农村供水工程评价相关技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
农村饮水安全问题直接关系到社会的稳定和可持续发展,发展农村供水、实施农村饮水安全项目,是建设社会主义新农村、构建和谐社会的迫切要求。农村供水工程发展迅速,为使工程沿着科学轨道发展,确保工程可持续性运行,发挥工程最大效益,迫切需要引入科技含量较高的决策手段和管理手段,建立适合农村供水工程特点的科学评价指标体系,深入研究工程建设与管理中的相关技术问题,优化决策方案,促进农村供水工程建设管理规范化、科学化。而国内外对农村供水工程的相关问题缺乏深入、全面的研究。因此,本论文针对目前农村供水工程建设与管理中的关键技术问题,坚持可持续发展的思路,以评价为主线,以优化为手段,以价格为杠杆,以提高项目决策水平和管理水平、全面提升农村供水科技水平为目标,在总结、筛选国内外已有相关研究成果的基础上寻求新的突破。论文主要研究内容和研究成果如下:
     (1)农村供水工程评价指标体系的研究与构建
     分别对农村供水工程立项评价和工程后评价展开研究,采用Delphi-AHP (Analytic Hierarchy Process)-FCE (Fuzzy Comprehensive Evaluation)法优化组合,根据层次分析AHP法构造指标框架,采用Delphi法结合协调性检验等优选指标,从项目准备、总体方案、技术方案、工程管理、投资和经济与效益评价6个方面构建了二层结构的立项评价指标体系,从项目准备、项目实施、运行管理和效益与可持续评价4个方面构建了三层结构的农村供水工程后评价指标体系;以Delphi法各指标重要程度结果为依据构造判断矩阵,采用优化的AHP法合理确定了工程立项评价和后评价指标权重,根据评价指标的性质构建了多层次模糊综合评价FCE模型并结合不同类型工程后评价进行了实例应用分析。整个评价指标体系科学严谨,使用方便。评价结果符合实际情况,具有较大的应用价值,可以为农村供水工程的规范化管理提供科学依据,促进评价工作的顺利开展。
     (2)农村供水工程最优规模的研究
     从规模效益优化的角度,基于已建工程实际数据,考虑人口密度差异,建立了投资、效益、成本与建设规模的定量关系模型,以农村供水工程净效益年度等值最大为目标建立了最优规模非线性规划模型。结合工程实例应用求解可知,工程最优规模效益还与水价的合理制定密切相关,当水价过低时,工程难以维持正常运行,只有水价处于一个合理的区间,才具有规模效益。最优规模的分析,可以为新建和扩建工程供水规模的合理确定,供水区域的合理划分,新老供水设施的优化衔接,工程效益的充分发挥以及农村供水工程的可持续性发展提供参考依据。
     (3)农村供水管网优化设计
     管网优化设计对农村供水工程投资影响较大,针对农村供水管网的特点,对管材优选、水泵优选及管径优化设计进行研究,构建管材优选评价指标体系,采用改进标度法进行指标权重确定,建立了管材模糊综合评价模型;针对常用供水水泵,建立了水泵优选评价指标及模糊综合评价模型;采用界限流量法-改进遗传算法组合优化设计树状管网。该优化设计模型以最小动态年费用为目标函数,流速、压力及管径可靠性为约束条件,以界限流量法优化初始种群,以管径优选结果优化适应度函数,减少了迭代次数,提高了计算效率,确保了全局最优解。农村供水管网优化设计的研究为管材和水泵的合理选择,管径的优化设计提供了研究思路与科学依据。
     (4)农村供水工程水价研究
     论文在比较国内外水价的构成、制定方法与计价方式基础上,重点综合经济承受能力和心理承受能力对农民饮水水价承受能力进行了定量分析,结合需求函数ELES (Extended Linear Expenditure System)模型对不同地区消费结构的分析,提出了不同地区经济承受能力的划分依据;采用条件价值估计CVM (Contingent Valuation Method)法通过支付卡问卷与二分法引导技术优化结合,建立了心理承受能力的Logistic回归模型。由该模型可知,心理承受能力受到经济承受能力、年龄和卫生习惯等因素的影响,不同经济承受能力的农民支付意愿不同,经济承受能力越高,支付意愿越强,同时承受能力具有空间异质性,不同地区差异较大。基于公平性、补偿成本、合理收益及水资源有效利用和可持续发展的农村供水水价制定原则,明确了农村供水合理的水价构成,提出了基于供需双方利益均衡的阶梯式三级水价模型及分级制定策略和制定建议,对农村供水水价的合理制定具有重要的参考价值。
     (5)农村供水工程评价相关技术集成系统开发
     基于农村供水工程评价及相关技术的研究成果,以VFP关系型数据库管理系统为开发平台,结合VEP、VB等多种可视化编程技术,采用面向对象的开发方式,开发研制农村供水工程评价相关技术集成系统。系统采用模块化结构,功能丰富。主要模块有工程信息模块、工程评价模块和管网优化设计、管材和水泵优选及规模和水价计算分析等工程评价相关技术模块,可实现工程信息管理、工程评价、辅助设计和优化研究等功能。系统的开发为工程建设提供了简单实用的科学工具,可以规范评价过程,提高工作效率,优化设计,提高工程决策管理水平和信息化水平,具有较大的应用价值。
Safety of drinking water in rural areas is directly related to the social stability and the sustainable development of our society. It is an urgent requirement for building a new socialist countryside and a harmonious society to develop rural water supply and carry out rural drinking water safety projects. With the rapid development of rural water supply projects, in order to make the project develop along the science track, ensure the sustainable operation of the project, and maximize project's efficiency, high scientific and technological decision means and management skills are urgently needed to be introduced to establish a scientific evaluation index system which is suitable for rural water supply project, to dig into the related technical matters in the project constructing and management, to optimize decision-making scheme and to promote a standard and scientific management in the construction of rural water supply project. As the lack of the deep and thorough investigation on this related matters of rural water supply, on the key technical problems of the construction of the current rural water supply, based on summing up and filtering related research outputs both at home and aboard, this thesis aims to seek a new breakthrough by maintaining sustainable development train of thought, using evaluation as the main line, optimization as a means, price as a lever and looking improving decision and management level, comprehensively improving science and technique level of rural water supply as the aim. The paper's main content and research results are as follows:
     (1) Research and structuring of evaluation index system of the rural water supply projects
     This paper carries out the research focus on both the project evaluation and the post-evaluation of rural water supply projects. It adopts the way of Delphi-AHP-FCE to optimize, which uses AHP method to structure evaluation indicator frame, combining with optimizing targets, such as, coordination inspection, uses the method of Delphi to structure a two-layer architecture project evaluation index system in terms of project preparation, overall plan, technique proposal, engineering management, investment and economic and benefit evaluation and structures a three-layer architecture project evaluation index system in terms of project preparation, project implementation, operation management and efficiency and sustainable evaluation. This research structures judgment matrix based on the result of the importance of any indicator. This research structures multilevel blurry comprehensive evaluation model based on the characteristics of evaluation system and it carries out application example analysis combining with post-evaluation of different projects. The whole evaluation index system is scientific, rigorous, and convenient to use. The evaluation result correspond with the actual situation, has great value and can provide scientific basis for the scientific and standardized management for the rural water supply projects to promote the evaluation work smoothly proceeding.
     (2) Research on optimized scale of the rural water supply projects
     In the perspective of scale benefit, on account of the practical data of constructed projects, the difference of population density, it established a quantitative relation model of investment, benefit, cost and the scale of construction. It established an optimal scale nonlinear programming model on the purpose of seeking the annual maximum equivalent of the net benefit of the rural water supply projects. Combining with solving of the engineering application examples, it finds that engineering optimal scale benefit is also related to reasonable water price. It's difficult to maintain normal operation when the water price is too low and it can have the scale benefit only when the water price is in a reasonable range. The analysis of optimal scale can provide a reference for the reasonable affirmation for the building of new projects or extending the existing projects, the reasonable partition of the water supply regions, the optimizing cohesion between the old and the new water supply facilities, the project playing full role and the sustainable development of rural water supply.
     (3) Optimal design of rural water supply network
     Optimal design for network has a great impact on the investment of the rural water supply projects. On the characteristics of the rural water supply network, this paper does the research on selecting optimal pipes, selecting optimal pumps and the optimal design of pipe diameter to build an evaluation index system of selecting optimal pipes and pumps. It uses improvement scale method to determine the index proportion to establish a dim and comprehensive evaluation model for pipes. It establishes an optimal evaluation index for pumps and a dim comprehensive evaluation model. It uses boundaries flow method and improves the integrated genetic algorithm to optimally design tree network. This optimal design model uses minimum dynamic annual cost as target function, take flow rate, pressure and the reliability of the pipe diameter as the constraint condition, uses boundaries flow method to optimize the initial population and uses the result of optimal selection of pipe diameter to optimize fitness function to reduce the iteration number, to improve computation efficiency and to ensure a global optimal solution. The research on the optimal design of rural water supply network provides a research guideline and scientific basis for the reasonable choice of pipes and pumps, and the optimal design of pipe diameter.
     (4) The study on the water price of the rural water supply projects
     Based on comparing the water price composition, formulating methods and valuation methods both at home and abroad, composing with the key comprehensive economic bear ability and the psychology bearing capacity, the paper optimizes the numerical investigation on the peasants'endurance on the water price. Combining with the analysis about the consumption structure in different districts by using demand function model of Extended Linear Expenditure System, the paper raises the basis for partition for different bearing capacity of different districts. According to Contingent Valuation Method and the optimized combination of questionnaire on the payment card and dichotomy guidance technology, this paper establishes the logistic regression model of farmers'psychology bearing capacity. From this model, we know that psychology bearing capacity is affected by many actors, such as, payment capacity, age, health habits, and so on. Different farmers with different payment capacity have different willingness to pay, and they have stronger desire to pay if they have higher payment capacity. At the same time, endurance has the special heterogeneity with great difference in different regions. The rural water supply pricing principle based on the fairness, compensation cost, reasonable benefit and the effective use of water resource and sustainable development makes the price structure of the rural water supply more reasonable, which also proposes a3-level ladder water pricing model, based on the interests of both sides, this paper also proposes a reasonable pricing structure, which has an important reference value on scientifically and reasonably formulating the price of the rural water supply.
     (5) Systemic development for the related techniques of the evaluation of rural water supply projects
     Based on the research achievement of the evaluation of the rural water supply projects and the related techniques, using VFP relational database management system as a development platform, combining with Visual Basic and other visual programming techniques, and the object-oriented development way, this paper develops related integrated system of the evaluation of the rural water supply projects.The system uses a modular structure, which has many functions. Main modules contain engineering information modules, evaluation modules and optimal design of pipe networks, optimal selection of pipes and pumps and water price calculation and analysis, all of them are related to the technique module of the evaluation of projects, which can realize managing engineering information, engineering evaluation, aided design, optimization study and other functions.The development of the system provides the a simple but practical tool for engineering construction, which can standardize the evaluation process, improve work efficiency, optimize design and enhance the decision-making and management level and the level of informationalization. So it has greater application value.
引文
[1]王忠法.积极探索长效机制不断巩固农村饮水安全工程建设成果[C].农村饮水安全论文集.北京:中国水利水电出版社,2009.
    [2]汪秀丽.农村饮水安全问题的探讨[J].水利电力科技,2009,(1):29-39.
    [3]汀恕诚.中国的饮水安全保障工程[J].水利技术监督,2006,(4):1-4.
    [4]国家发展改革委,水利部,卫生部.全国农村饮水安全工程“十二五”规划[R].2011年.
    [5]陈雷.认真贯彻落实中央一号文件精神,全面开创农村水利工作新局面——在全国农村水利工作会议上的讲话[J].中国水利,2011,(4):1-7.
    [6]姜伟新,张二力.投资项目后评价[M].北京:中国石化出版社,2009.
    [7]陈文晖.工程项目后评价[M].北京:中国经济出版社,2009.
    [8]李金海著.项目评价方法论[M].天津:南开大学出版社,2009.
    [9]Chen H T. Current trends and future directions in program evaluation[J]. Evaluation Practice, 1994, (15):229-238.
    [10]Deepak Lal. Methods of project Analysis[M]. Baltimore M.D:Johns Hopkins University Press, 1974.
    [11]Charles C, Alton P, Benjamin U. Let us make impact assessment more accessible[J]. Environmental Impact Assessment Review,2003, (23):141-153.
    [12]pearce D C. The Social Appraise of Projects[M]. Macmillan,1981.
    [13]Van der Meer F. Evaluation and the social construction of impacts[J]. Evaluation,1999, (5): 387-406.
    [14]Roche C. Impact Assessment for Development Agencies[M]. Oxford:Oxfam GB,1999.
    [15]王秀局.工程项目后评价关键技术的研究[D].济南:山东科技大学,2006.
    [16]方兴君.做好项目独立后评价工作的几点思考和体会[J].石油规划设计,2009,20(1):41-43.
    [17]董忠.小舜江供水工程建设项目后评价研究[D].杭州:浙江大学,2007.
    [18]郑燕.电力投资项目后评价研究及应用[D].北京:华北电力大学,2006.
    [19]Geoffrion A M. Proper efficiency and the theory of vector maximization[J]. J.Math.Anal.Appl. 1968,22:618-630.
    [20]Johnson R A, Wichern D W. Applied Multivariate Statistical Analysis[M]. London:Prentice-Hall, 1998.
    [21]Xu R N, Zhai X Y. Extensions of the Analytic Hierarchy Process in Fuzzy Environment[J]. Fuzzy Sets and Systems,1992,52(3):251-258.
    [22]Charnel A, Cooper W W, Lewin A Y, et al. Sensitivity and stability analysis in DEA[J]. Annals of Operation Research,1985,(2):139-156.
    [23]Saaty T L. Marketing Applications of the Analytic Hierarchy Process[J]. Management Science, 1980,26(7):177-190.
    [24]Sattty T L. Modeling Unstructured Decision Problems:theTheory of Analytical Hierarhieds[D]. Univ.of Missouri, Rolla,1997:90-153.
    [25]Satty T L. TheAnalytic Hierarchy Proeess[M]. New York:McGraw-Hill,1980:438-451.
    [26]Hwang C L,Yoon K L. Multiple Attribute Decision Making:Methods and Applications[M]. Berlin:Springer-Verlag,1981.
    [27]Rogers S K. Application of Artificial Neural Networks[J].Proc.Washington:SPIE-the Int. Society for Optical Eng,1991:76-92.
    [28]Gregory A J, Jackson M C. Evaluation methodologies:a system of use[J]. Journal of Operational Research Society,1992,43(1):19-28.
    [29]Maeda H, Murakami S A. Fuzzy Decision-making Method and Its Application to a Company Choice Problem[J]. Information Science,1998,45:331-346.
    [30]杜栋,庞庆华,吴炎.现代综合评价方法与案例精选[M].第二版.北京:清华大学出版社,2008.
    [31]朱庆元.水利工程良性运行研究[D].南京:河海大学,2008.
    [32]杨春红.西北地区农业节水项目社会效果后评价研究[D].南京:河海大学,2007.
    [33]段金叶.山东省饮水安全评价[D].北京:首都师范大学,2007.
    [34]张龙云,曹乐生.农村饮水安全综合评价[J].水电能源科学,2007,25(8):12-14.
    [35]陆建红,徐建新,赵鹏.河南省农村饮水安全综合评价研究[J].灌溉排水学报,2010,29(6):18-22.
    [36]陆建红,丁立杰,徐建新.模糊综合评价模型在农村饮水安全评价中的应用[J].水电能源科学,2011,29(2):99-102,111.
    [37]徐志芬,张汝成,周燕.云南省农村饮水安全保障体系指标分析与评价[J].中国水利,2006,(23):43-45.
    [38]李伯华,张博野,乔花芳.江汉平原农村饮水安全指数评价[J].长江大学学报,2008,5(6):67-69.
    [39]文俊,吴开亚,金菊良,等.基于信息熵的农村饮水安全评价组合权重模型[J].灌溉排水学报,2006,25(4):43-47.
    [40]杨才杰,张清明,钱银芳,等.基于模糊层次分析法的农村饮水安全评价研究[J].人民黄河,2011,33(3):44-48.
    [41]庄承彬,黄河鸿,林娴.基于云理论与层次分析法的农村饮用水安全诊断[J].灌溉排水学报,2010,29(4):52-55.
    [42]王颖.福建沿海地区农村饮用水安全的评价研究一以漳州市漳浦县为例[D].厦门:厦门大学,2008.
    [43]黎明强,刘韧,梁庆香.主成分分析法在农村生活饮用水水质综合评价中的应用[J].现代预防医学,2009,36(4):653-657.
    [44]孙宇飞,王建平.推进农村饮水安全工程运行绩效评价的思考[J].水利发展研究,2011,(3):18-25.
    [45]周志霞,柯兵,黄大寒,等.农村饮水安全项目绩效评价体系研究[J].行政事业资产与财务,2008,15(6):44-49.
    [46]李翠梅,刘遂庆,陶涛.给水管网设计与运行评价的价值工程方法[J].同济大学学报,2006,34(5):647-650.
    [47]张艳.农村安全饮用水水价及饮水工程后评价[D].扬州:扬州大学,2009.
    [48]张汉松.深化农村饮水工程管理体制改革促进工程良性运行[J].中国农村水利水电,2007,(2):65-67.
    [49]中国灌溉排水发展中心.农村供水工程运行管理研究[R].2010.
    [50]张清明,董秋华.农村饮水安全工程长效管理探讨.中国水利水电科学研究院.中国农村饮水安全科技新进展[M],北京:中国水利水电出版社,2009:385-391.
    [51]国家发展改革委,水利部,卫生部.全国农村饮水安全工程“十二五”规划[R].2011.
    [52]J‘建林,于树青,钱成文等.管道工程建设项目自我后评价方法与实务[M].北京:石油工业出版社,2009.
    [53]刘峰.高速公路建设项目后评价研究[D].南京:河海大学,2007.
    [54]郑明新.滑坡防治工程效果的后评价研究[D].南京:河海大学,2005.
    [55]张新玉.水利投资效益评价理论与方法[M].北京:中国水利水电出版社,2005.
    [56]高志勇.浅析水利工程的良性运行[J].中国水运,2011,11(6):156-157.
    [57]David C. Novak, Ciff T. Ragsdale. A decision support methodology for stochastic multi-criteria linear programming using spreadsheets[J]. Decision Support Systems,2003, (36):99-116.
    [58]李金海著.项目评价方法论[M].天津:南开大学出版社,2009.
    [59]Gallagher M,Bradshaw C, Nattress H. Policy priorities in diabetes care:a Delphi study[J]. Qual Health Care,1996,5(1):3-8.
    [60]Moussa A, Bridges-Webb C. Quality of care in general practice:a delphi study of indicators and methods[J]. Aust Fam Physician,1994,23(3):465-468,472-473.
    [61]李春菊.基层卫生机构绩效评价指标体系研究[D].重庆:重庆医科大学,2010.
    [62]薛薇.SPSS统计分析方法及应用[M].第二版.北京:电子工业出版社,2009.
    [63]金菊良,吴永林,汪明武.城市防洪标准方案优选的组合权重方法[J].四川大学学报(工程科学版),2004,36(4):1-5.
    [64]赵新宇.基于熵值法的灌区节水改造项目后评价研究[J].安徽农业科学,2010,38(2):932-933.
    [65]李志萍,何雨江,朱中道.熵权法在农村安全饮水水质评价中的应用[J].人民黄河,2007,29,(5):35-36.
    [66]阮连法,项闯,汤玉武.熵权模糊综合评判在商业地产后评价中的应用[J].技术经济与管理研究,2009,(1):13-15.
    [67]刘学功,崔招女,李晓琴.村镇供水工程规模的合理确定[J].中国水利,2007,(10):90-93.
    [68]Sauer J. Economies of scale and firm size optimum in rural water supply[J]. Water Resources Research.2005,41(11):1-13.
    [69]吴戈,张玉双.煤炭企业生产规模优化的定量分析[J].山西煤炭,2000,20(2):8-11.
    [70]张勤,张建高.水工程经济[M].北京:中国建筑工业出版社,2002.
    [71]俞国平,任心欣.区域供水的投资效益分析方法[J].中国给水排水,2003,19(12):75-76.
    [72]李兴旺.城镇供水工程的经济规模研究[J].合肥工业大学学报(自然科学版),2004,27(5):504-508.
    [73]余轶鹏,陶月赞,余晓庆.平原地区农村供水工程的优化布局[J].水利与建筑工程学报,2010,8(2):106-109.
    [74]黄金书,陶月赞.平原地区农村供水规模的优化[J].合肥工业大学学报(自然科学版),2009,32(7):1056-1060.
    [75]伊学农,任群,王国华,等.给水排水管网工程设计优化与运行管理[M].北京:化学工业山版社.2007.
    [76]赵洪宾.给水管网系统理论与分析[M].北京:中国建筑工业出版社,2003.
    [77]Shamir U, Howard C. Water distribution systems analysis[J]. Hydrulics ASCE,1968,94 (HY1): 219-314.
    [78]白丹.给水输配水管网系统优化设计研究[D].西安:西安理工大学,2003.
    [79]周荣敏,雷延峰.管网最优化理论与技术—遗传算法与神经网络[M].河南:黄河水利出版社,2002.
    [80]Karmeli D, Gadish Y, Meyers S. Design of optimal distribution network[J]. Journal of pipeline, ASCE,1968,84(PL1):1-10.
    [81]Kally E. Computerized planning of the least cost water distribution network[J]. Water Sewage Works,1972:121-127.
    [82]周恒良.模糊环境下乡镇供水系统的优化设计方法[D].合肥:合肥工业大学,2004.
    [83]Liang T. Design of conduit system with diverging branches[J]. Hydraulics, ASCE 1975, 101(HY1):167-187.
    [84]Goldberg D E. Genetic algorithms in search[J]. optimization and machine learning. New York: Addison—Wesley Publish Company, INC,1989.
    [85]Goldberg D E, Koza J R. Genetic algorithms in pipeline optimization[J]. Journal of Computing in Computing in Civ Engrg,1987,1(12):128-141.
    [86]Savid D, Walters G. Genetic algorithms for least-cost design of water distrbution networks[J]. Journal of Water Resource Planning Management. ASCE,1997,123(2):67-77.
    [87]刘守亮,吕谋,培刚.遗传算法在给水管网优化设计中的应用[J].青岛理工大学学报,2005,26(6):99-102.
    [88]Bryan A Tolson, Holger R Maierl, Angus R Simpson. Genetic algorithms for reliability-based optimization of water distribution systems[J]. Journal of Water Resources and Management,2005, 26(6):99-102.
    [89]姚慰炜,马孝义,王向伟,等.自适应遗传算法在环状管网水力计算中的优化设计[J].灌溉排水学报,2010,29(4):85-88.
    [90]罗忠贤,禹华谦.基于分类遗传算法的给水管径优化设计[J].兰州交通大学学报,2005,24(3):72-74.
    [91]许仕荣,葛琳,周永潮.给水管网优化设计的混合遗传算法[J].湖南大学学报,2005,32(3):47-51.
    [92]陈晋端,刘书明,孟凡琳,等.给水管网管径管材联合优化算法的设计及应用[J].给水排水,2010,36(11):165-168.
    [93]朱红莲,徐征和,孔珂,等.基于改进遗传算法的农村供水管网优化设计[J].中国农村水利水电.2010,(7):72-75.
    [94]沈刚.改进遗传算法在农村饮水工程树状管网优化设计中的应用[D].扬州:扬州大学,2009.
    [95]李生毅,陈桂风.新型塑料管材的性能及在给排水工程中的应用[J].辽宁化工,2003,32(5):216-218.
    [96]刘伯元.21世纪塑料管材发展的机遇与挑战[J].石化技术与应用,2005,23(1):1-4.
    [97]中国市政工程西北设计研究院主编.给水排水设计手册,第12册,器材与装置[M].第二版,北京:中国建筑工业出版社,2002.
    [98]潘家多.给水排水管道工程管材的应用[J].特种结构,2003,20(3):9-12.
    [99]李亚峰,陈加豪.塑料管在给排水管道工程中的应用[J].沈阳建筑工程学院学报,2000,16(3):207-209.
    [100]冷兴武,王荣秋.推荐一种新型输水管道—树脂混凝土夹芯玻璃钢管道[J].混凝土,2000,(7):45-48.
    [101]陈家鹏,杨丙峰.市政给水管道工程中管材的选用[J].管道技术与设备,2007,(6):26-28.
    [102]吕志刚,闫先锋,郑茂军.远距离管道输水工程的管材选择[J].山东水利,2004,(12):43-45.
    [103]孟俊荣.建筑给水管管材的选用[J].科技情报开发与经济,2003,13(7):245-246.
    [104]孙建国.供水工程管材选用的技术经济分析[J].吉林水利,1999,(7):14-15.
    [105]王晶晶.新型市政给排水管道技术经济比较研究[D].武汉:武汉科技大学,2005.
    [106]徐建新,郭文献.多目标模糊优选决策方法在输水管材选择中的应用[J].给水排水,2005,31(11):88-91.
    [107]郭金福.应用模糊综合评价法选择给水管材[J].给水排水,2008,34(4):103-105.
    [108]钟永光.农村给水工程管材的选择与应用[J].建材技术与应用,2008,(7):31-32.
    [109]陈庆松,王贵斌.给水管材的价值分析[J].给水排水,2002,28(10):74-75.
    [110]陈卓如,陈霖.大流量长距离输水管材选择[J].工程建设与设计,2002,(5):57-58.
    [111]徐建新,郭文献,王鸿翔.多层次灰色关联度在输水管材选择中的应用[J].中国农村水利水电,2006,(2):67-69.
    [112]韩大鹏,王彤,杨东娟.给水塑料管材的模糊综合评价[J].长安大学学报,2004,21(2):46-80.
    [113]蒋绍阶,谢东方.优选小城镇供水管材[J].重庆建筑大学学报,2008,30(1):105-108.
    [114]王忠烨.农村饮水安全工程规划计算机辅助设计系统开发之管材与水泵选择[D].扬州:扬州大学,2009.
    [115]鄢碧鹏,汤方平,刘超.水泵选型方法的研究[J].扬州大学学报,1999,2(3):59-61.
    [116]吴桂民.水泵选型方法[J].煤炭技术,2009,28(5):17-19.
    [117]李斌.水泵优化选型软件设计与开发[J].水利科技与经济,2009,15(6):548-549.
    [118]纪晓华,鄢碧鹏,刘超.水泵选型专家系统研究与开发[J].江苏农业研究,2001,(4):77-79.
    [119]尹士君,黄水华,王颖.水泵优化选型的建模方法[J].沈阳建筑大学学报,2006,22(3):462-465.
    [120]王圃,龙腾锐,文屹.给水泵站的水泵优选及节能改造[J].中国给水排水,2004,20(10): 81-83.
    [121]王忠烨,程吉林,何莲,等.农村饮水工程水泵选型的计算机模块开发[J].中国水利水电,2010,(4):129-131.
    [122]唐元义,胡清峰,骆有德.层次分析法的一种新标度法[J].鄂州大学学报,2005,12(6):40-41,48.
    [123]Holland J H. Adaptation in nature and artificial systems[M]. MIT Press,1975.
    [124]李元科.工程最优化设计[M].北京:清华大学出版社,2006.
    [125]金菊良,丁晶.水资源系统工程[M].成都:四川科学技术出版社,2002.
    [126]邢文训,谢金星.现代优化计算方法[M].北京:清华大学出版社,2005.
    [127]中国市政工程西北设计研究院主编.给水排水设计手册,第11册,常用设备[M].第二版,北京:中国建筑工业出版社,2002.
    [128]GB50265-2010,泵站设计规范[S].
    [129]张晓霞.水泵选型与动力机配套[J].甘肃科技,2008,24(6):92-93.
    [130]姜乃昌.水泵及水泵站[M].第四版,北京:中国建筑工业出版社,1998.
    [131]ICWE. The Dublin statement and report of the conference [C]. In:International Conference on Water and the Environment Development,1992.
    [132]Hassan J. A history of water in morden England and Wales[M]. Manchester University Press,Manchester,1998.
    [133]张玲玲.农村饮水安全工程非线性水价模式研究[M].北京:中国水利水电出版社,2008.
    [134]Garcia S, Guerin-Schneider L, Fauquert G. Analysis of water price determinants in France: Cost recovery, competition for the market and operator's strategy[J]. Water Science and Technology: Water Supply,2005,5(6):173-181,2005.
    [135]Tate D M, Lacelle D M. Municipal Water Rates in Canada[J]. Social Science Series,1995: 18-22.
    [136]Liu G J, Savenije H G, Xu J X. Water as an economic good and water tariff design comparison between IBT-con and IRT-cap[J]. Physics and Chemistry of the Earth,2003, (28):209-217.
    [137]Asian Development Bank. Water Utilities Handbook:Asian and Pacific Region [M]. Manila, Philippines,1993.
    [138]Industry Commission. Water resources and waste water disposal[R]. Canberra:Australian government publishing service,1992.
    [139]日本水道协会.平成15年版水道便览[M].东京:日本水道协会,2003.
    [140]Hassan J. A history of water in morden England and Wales[M]. Manchester University Press, Manchester,1998.
    [141]水利部.水利工程水费核定、计收和管理办法[S].1985.
    [142]水利部.水利工程供水生产成本、费用核算管理规定[S].1995.
    [143]国家发展和改革委员会,水利部.水利工程供水价格管理办法[S].2003.
    [144]韩慧芳,郑通汉.水利工程供水价格管理办法讲义[M].北京:中国水利水电出版社,2004.
    [145]沈大军,梁瑞驹,王浩,等.水价理论与实践[M].北京:科学出版社,1999.
    [146]晏成明,唐德善.张掖市农业用水承受能力及其和谐水价分析[J].安徽农业科学,2009,37(29):14528-14529.
    [147]沈大军,陈雯,罗健萍.水价制定理论、方法与实践[M].北京:中国水利水电出版社,2006.
    [148]施熙灿.影子水价与影子电价测算[J].水力发电学报,2002,(2):1-8.
    [149]韩义超.大伙房水库输水工程水价研究[J].大连:大连理工大学,2003.
    [150]马建琴,夏军,刘晓洁,等.中澳灌溉水价对比研究与我国水价政策改革[J].资源科学,2009,31(9):1530-1534.
    [151]高晶.北京市城镇居民阶梯水价统计测算研究[D].北京:首都经济贸易大学,2008.
    [152]刘增进,彭悦.郑州市阶梯式水价可行性及居民承受能力分析[J].安徽农业科学,2009,37(25):12208-12209,12212.
    [153]裴永刚,李爱杰,肖华.北京市村镇供水水价管理与改革探讨[J].水利经济,2009,27(4):37-39.
    [154]张明斌.县域供水价格存在的问题及其改革建议[J].中国农村水利水电,2006,(5):46-47.
    [155]邵念荣.珠三角农村饮水安全保障机制研究[M].广州:暨南大学出版社,2011.
    [156]Tate D M, Lacelle DM. Municipal Water Rates in Canada[J]. Social Science Series,1995: 18-22.
    [157]倪文进,郝红漫,王鲁燕,等.水价核定、水费计收对农村饮水安全工程的影响分析[J].中国水利,2010,(3):43-45.
    [158]陈丹.南方季节性缺水灌区灌溉水价与农民承受能力研究[D].江苏:河海大学,2007.
    [159]姜文来.灌溉水价承载力研究[J].中国水利(A刊),2003,(6):41-43.
    [160]王浩,阮本清,沈大军.面向可持续发展的水价理论与实践[M].北京:科学出版社,2003.
    [161]杨丽娜,马传波,王鑫.葫芦岛市城市居民用水水价承受能力分析[J].水资源与环境,2010,(3):20-21,38.
    [162]聂欣岩.河北省城镇居民水价承受能力分析[J].中国水利,2007,(16):52-54.
    [163]李春雨.南水北调用水户水价承受能力分析[J].内蒙古科技与经济,2010,(8):44-45.
    [164]徐得潜,张乐英,席鹏鸽.制定合理水价的方法研究[J].中国农村水利水电,2006,(4): 83-84.
    [165]赵勇,邵奇.山东省城镇居民水价可承受能力分析[J].水利科技与经济,2010,16(10):1090-1092.
    [166]柳长顺,陈献,刘昌明等.华北地区城镇居民水费支出占收入与消费的比例研究[J].水利经济,2005,23(2):27-32.
    [167]周春应.居民水价承受能力分析模型——江苏省城镇居民水价承受能力的ELES模型研究,水电能源科学,2009,27(8):158-160.
    [168]Singh B, R Ramasubban, R Bhatia J, et al. Rural water supply in Kerala, India:How to Emerge from a Low-level Equilibrium Trap[J]. Water Resources Research,1993,29 (7):1931-1942.
    [169]Alberini Anna, Boyle Kevin, Welsh Michael. Analysis of contingent valuation data with multiple bids and response options allowing respondents to express uncertainty [J]. Journal of Environmental Economics and Management,2003:40-62.
    [170]Ryan Mandy, Scott David A, Donaldson Cam. Valuing health care using willingness to pay:a comparison of the payment card and dichotomous choice methods[J]. Health conomics,2004: 237-258.
    [171]Wang Hua, Whittington Dale. Measuring individuals'valuation distribution using a stochastic payment card approach[J]. Ecological,2005:143-154.
    [172]Li C, Mattsson L. Discrete choice under preference uncertainty:An improved model for contingent valuation[J]. Ecological Economics,1995:256-269.
    [173]Champ, Patricia A, Alberini Anna, Correas lgnacio. Using contingent valuation to value a noxious weeds control program:the effect of including an unsure response category[J]. Ecological Economics,2005:47-60.
    [174]Swanson T, Day B. Valuing water quality in China:purpose, approach and policy[J]. Journal of Environmental Sciences,1999,11(3):309-316.
    [175]梁勇,成升魁.居民对改善城市水环境支付意愿的研究[J].水利学报,2005(5):613-623.
    [176]杜亚平.改善东湖水质的经济分析[J].生态经济,1996(6):15-21.
    [177]王慧娟,周建,郑志来.基于农户视角的生活供水状况改善支付意愿的实证分析-以江苏省镇江市为例[J].农村经济,2009,(7):112-115.
    [178]逢守艳.计量经济学[M].北京:中国科学技术出版社,2009.
    [179][美]因特里格特,博德金,萧政著.李双杰,张涛主译.经济计量模型、技术与应用[M].第二版,北京:中国社会科学出版社,2004.
    [180]Hanemann M W. Valuing the environment through contingent valuation[J]. Journal of Economic Per-spectives 1994, (8):19-43.
    [181]Davis R K. The Value of outdoor recreation:An Economic Study of the Maine Woods[M]. Cambridge:Harvard University,1963.
    [182]Mitchell R C, Carson R T. Using Surveys to Value Public Goods:The Contingent Valuation Method [M]. Washington DC:Resource for the Future,1989:2-3.
    [183]Carson R T. Flores N E, Hanemann M. Sequencing and Valuating Public Goods[J]. Environmental Eeonomics and Management,1998, (36):314-323.
    [184]Venkatachalam L. The contingent valuation method:a review[J]. Enviromental Impact Acessment Review,2004, (24):89-124.
    [185]Loomis J B, Walsh R G. Recreation Economic Decision:Comparing Benefits and costs.2nd [M]. Venture Publishing Inc,1997.
    [186]郭杰,丁阳璐.我国城市居民用水价格的可承受能力问题分析[J].中央财经大学学报,2005,(6):63-66.
    [187]褚琳琳.基于条件价值评估法的农民灌溉水价承受能力研究一以五岸灌区为例[D].南京:河海大学,2007.
    [188]Josph A H, Jason F S. Starting point bias indichotomous choice valuation with follow-up questioning[J]. Journal of Environmental Economics and Management,1996, (30):112-131.
    [189]姜彩芬,余国扬,李新家,等.消费经济学[M].北京:中国经济出版社,2009.
    [190]李金辉.基于异质空间和路径依赖的产业空间集聚初探[J].特区经济,2011,(2):272-275.
    [191]Panayotou T. Economic Instruments for Environmental Management and Sustainable Development[J]. Environment Economics Series, UNEP environment and Economic Unit,1994,16.
    [192]Teerink J R, Nakashima M. Water allocation, Rights, and Pricing:Examples from Japan and the United States[C]. Wachington, D.C:World Bank,1993:1-25.
    [193]Cf.Elnaboulsi J. Peak-load pricing for urban water and wastewater public services[C] St.John. Meeting of the Canadian Economics Association, Memorial University, Newfoundland, Canada, 1997:5-8.
    [194]Narayannan R, Beladi H. Feasibility of seasonal water pricing considering metering costs[J]. Water Resources Research,1987,23(6):1091-1099.
    [195]Murdock s H. Role of Sociodemographic characteristics in Projections of Water use[J]. Journal of Water Resources Planning and Management,1991, (2):117.
    [196]路遥.城市供水价格研究[D].大连:大连理工大学,2004.
    [197]David R d-Holst, Dominique van der Mensbrugghe著.李善同,段志刚,胡枫主译校.政策建模技术:CGE模型的理论与实现[D].北京:清华大学出版社,2009.
    [198]江苏省水利厅水资源综合规划办公室,河海大学.江苏省水价弹性及其节水效果研究报告[R].2006.
    [199]Falkenmark M. Dilemma When Entering 21st Century Rapid Change but Lack of Sense of Urgency[D]. Water Policy,1998, (4):421-436.
    [200]程志宏.城市水价模型及其应用[D].合肥:合肥工业大学,2005.
    [201]刘文俊.农业灌区节水灌溉管理模式研究[D].南京:河海大学,2008.
    [202]王忠烨,程吉林,何莲,等.农村饮水安全工程规划CAD系统研究与开发[J].灌溉排水学报,2010,29(1):100-103.
    [203]Pump selection software available on website [J]. World pumps,2003,440:11-12.
    [204]李金华,张克危.泵的计算机辅助选型销售软件的开发[J].水泵技术,1998,18(6):24-28.
    [205]Pump Selection Software[J]. World pumps,1995,341:70-74.
    [206]ABS Pumps [J]. World pumps,1998,385:51-52.
    [207]尹士君.常用泵智能选择和查询手册[M].北京:化学工业出版社,2006.
    [208]张海藩.软件工程导论[M].第五版,北京:清华大学出版社,2008.
    [209]李春葆.Visual FoxPro程序设计[M].第二版,北京:清华大学出版社,2008.
    [210]房凯.基于GIS的六合区水系信息查询与泵站老化评价系统开发[D].扬州:扬州大学,2008.
    [211]高小琴.灌区管理信息系统的设计与实现[D].扬州:扬州大学,2004.
    [212]王文娥,汪志农.农业专家系统及其在灌溉管理中的研究应用现状[J].节水灌溉,2000,(5):10-12.
    [213]刘静森.小型机电灌区多媒体计算机辅助设计系统的研究[D].扬州:扬州大学,2003.