发射药动态力学性能检测技术及评价方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为准确地检测评价发射药的动态力学性能,分别设计建立了发射药自身动态力学性能和发射药装药床动态力学性能的实验装置及其检测评价方法。采用落锤撞击装置对单粒发射药进行撞击实验,检测发射药自身的动态力学性能;采用高低压发射原理推动装填被试发射药的运载器,控制运载器的运动速度对发射药床施加相应的撞击与挤压作用,检测发射药床的动态力学性能。结合密闭爆发器燃烧实验,研究分析发射药撞击前后的初始动态活度比,提出了发射药破碎度的定量评价参数和与参照样品相对比较的评价方法,并选择典型发射药样品进行了检测评价的应用研究。研究结果表明:
     (1)发射药自身抗撞击实验样品状态对实验结果影响显著,样品在实验之前应进行修平处理,否则对实验造成较大误差。通过吸湿性对破碎度影响研究,吸湿性对破碎度影响很小,药粒在保低温时,不需要将其进行密封处理。
     (2)通过研究单位面积撞击能与破碎度关系,对药形不同的药粒利用单位面积撞击能作为发射药自身动态力学性能评价标准较为准确。
     (3)通过建立发射药床动态力学性能评价方法及实验装置,分析实验装置的可控性,根据改变高压室装药量控制运载器初速可行,随着高压室装药量增加,运载器初速增加,变化范围为31.8m/s~199.5m/s。分析实验装置的稳定性,根据平行三发相同高压室装药量数据,装置速度极差可控制在3.5m/s-4.5m/s,符合装置设计要求。
     (4)通过实验及评价方法对不同类型发射药的抗冲力学性能进行比较,单基药的抗冲力学性能强于其他药种,太根药与双基药抗冲力学性能无明显差异,三基药抗冲力学性能在相同实验条件下弱于其他药种,且随着黑索金含量升高其抗冲力学性能下降。
Evaluation for the accurate detection of dynamic mechanical properties of propellant, established the dynamic mechanical properties of propellant itself and Dynamicmechanical properties of propellant bed experimental setup and testevaluation. Droping hammer impact device using a single propellant grain for crash tests to detecte propellant dynamic mechanical properties of its own. Using High and low emission principle is to promote the loading test of launch vehiclepropellant. By controling the velocity of the launch vehicle propellant bed to exert impact and the corresponding compression to detecte of propellant mechanical properties of the bed. With closed bomb combustion experiments, researched and analysised before and after the initial impact propellant dynamic activitythan. Proposed fragmentation of propellant quantitative evaluation parameters and evaluation of the reference sample method is relatively. Choose a typical propellant samples were tested application of the evaluation. Studies have shown that:
     (1) Launch their own anti-drug state of the experimental impact test samples significantly affected the results. Samples should be revised before the experiment level processing Otherwise, the experimental result in large errors. Affected by moisture absorption study of fragmentation, fragmentation has little effecton moisture absorption, drug particles in the low temperature protection, do not need to be sealed
     (2) By studying the impact per unit area with fragmentation between the different drugson the drugs-shaped particles hit per unit area can be used as a propellant dynamic mechanical properties of its own evaluation criteria are more accurate.
     (3) Propellant bed through the establishment of evaluation methods and dynamic mechanical properties of experimental devices, the controllability analysis of experimental apparatus, according to changes in high-pressure chamber loadingdose control launch vehicle velocity possible, with the high pressure chamber to increase the amount of charge, vehicles to increase muzzle velocity. Range of 31.8m/s to 199.5m/s, Stability analysis of the experimental device, according to the same high-pressurechamber parallel to three rounds of data loading dose. poor speed control device range 3.5m/s to 4.5m/s, in line with device design requirements.
     (4) Through experiments and evaluation methods analyz different types of propellant. Propellant at low temperatures is fragile, yet it is strong plastic at normal temperature. Impact strength at low temperatures significantly lower than the normal temperature impact strength.
引文
[1]Lieb R J, Rocchio J J. The Effects of Grain Fracture on the Interior Ballistic Performance of Gun Propellants.8th International Symposivm on Ballistics. Orlands; [S. N.].1984
    [2]黄人俊,宋洪昌.火药设计基础[M].北京:北京理工大学出版社,1997.
    [3]Price R R, Rollon F K, Monahan W. Eand Jame A E. Digital Radiograpy:A Focuds on Clinical Utility. Grune & Stration, New York,1982.
    [4]金志明.枪炮内弹道学[M].北京:北京理工大学出版社,2004.
    [5]邹瑞荣,金志明,袁亚雄等.起始弹道阶段火药床运动规律的定量研究[J].兵工学报,1996,17(2):164-167.
    [6]邹瑞荣,袁亚雄,金志明等.火炮点火初期膛内火药床运动规律研究[J].南京理工大学学报,1994(2):33-37.
    [7]Lieb R J. Impact Generated Surface Area in Gun Propellant. ADA200468,1986
    [8]Benhaim P, Paulin J L, Zeller B. Investigation on Gun Propellant Breakup and Its Effects in Interior Ballistics.4th International Symposium on Ballist-Monterey,1978
    [9]李群.火药撞击破裂规律及其对燃烧速率影响的实验研究[J].兵工学报武器分册,984,(3):29-39.
    [10]杨敏涛,王升晨,王启明.火药撞击破碎及燃烧性能的实验研究[J].火炮发射与控制学报,1996,(1):56-59.
    [11]周彦煌,张明安,刘千里.炮用发射药动态破碎实验方法及破碎现象的观察[J].弹道学报,1990,(1):59-67.
    [12]张明安,周彦煌,刘千里.炮用发射药破碎药粒燃烧规律测定[J].弹道学报,1990(3):63-70.
    [13]周彦煌,刘千里.火炮低温冷脆与火炮膛炸事故[J].弹道学报,1995(1):12-16.
    [14]黄强,郭东桥,卞光荣等.强动载荷下单基火药力学性能的研究[J].含能材料,2007,15(5):534-536.
    [15]邹瑞荣,袁亚雄,翁春生等.膛内火药床撞击与挤压的动态模拟实验[J].弹道学报,1998,10(3):66-69.
    [16]邹瑞荣,袁亚雄.不同点火条件下膛内药床运动规律的实验研究[J].弹道学报,2001(3):85-87.
    [17]杨均匀.高膛压火炮发射安全性实验研究及数值模拟.南京:南京理工大学,1997
    [18]窦磊,翁春生,金志明.火药破碎敏感度的数值计算[J].火炸药学报,2003,26(2):27-31.
    [19]翁春生,金志明,邹瑞荣.含能颗粒床颗粒间应力对动态破碎的影响[J].燃烧科学与技术,2005,11(1):6-9.
    [20]金志明,翁春生,张国强.膛炸模式及其机理分析[J].兵工学报,2001,22(4):448-451.
    [21]张小兵,翁春生,袁亚雄,等.火药低温挤压破碎及其异常燃烧数值预测[J].南京理工大学学报,1998,22(4):165-168.
    [22]Heiser R, Wolf K. About the Mechanical Strength of Propellant Grains: Numerical Simulation. In:16th International Synposium on Ballistics, San Francisco:[S.N.],1996
    [23]宋明,金志明.火炮膛内压力波的数值模拟[J].兵工学报,1992(1):12-19.
    [24]杨涛,金志明.火炸药颗粒床中的压缩波特性[J].弹道学报,1993(4):3-8.
    [25]翁春生,金志明,袁亚雄等.火药破碎对压力异常影响的数值模拟[J].弹道学报,1996,8(4):13-18.
    [26]杨均匀.高膛压火炮火药破碎模型及数值计算[J].弹道学报,1997,9(2):35-39.
    [27]芮筱亭,刘军,陈涛等.发射药挤压破碎动力学分析[J].兵工学报,2004,25(6):679-683.
    [28]洪俊,芮筱亭,刘军等.散粒体发射药床碰撞挤压过程三维数值模拟研究[J].兵工学报,2007,28(3):305-308.
    [29]罗运军,胡国胜,王泽山.硝胺和硝基胍发射药动态粘弹性能研究[J].南京理工大学学报,1994(2).
    [30]堵平,何卫东,王泽山.低温感发射药包覆层的力学性能[J].火炸药学报,2005(2):35-38.
    [31]史先扬,王泽山.低温感高能硝胺发射药的实验研究[J].火炸药学报,2001(1):4-6.
    [32]黄振亚,王泽山,张远波.发射药燃速压力指数变化规律的研究[J].含能材料,2006,(2):123-126.
    [33]黄振亚,王泽山,何卫东.新型高能高强度JMZ发射药的燃烧特性[J].火炸药学报,2005,(4):61-63.
    [34]张丽华,王泽山.关于发射药粉粒度对爆速影响的研究[J].兵工学报,1999(3):228-232
    [35]胡国胜,曾昭煌,罗运军等.发射药冲击断裂时的形态结构及其断裂破坏机理 [J].兵工学报,1993,(1):42-46.
    [36]罗运国,胡国胜,张丽华.多基发射药的冲击断裂能和冲击破坏机理[J].太原机械院学报,1992,13(2):147-153.
    [37]邢浴仁.粒状发射药抗冲强度落锤实验方法.火炸药,1994(2):12-22.
    [38]徐皖育,何卫东,王泽山.JMZ发射药力学性能研究[J].含能材料,2007,15(3):235-239.
    [39]徐皖育,何卫东,王泽山.高能量、高强度发射药配方研究[J].火炸药学报,2003,26(3):44-46.
    [40]Lieb R J. Correlation of the Failure Modulus to Fracture-Generated Surface Area in Uniaxially Compressed M43 Gun Propellant. ARL-TR-884,1995
    [41]Lieb R J. Leadore M G. Correlation of the Failure Modulus to Fracture-Generated Surface Area in Uinaxially Compressed M30 Gun Propellant. Army Research Laboratory, ARL-TP-307, Novermber 1993
    [42]Lieb R J. The Mechanical Response of M30, JA2 and XM39 Gun Propellant to High Rate Deformation. BRL-TR-3023, AD-A213 328, August 1989
    [43]Lieb R J. High Strain Rate Response of Gun Propellant Using the Hopkinson Split Bar. BRL-TR-3200, AD-A234 474, Feb.1991
    [44]陈涛,芮筱亭.发射药床动态挤压破碎模拟研究[J].南京理工大学学报,2006,30(4):467-471.
    [45]陈涛,芮筱亭,洪俊等.用于药床动态挤压压力研究的半密闭爆发器仿真[J].系统仿真学报,2007,19(17):4075-4078.
    [46]陈涛,芮筱亭,负来峰.发射药破碎程度描述方法[J].弹道学报,2008,20(2):99-102.
    [47]芮筱亭,负来峰,王浩等.发射药床挤压破碎的实验模拟[J].兵工学报,2004,25(4):498-502.
    [48]徐劲祥.发射装药挤压破碎对燃烧规律的影响[J].火炸药学报,2007,30(3):69-71.
    [49]徐文娟,张会生.可燃药筒活性的分析[J1.南京理工大学学报,1996,20(1):20-25.
    [50]华东工程院一○三教研室.内弹道学[M].南京:国防工业出版社,1978.
    [51]Gazonas G A. A Uniaxial Nonlinear Viscoelastic Constitutive Model with Damage for M30 Gun Propellant. ARL-TR-115, US Army Research Laborotory, Aberbeen Proving Ground, Maryllant, April 1993
    [52]陈涛.火炮发射装药发射安全性数值仿真与实验研究[D].南京:南京理工大 学,2007
    [53]金志明,翁春生.高等内弹道学[M].北京:高等教育出版社,2003.