996, 30: 273-279
    28. Loty C, Saufier JM, Boulekbache H, et al. In vitro bone formation on a bone-like apafite layer prepared by a biomimetic process on a bioactive glass-ceramic. J Blomed Mater Res, 2000, 49: 423-434,.
    29. Du C, Cui FZ, Zhang W, Feng QL, et al. Formation of calcium phosphate/collagen composites through mineralization of collagen matrix. J Biomed Mater Res, 2000, 50: 518-527
    30. Yin YJ, Luo XY, Cui JF, et al. A Study on Biomineralizatiou Behavior of N-Methylene Phosphochitosan Scaffolds. MacromoL Blosci, 2004, 4: 971-977
    31. Varma HK, Yokogawa Y, Espinosa FF, et al. Porous calcium phosphate coating over phosphorylated chitosan film by a biomimetic method. Biomaterials, 1999, 20: 879-884
    32. Li F, Feng QL, Cu FZ, Li HD, et al. A simple biomimetic method for calcium phosphate coating. Surface and Coatings Technology, 2002, 154: 88-93
    33. Sofia S, McCarthy MB, Gronowicz G. et al. Functlonalized silk-based biomaterials for bone formation. Journal of Biomedical Materials Research, 2001, 54: 139-148
    34. Karageorgiou V, Meinel L, Hofmann S, et al. Bone morphogenetic protein-2 decorated silk fihroin films induce ostcogenic differentiation of human bone marrow stromal cells. J Biomed Mater Res, 2004, 71A: 528-537
    35.李罡.气电纺蚕丝蛋白纳米纤维的制备与组织工程研究.四川大学华西口腔医学院博士毕业论文,2005:17
    36. Tretinnikov ON, Kato K, Ikada Y. In vitro hydroxyapatite deposition onto a film surface-grafted with organophosphate polymer. J Biomed Mater Res 1994, 28: 1365-73.
    37. Chen GP, Ushida T, Tateishi T. Poly(DL-lactic-co-glycolic acid) sponge hybridized with collagen microsponges and deposited apatite particulates. J Biomed Mater Res, 2001, 57: 8-14
    38. Guo LH, Huang M, Zhang XD. Effects of sintering temperature on structure of hydroxyapatite studied with Rietveld method. Journal of materials science: materials in medicine, 2003, 14: 817-822
    39. Liu HC, Kuo CL. Quantitative multiphase determination using the Rietveld method with high accuracy. Materials Letters, 1996, 26: 171-175
    40. Feki HE, Savariault JM, Salah AB. Structure refinements by the Rietveld method of partially substituted hydroxyapatite: Ca_9 Na_(0.5)(PO_4)_(4.5)(CO_3)_(1.5)(OH)_2. Journal of Alloys and Compounds, 1999, 287: 114-120
    41. Feki HE, Naddari T, Savariault JM. Localization of potassium in substituted lead hydroxyapatite: Pb_(9.30)K_(0.60)(PO_4)_6(OH)_(1.20) by X-ray diffraction. Solid State Sciences, 2000, 2: 725-733
    42. Nancollas GH, Wu WJ. Biomineralization mechanisms: a kinetics and interracial energy approach. Journal of Crystal Growth, 2000, 211: 137-142
    43. Kim HM, Kishimoto K, Miyaji F, et al, Comparsion and structure of the apatite formed on PET substrates in SBF modified with various ionic activity products. J. Biomed. Mater. Res., 1999, 46: 228-235
    44. Tadashi Kokubo. Design of bioactive bone substitutes based on biomineralization process. Materials Science and Engineering C, 2005, 25: 97-104
    45. Graeme K Hunter. Interfacial aspects of biomineralization. Current Opinion in Solid State. Materials Science, 1996, 1: 430-435
    46. Iijima M, Moriwaki Y. Effects of ionic inflow and organic matrix on crystal growth of octacalcium phosphate; relevant to tooth enamel formation. Journal of Crystal Growth, 1999, 198/199: 670-676
    47. Th. Leventouri. Leading Opinion Synthetic and biological hydrnxyapatites: Crystal structure questions. Biomaterials, 2006, 27: 3339-3342
    48. Ting MS, Calcium phosphate: Structure, composition, solubility, and stability in Zamjad,(eds) Calcium phosphate in biological and industrial systems. Boston: Kluwer Academic Publishers, USA: 1-20
    49. Drissens FCM, Verbceck RMH. Biominerals, Boston: CRC Press, USA: 11-34
    50. Nelson DGA, Featherstone JDB. Precipitation, analysis and characterization of carbonated apatites. Calcff. Tiss. Int., 1982, 34: 569-581
    51. Barralet J, Best S, Bonfleld W. Carbonate substitution in precipitated hydroxyapatite: An investigation into the effects of reaction temperature and bicarbonate ion concentration. J. Biomed. Mater, 1998, 41: 79-86
    52. Taguchi T, Kishida A, Akashi M. Hydrnxyapatite formation on/in hydrogels using a novel alternate soaking process. Chem Lett, 1998, 8: 711—2
    53. Du C, Cui FZ, Zhang W, Feng QL. et al. Formation of calcium phosphate/collagen composites through mineralization of collagen matrix. J Biomed Mater Res, 2000, 50: 518-527
    54. Taguchi T, Kishida A, Akashi M. Apatite formation on/in hydrogels using a novel alternate soaking process(Ⅱ): effect of swelling ratio on apatite formation on/in poly(vinyl alcohol) hydrogel matrix. J Biomater Sci Polym Ed, 1999, 3: 331—9
    55. Tagachi T, Kishida A, Akashi M. Apatite formation on/in hydrogels using a novel alternate soaking process(Ⅲ): effect of physico-chemical factors on apatite formation on/in poly(vinyl alcohol) hydrogel matrix. J Biomater Sci Polym Ed, 1999, 10: 795—804
    56. Taguchi T, MuraokaY, MatsuyamaH, et al. Apafite coating on hydrophilic polymer-grafted poly(ethylene) films using an alternate soaking process. Biomaterials, 2001, 22: 53-58
    57. Furnzono T, Taguchi T, Kishida A, et al. Preparation and characterization of apatite deposited on silk fabric using an alternate soaking process. Biomed Mater Res, 2000, 50: 344-352
    58. Chan G, Ushida T, Tateishi T. Poly(DL-lactic-co-glycofic acid) sponge hybridized with collagen microsponges and deposited apafite particulates. J Biomed Mater Res., 2001, 57(1): 8-14
    59. Tsutsumi H, Shibasaki Y, Onimura K, et al. Preparation of photo-patterned polymer-hydroxyapatite composites. Polymer, 2003, 44: 6297-6301
    60. Hench LL, Wilson J. Surface-active biomaterials. Science, 1984, 226: 630-636
    61. Kokubo T, Ito S, Huang ZT, et al. Ca-P-rich layer formed on high strength bioactive giass-ceramic A-W. J Biomed Mater Res, 1990, 24: 331-343.
    62. LeGeros RZ, Orly I, Gregoire M. Substrate surface dissolution and interracial biological mineralization. In: Davies JED, editor. The bone biomaterial interface. Toronto: University of Toronto Press, 1991: 76-88
    63. Pereira MM, Clark AE, Hanch LL. Calcium phosphate formation on sol-gel-derived bioactive glasses in vitro. J Biomed Mater Res 1994, 28: 693-698
    64. LeGeros RZ. Apatites in biological systems. Prog Crystal Growth Charact 1981, 4: 1-45.
    65. LeGerns RZ, Daculsi G In vivo transformation of biphasic calcium phosphate ceramics: Ultrastrnctural and physicochemical characterizations. In: Yamamuro N, Hanch LL, Wilson-Hench J, editors. Handbook of Bioactive Ceramics, Vol. Ⅱ. Calcium Phosphate Ceramics. Boca Raton, Florida: CRC Press, Inc., 1990: 17-28.
    66. BAIG AA, JEFFREY L. FOX JH, et al. Effect of Carbonate Content and Crystallinity on the Metastable Equibrinm Solubility Behavior of Carbonated Apatites. JOURNAL OF COLLOID AND INTERFACE SCIENCE, 1996, 179: 608-617
    67. Costa N, Maquis PM. Biomimetic processing of calcium phosphate coating. Medical Engineering & Physics, 1998, 20: 602-606
    68. Taira T, Iijima M, Moriwaki T, et al. A new method for in vitro calcification using acrylamide gel and bovine serum. Connect Tissue Res, 1995, 33: 185-192.
    69. Murphy WL, Kohn DH, Mooney DJ. Growth of continuous bonelike mineral within porous poly(lactide-co-glycolide) scaffolds in vitro. J Biomed Mater Res, 2000, 50: 50-58,
    70.邢辉,陈晓明,张宏泉.骨组织工程支架材料.佛山陶瓷,2004,12(96)33-35
    71.耿燕丽,阮孜炜,李东旭.骨组织工程支架材料的研究进展.材料导报,2004,18(11):9—13
    72.王日雄.骨与软骨组织工程支架材料特征与研究进展.中国康复医学杂志,2005,20(3):218-220
    73. Armato U, Dal PI, Motta A, et al. Method for the preparation of a non-woven silk fibroin fabric. Patent PCT/ITO1/00501
    74. Armato U, Dal Pra I, Kesenci K, et al. Method for the preparation of non-woven silk fibroin fabrics. Patent PTC WO 02/29141A1, published April 11, 2002
    75. Nazarov R, Jin HJ, Kaplan DL, Porous 3-D scaffolds from regenerated silk fibroin. Biomacromolecules 2004; 5: 718-26
    76. Zhang RY, Ma PX. Poly(a-hydroxyl acids)/hydroxyapatite porous composites for bone-tissue engineering. I. Preparation and morphology. J Biomed Mater Res 1999; 44: 446-55
    77. Vacanti CA, Kim WS, Upton J, et al. Tissue-engineered growth of bone and cartilage. J. Transplant Proc, 1993, 25: 1019-1021
    78. Connolly JF, Injectable bone marrow preparations to stimulate osteogenic repair. J Clln Orthop, 1995, 313: 8
    79.张涤生.组织工程简介.中华整形烧伤外科杂志,1998,14(3):218-223
    80. Schwartz Z., Lohmann CH, Oefinger J, et al. Implant surface characteristics modulate differentiation behaviour of cells in the osteoblastic lineage. Adv Dent Res., 1999, 13: 38-48
    81. Schwartz Z, Lohmann CH, Sisk M, et al. Local factor production by MG63 osteoblastllke cells in response to surface roughness and 1, 25-(OH)2D3 is mediated via protein kinase C- and protein kinase A-dependent pathways. Biomaterials, 2001, 22(7): 731-741
    82. Boyan BD, Hummert TW, Dean DD, et al. Role of material surfaces in regulating bone and cartilage cell response. Biomaterials, 1996, 17(2): 137-146
    83. Boyan BD, Lohmann CH, Sisk M, et al. Both cyclooxygenase-1 and cyclooxygenase-2 mediate osteoblast response to titanium surface roughness. J Biomed Mater Res, 2001, 55(3): 350-390
    84. Hulbert SF, Young FA, Mathews RS, et al. Potential of ceramic materials as permanently implantable skeletal prostheses. J Biomed Mater Res., 1970, 4: 433-456
    85. Wintermantel E, Mayer J, Blum KL, et al. Tissue engineering scaffolds using superstructures. Biomaterials, 1996, 17(2): 83-91
    86. Healy KE, Rezania A, Stile RA. Designing biomaterials to direct biological responses. Ann NY Acad Sci, 1999, 875: 24-35
    87. Kim UJ, Park J, Kim HJ, et al. Three-dimensional aqueous-derived biomaterial scaffolds from silk fibroin. Biomaterials, 2005, 26: 2775-2785
    88. LI MZ, WU ZY, ZHANG CS, et al. Study on Porous Silk Fibroin Materials. Ⅱ. Preparation and Characteristics of Spongy Porous Silk Fibroin Materials. J Appl Polym Sci, 2001, 79: 2192-2199
    89. Wang L, Nemoto L, Senna M. Changes in microstructure and physico-chemical properties of hydroxyapatite-silk fibroin nanocomposite with varying silk fibroin content. Journal of the European Ceramic Societ, 2004, 24: 2707-2715
    90. Tampieri A, Celotti G. Sprio S, et al. Porosity-graded hydroxyapatite ceramics to replace natural bone. Biomaterials, 2001, 22: 1365-1370.
    91. Huec L, Schaeverbeke JC, Clement T, et al. Influence of porosity on the mechanical resistance of hydroxyapatite ceramics under compressive stress. Biomaterials, 1995, 16: 113-118
    92.张真,卢晓风.生物材料有效性和安全性评价的现状与趋势.生物医学工程学杂志,2002,19:117-121
    93. Horan RL, Anfle K, Collette AL, et al. In vitro degradation of silk fibroin. Biomaterials, 2005, 26: 3385-3393
    94. Arai T, Freddi G, Innocenti R, et al. Biodegradation of Bombyx mori Silk Fibroin Fibers and Films. J Appl Polym Sci, 2004, 91: 2383-2390
    95.司徒镇强,吴军正.细胞培养.世界图书出版社,西安,2004.3:71-72
    96.黄永光,陈治清.硬组织替代材料对成骨细胞骨钙蛋白和ALP水平的影响.华西口腔医学杂志,2000,18(3):192-194
    97.张伟国.成骨细胞表型分化及其基因调控研究进展.上海口腔医学,1998,7(3):179-181
    98. Altman GH, Diaz F, Jakuba C, et al. Silk-based biomaterials, Biomaterials, 2003, 24: 401-416
    99. Chen K, Iura K, Aizawa R, et al. The digestion of silk fibroin by rat. J Seric Sci Jpn 1991, 60: 402-3
    100. Chen K, Umeda Y, Hirabayashi K. Enzymatic hydrolysis of silk fibroin. J Seric Sci Jpn 1996; 65: 131-3
    101. Chen G, Arai M, Hirabayashi K. Isolation of tyrosine from silk fibroin by enzyme hydrolysis. J Seric Sci Jpn, 1996, 65: 182-4
    102. Minoura N, Tsukada M, Nagnra M. Physico-chemical properties of silk fibroin membrane as a biomaterial. Biomaterials, 1990, 11: 430-4
    103. Li MZ, Ogiso M, Minour N. Enzymatic degradation behavior of porous silk fibroin sheets. Biomaterials, 2003, 24: 357-365
    104. Horan RL, Antle K, Collette AL, et al. In vitro degradation of silk fibroin. Biomaterials, 2005, 26: 3385-3393
    105. Kirkpatrick CJ, Bittinger F, Wagner M, et al. Current trends in biocompatibility testing. Proc Inst Mech Eng, 1998, 212: 75-84
    106. Kirkpatrick CJ. New aspects of biocompatibility testing: where should it be going? Med Device Technol, 1998, 9: 22-29
    107. Rice J, Hunt JA, Gallagher JA, et al. Quantitative assessment of the response of primary derived human osteoblasts and macrophages to a range of nanotopograghy surfaces in a single culture model in vitro. Biomaterials, 2003, 24: 4799-4818
    108. Unger RE, Wolf M, Peters K, et al. Growth of human cells on a non-wovcu silk fibroin net: a potential for use in tissue engineering. Biomaterials, 2004, 25: 1069-1075
    109. Yohko G. Masuhiro T, Norihiko M. Effect of the chemical modification of the arginyl residue in Bombyx mort silk fibroin on the attachment and growth of. broblasts cells. J Biomed Mater Res 1998; 39(3): 351-7
    110. Servoli E, Maniglio D, Motta A, et al. Surface properties of silk fibroin films and their interaction with fibroblasts. Macromol Biosci. 2005 Dec 15; 5(12): 1175-83
    111. Norihiko M, Sei-ichi A, Yohko G, et al. Attachment and growth of cultured fibroblast cells on silk fibroin matrices. J Biomed Mater Res, 1995, 29(10): 1215-21
    112. Ilaria Dal Pra, Giuliano Freddi, Jasminka Minic, et al. De novo engineering of reticular connective tissue in vivo by silk fibroin nonwoven materials. Biomaterials, 2005, 26: 1987-1999
    113. Min BM, Jeong L, Nam YS, et al. Formation of silk fibroin matrices with different texture and its cellular response to normal human keratinocytes. Int J Biol Macromol, 2004 Oct; 34(5): 281-8
    114. Min BM, Jeong L, Nam YS, et al. Formation of silk fibroin matrices with different texture and its cellular response to normal human keratinocytes.Int J Biol Macromol, 2004 Oct; 34(5): 281-8
    115. van Kooten TG, Whitesides JF, yon Recum AF. Influence of silicone(PDMS) surface texture on human skin fibroblast proliferation as determined by cell cycle analysis. J Biomed Mater Res, 1998, 43(1): 1-14
    116. Unger RE, Peters K, Wolf M, et al. Endothelialization of a non-woven silk fibroin net for use in tissue engineering: growth and gene regulation of human endothelial cells. Biomaterials. 2004, 25(21): 5137-46
    1. Lowenstam HA. Minerals formed by organisms. Science, 1981, 211: 1126-1131
    2. Simkiss K. Biomineralizntion and detoxification. Calcif Tissue Res., 1977, 28, 24(2): 199-200
    3. Sarikaya M, Tamerler C, Jen AK, et al. Molecular biomimetics: nanoteclmology through biology. Review. Nat Mater., 2003, 2(9): 577-85
    4. Green D, Walsh D, Mann S, Oreffo RO. The potential of biomimesis in bone tissue engineering: lessons from the design and synthesis of invertebrate skeletons. Review. Bone. 2002, 30(6): 810-5
    5. Glimcher J. in Chemistry and Biology of Mineralized Tissues, ed. Veis, A.(Elsevier, Amsterdam), 1981: 617-673
    6. Komameni K, Parker JC, Thomas GJ. eds. Nanophase and Nanocomposite Materials(Mater. Res. Soc., Pittsburgh), 1993, Vol. 286
    7. Park JB, Lakes RS. Structure-property relationships of biological materials. In: Biomaterials: An introduction, 2rid Ed. Hew York: Plenum Press, 1992: 185-222.
    8. Aksay IA, Baer E, Sarikaya M, et al. eds. Hierarchically Structured Materials(Mater. Res. Soc., Pittsburgh), 1992, Vol. 255
    9. Balas F, Kawashita M, Nakamura T, et al. Formation of bone-like apafite on organic polymers treated with a silane-coupling agent and a titania solution.Biomaterials, 2006, 27(9): 1704-10
    10. Miyaji F, lwai M, Kokubo T, et al. Chemical surface treatment of silicone for inducing its bioactivity. J Mater Sci Mater Mud. 1998, 9(2): 61-5
    11. Kokubo T, Kim HM, Kawashita M, et al. Bioactive metals: preparation and properties. Review. J Mater Sci Mater Mud, 2004, 15(2): 99-107
    12. Miyaji F, Morita Y, Kokubo T, et al. Surface structural change of bioactive inorganic filler-resin composite cement in simulated body fluid: effect of resinJ Biomed Mater Res. 1998, 42(4): 604-10
    13. Kobayashi M, Kikutani T, Kokubo T, et al. Direct bone formation on alumina bead composite. J Biomed Mater Res. 1997, 37(4): 554-65
    14. Graeme K Hunter. Interracial aspects of biomineralization. Current Opinion in Solid State & Materials Science, 1996, 1: 430-435
    15. Tadashi Kokubo. Design of bioactive bone substitutes based on biomineralization process. Materials Science and Engineering C, 2005, 25: 97-104
    16. Adele L. Boskey. Biomineralization: Conflicts, Challenges, and Opportunities. Journal of Cellular Biochemistry Supplements, 1998, 30/31: 83-91
    17. Weiner S, Addadi L. Design strategies in mineralized biological materials. J Mater Chem, 1997, 7(5): 689-702
    18. Byers BA, Guldberg RE, Garcia AJ. Synergy between genetic and tissue engineering: Runx2 overexpression and in vitro construct development enhance in vivo mineralization. Tissue Eng., 2004, 10(11-12): 1757-66
    19. Cwirla SE, Peters SE, Barret EA. et al. Peptides on phage: a vast library of peptides for identifying ligands. Proc. Natl. Acad. Sci. USA, 1990, 87: 6378-6382
    20. Hosse RJ, Rothe A, Power BE. A new generation of protein display scaffolds for molecular recognition. Protein Sci. Review. 2006, 15(1): 14-27
    21.周岚.丝丝素表面结构特性研究.浙江工程学院硕士研究生毕业论文 2003:40-52
    22.华坚.蛋白质在气/水界面上的物理化学性质和单分子膜成形.四川大学博士学位论文,20D3:4-8
    23. Drummy LF, Phillips DM, Stone MO, et al. Thermally induced alpha-helix to beta- sheet transition in regenerated silk fibers and films. Biomacromolecules. 2005, 6(6): 3328-33
    24. Ha SW, Gracz HS, Tonelli AE, et al. Structural study of irregular amino acid sequences in the heavy chain of Bombyx mori silk fibroin. Biomacromolecules. 2005, 6(5): 2563-9
    25. Teramoto H, Miyazawa M. Molecular orientation behavior of silk sericin film as revealed by ATR infrared spectroscopy. Biomacromolecules. 2005, 6(4): 2049-57
    26. Taddei P, Monfi P. Vibrational infrared conformational studies of model peptides representing the semicrystaliine domains of Bombyx mori silk fibroin. Biopolymers, 2005, 78(5): 249-58
    27. Fournier A. Quantitative data on the Bombyx mori L, silkworm: a review. Biochimie. Review. 1979, 61(2): 283-320
    28. Sprague KU. The Bombyx mori silk proteins: characterization of large polypeptides. Biochemistry, 1975, 14(5): 925-31
    29. Sofia S, McCarthy MB, Gronowicz G. et al. Functionalized silk-based biomaterials for bone formation. Journal of Biomedical Materials Research, 2001, 54: 139-148
    30. Chen JS, Altman GH, Karageorgiou V, et al. Human bone marrow stromal cell and ligament fibroblast responses on RGD-modified silk fibers. Biomed Mater Res., 2003, 67A: 559-570
    31. Sampaio S, Taddei P, Monti P, et al. Enzymatic grafting of chitosan onto Bombyx mori silk fibroin: kinetic and IR vibrational studies. Journal of Biotechnology, 2005, 116: 21-33
    32. Goperferich A, Peter SJ, Lucke A, et al. Modulation of marrow stromal cell function using poly(d, 1-lactic acid)-block-poly(ethylene giycol)-monomethyl ester surfaces. J Biomed Mater Res, 1999, 47: 390-8
    33. Barrera DA, Zylstra E, Lansbury PT, et al. Synthesis and RGD peptides modification of a new biodegradable copolymer system: poly(lactic acid co-lysine). J Am Chem Soc, 1993, 115: 11010-1
    34. Lin liB, Zhao ZC, Garcia-Echeverria C, et al. Synthesis of a novel polyurethane copolymer containing covalenfly attached RGD peptide. J Biomater Sci Polym Ed, 1999, 3: 217-27
    35. Massia SP, Hubbell JA. Human endothelial cell interaction with surface-coupled adhesion peptides on a nonadhesive glass substrate and two polymeric biomaterials. J Biomed Mater Res, 1991, 25: 223-42
    36. Neff JA, Tresco PA, Caldwcll KD. Surface modification for controlled studies of cell-ligand interactions. Biomaterials, 1999, 20: 2377-93
    37. Santin M, Motta A, Freddi G. et al. In vitro evaluation of the inflammatory potential of the silk fibroin. J Biomed Mater Res, 1999, 46(3): 382-9
    38. Caia K, Yaoa K, Lina AB, et al. Poly(d, 1-lactic acid) surfaces modified by silk fibroin: effects on the culture of osteoblast in vitro. Biomatcrials, 2002, 23: 1153-1160
    39. Ntisson M, Wielanek L, Wang JS, et al. Factors influencing the compressive strength of an injectable calcium sulfate-hydroxyapatitc cement. J Mater Sci Mater Med. 2003, May; 14(5): 399-404
    40. TenHuisen KS, Martin RI, Klimkiewicz M, et al. Formation and properties of a synthetic bone composite: hydroxyapatitc-collagen. J. Biomed. Mater. Res., 1995, 29: 803-10
    41. Kikuchi M, Itoh S, Ichinose S, et al. Self-organization mechanism in a bone-like hydroxyapatite/collagen nanocomposite synthesized in vitro and its biological reaction in vivo. Biomaterials, 2001, 22: 1705-11
    42. Li W, Ning GL, Senna M. Microstrncture and gclation behavior of hydroxyapatite- based nanocomposite sol containing chemically modified silk fibrnin. Colloids and Surfaces A: Physicocbemical and Engineering Aspects Volume, 2005, 254(1-3): 159-164
    43. Furuzono T, Taguchi T, Kishida A, et al. Preparation and characterization of apatite deposited on silk fabric using an alternate soaking process. J Biomed Mater Res, 2000, 50: 344-352
    44. Hofmann S, Foo CT, Rossetti F, et al. Silk fibroin as an organic polymer for controlled drug delivery. J Control Release, 2006, 111(1-2): 219-27
    45. Mao JS, Zhao LG, Yin YJ, et al. Structure and properties of bilayer chitosan-gelatin scaffolds. Biomaterials. 2003, 24(6): 1067-74
    46. Bigi A, Panzavolta S, Roveri N. Hydroxyapatite-gelatin films: a structural and mechanical characterization. Biomaterials, 1998, 19: 739-44
    47. Ito M, Hidaka Y, Nakajima M, et al. Effect of hydroxyapatite content on physical properties and connective tissue reactions to a chitosan-hydroxyapatite composite membrane. J. Biomed. Mater. Res., 1999, 45: 204-8
    48. Yamaguchi I, Tokuchi K, Fukuzaki H, et al. Preparation and microstrncture analysis of chitosan/hydroxyapatite nanocomposites. J. Biomed. Mater. Res., 2001, 55: 20-7
    49. Wollenweber M, Domaschke H, Hankc T, et al. Mimicked bioartificial matrix containing chondroitin sulphate on a textile scaffold of poly(3-hydroxybutyrate) alters the differentiation of adult human mesenchymal stem cells. Tissue Eng. 2006, 12(2): 345-59.
    50. Rhee SH, Tanaka JJ. Self-assembly phenomenon of hydroxyapatite nanecrystals on chondroitin sulfate. Mater. Sci. Mater. Med., 2002, 13: 597-600
    51. Kong XD, Cui FZ, Wang XM, et al. Silk fibroin regulated mineralization of hydroxyapatite nanocrystals. Journal of Crystal Growth, 2004, 270: 197-202
    52. Kokubo T, Ito S, Huang ZT, et al. Ca, P-rich layer formed on high-strength bioactive glass-ceramic A-W. J Biomed Mater Res., 1990, 24: 331-343
    53. Kokubo T, Kushitani H, Sakka S, et al. Solutions able to reproduce in vivo surface-structure changes in bioactive glass-ceramic A-W. J Biomed Mater Res., 1990, 24: 721-734
    54. Kokubo T, Kushitani H, Ohtsuld C, et al. Chemical reaction of bioactive glass and glass-ceramics with a simulated body fluid. J Mater Sci Mater Med., 1992, 1: 79-83
    55. Tretinnikov ON, Kato K, Ikada Y. In vitro hydroxyapatite deposition onto a film surface-grafted with organophosphate polymer. J Biomed Mater Res., 1994, 28: 1365-73
    56. Takeuchi A, Ohtsuki C, Miyazaki T, et al. Deposition of bone-like apatite on silk fiber in a solution that mimics extracellular fluid. J Biomed Mater Res, 2003, 65A: 283-289
    57. Tanahashi M, Yao T, Kokubo T, et al. Apafite coating on organic polymers by a biomimetic process. J Am Ceram Soc., 1994, 77: 2805-2808
    58. Chen GP, Ushida T, Tateishi T. Poly(DL-lactic-co-glycolic acid) sponge hybridized with collagen microsponges and deposited apatite particulates. J Biomed Mater Res., 2001, 57: 8-14
    59. Tanaka J, Cho B. Development of organic-inorganic composite artificial bone based on self-organizati0n phenomenon. J Oromax Biomech, 1996, 2: 14-19
    60. Li F, Feng QL, Cui FZ, et al. A simple biomimetic method for calcium phosphate coating. Surface and Coatings Technology, 2002, 154: 88-93
    61. Feng QL, Cui FZ, Wang H. Influence of solution conditions on deposition of calcium phosphate on titanium by NaOH-treatment. Journal of Crystal Growth, 2000, 210: 735-740
    62. Varma HK, Yokogawa Y, Espinosa FF, et al, Porous calcium phosphate coating over phosphorylated chitosan film by a biomimetic method. Biomaterials, 1999, 20: 879-884
    63. ZHAO Y, HE G, NIE RR, et al. Calcium phosphate coating over silk fibroin film by biomimetic methods. Journal of the Wuhan University of Technology: Materials Science Edition(supplement), 2005, 20: 92-94
    64. Costa N, Peter MM. Biomimedc processing of calcium phosphate coating. Medical Engineering & Physics, 1998, 20: 602-606
    65. Wang L, Ning GL, Senna M. Microstructure and gelation behavior of hydroxyapatitebased nanocomposite sol containing chemically modified silk fibroin. Colloids and Surfaces A: Physicochem. Eng. Aspects, 2005, 254: 159-164
    66. Wang L, Nemoto R, Senna M. Changes in microstructure and physico-chemical properties of hydroxyapafite-silk fibroin nanocomposite with varying silk fibroin content. Journal of the European Ceramic Society, 2004, 24: 2707-2715
    67. Tampieri A, Celotti G, Sprio S, et al. Porosity-graded hydroxyapatite ceramics to replace natural bone. Biomateriais, 2001, 22: 1365-1370
    68. Le Huec JC, Schaeverbeke T, Clement D, et al. A Influence of porosity on the mechanical resistance of hydroxyapafite ceramics under compressive stress. Biomaterials, 1995, 16: 113-118
    69. Kong XD, Cui FZ, Wang XM, et al. Silk fibroin regulated mineralization of hydroxyapatite nanocrystals. Journal of Crystal Growth, 2004, 270: 197-202
    70. Tanaka J, Cho B. Development of organic-inorganic composite artificial bone based on self-organization phenomenon. J Oromax Biomech, 1996, 2: 14-19
    71. Moradian-Oldak J, Goldberg M. Amelogenin Supra-Molecular Assembly in vitro Compared with the Architecture of the Forming Enamel Matrix. cells Tissues Organs, 2005, 181(3-4): 202-18
    72. Rusu VM, Ng CH, Wilke M, et al. Size-controlled hydroxyapatite nanoparticles as self-organized organic-inorganic composite materials. Biomaterials, 2005, 26(26): 5414-26
    73. He G, Dahl T, Veis A, et al. Nucleation of apatite crystals in vitro by self-assembled dentin matrix protein. Nat Mater. 2003, 2(8): 552-8
    74. Hartgerink JD, Beniash E, Stupp SI. Self-assembly and mineralization of peptideamphiphile nanofibers. Science, 2001, 294(5547): 1684-8
    75. Miller A. Collagen: the organic matrix of bone. Philos Trans R Soc Lond B Biol Sci. 1984 Feb 13; 304(1121): 455-77
    76. Li C, Vepari C, Jin HJ, et al. Electrospun silk-BMP-2 scaffolds for bone tissue engineering. Biomaterials. 2006, 27(16): 3115-24
    77. Tuzlakoglu K, Bolgen N, Salgado AJ, et al. Nano-and micro-fiber combined scaffolds: a new architecture for bone tissue engineering. J Mater Sci Mater Med. 2005, 6(12): 1099-104
    78, El-Ghannam A. Bone reconstruction: from bioceramics to tissue engineering. Review. Expert Rev Med Devices, 2005, 2(1): 87-101
    79. Lin CY, Schek RM, Mistry AS, et al. Functional bone engineering" using ex vivo gene therapy and topology-optimized, biodegradable polymer composite scaffolds. Tissue Eng., 2005, 11(9-10): 1589-98
    80. Mastrogiacomo M, Muraglia A, Komlev V, et al. Tissue engineering of bone: search for a better scaffold. Orthod Craniofac Res., 2005, 8(4): 277-84
    81. Minoura N, Tsukada M, Nagura M. Physico-of silk fibroin membrane as a biomaterial. Biomaterials, 1990, 11: 430-4
    82. Minoura N, Aiba S, Gotoh Y, et al. Growth of cultured fibroblast cells on silk protein matrices. J Biomed Mater Res., 1995, 29: 1215-21
    83. Dal Pra I, Petrini P, Chiarini A, et al. Silk fibroin-coated three-dimensional polyurethane scaffolds for tissue engineering: interactions with normal human fibroblasts. Tissue Eng 2003, 9: 1113-21
    84. Armato U, Dal Pra I, Kesenci K, et al. Method for the preparation of non-woven silk fibroin fabrics. Patent PTC WO 02/29141A1, published April 11, 2002
    85. Unger RE, Wolf M, Peters K, et al. Growth of human cells on a non-woven silk fibroin net: a potential for use in tissue engineering. Biomaterials, 2004, 25:1069-1075
    86. Pra ID, Freddi G, Minic J, et al. De novo engineering of reticular connective tissue in vivo by silk fibroin nonwoven materials. Biomaterials, 2005, 26: 1987-1999
    87. Park KE, Jtmg SY, Lee SJ, et al. Biomimetic nanofibrous scaffolds: Preparation and characterization of chitin/silk fibroin blend nanofibers. Int J Biol Macromol., 2006, in press
    88. Min BM, Jeong L, Nam YS, et al. Formation of silk fibroin matrices with different texture and its cellular response to normal human keratinocytes.Int J Biol Macromol., 2004, 34(5): 281-8
    89. Min BM, Jeong L, Lee KY, Park WH. Regenerated silk fibroin nanofibers: water vaporinduced structural changes and their effects on the behavior of normal human cells. Macromol Biosci, 2006, 12; 6(4): 285-92
    90. Ohgo K, Zhao CH, Kobayashi M, Asakura T. Preparation of non-woven nanofibers of Bombyx mori silk, Samia Cynthia ricini silk and recombinant hybrid silk with electrospinning method. Polymer, 2003, 44: 841-846
    91. Kim UJ, Park J, Kim HJ, et al. Three-dimensional aqueous-derived biomaterial scaffolds from silk fibroin. Biomaterials, 2005, 26: 2775-2785
    92. LI MZ, LU SZ, WU ZY, et al. Study on Porous Silk Fibroin Materials. I. Fine Structure of Freeze Dried Silk Fibroin. J Appl Polym Sci., 2001, 79: 2185-2191
    93. Yeo JH, Lee KG, Lee YW, et al. Simple preparation and characteristics of silk fibroin microsphere. European Polymer Journal, 2003, 39: 1195-1199
    94. Mori H, Tsukada M. New silk protein: modification of silk protein by gene engineering for production of biomaterials. Reviews in Molecular Biotechnology, 2000, 74: 95-103
    95. Haider M, Leung V, Ferrari F, et al. Molecular engineering of silk-elastinlike polymers for matrix-mediated gene delivery: biosynthesis and characterization. Mol Pharm., 2005, 2(2): 139-50
    96. Polak J, Hench L. Gene therapy progress and prospects: in tissue engineering. Review. Gene Ther., 2005, 12(24): 1725-33