模具铜合金材料热处理工艺的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
铝青铜因具有优良的力学性能和耐磨性、耐蚀性和抗氧化性在机械工业、飞机和汽车制造工业、船舶和海洋工业中都得到了广泛的应用。随着现代工业的飞速发展,机械产品对铝青铜的性能要求也越来越高,传统的牌号的铝青铜如QAl10-3-1.5和QAll10-4-4等已经难以满足某些特殊工况条件下的使用要求。
     因此,许多科研人员正致力于新型铝青铜的开发,本课题组也研究开发一种应用于制造模具的、高强度的、高硬度的新型铝青铜合金。本文研究了该模具铜合金在铸态下的组织结构与力学性能的关系、均匀化退状态下的组织演变过程及优化其热处理工艺。结果表明:
     1.该铝青铜铸态下的组织为(α+β′+γ_2+K)。铸态下存在不平衡相、存在着过饱和的难溶元素和枝晶偏析,除了以上三种情况外,晶界和枝晶界上还有难溶元素的金属间化合物、杂质相、非金属夹杂等。该铝青铜铸态下硬度、强度较高,韧性较低。晶粒大小、α相含量、γ_2相分布及K相的形状等影响着铝青铜铸态下的力学性能。铸态下铝青铜的晶粒为0.000475cm,晶粒粗大会使该铝青铜的塑性和韧性同时降低;α相含量少,γ_2粗大并沿晶界分部是导致该铜合金脆性的主要原因:合金中的K相,主要起弥散强化的作用,合金中花状K相较大,在一定程度上恶化了合金的性能。
     2.低温均匀化退火态的组织仍为β′、α、γ_2、K,该铝青铜低温退火下仍表现为强度、硬度高,冲击韧性有明显下降的趋势。
     3.在加热温度变化,保温时间不变的一组均匀化退火实验中,980℃均匀化退火转变的最完全,但由硬度实验和冲击韧性实验可以看出在950℃时性能最好。
     4.在加热温度不变,保温时间变化的一组均匀化退火实验中发现保温时间对k相影响较大,当950℃、20h保温时k相完成了析出、长大、分裂、再聚集的过程,完全均匀化;当950℃、2h保温时基体相为(α+γ_2)、α、γ_2,均匀化完全,保温时间继续增加时初晶的γ_2相粗化。从测得的硬度可以看出,在950℃、2h保温时硬度最高。
     5.最佳的热处理工艺是:(950℃、2h、油淬)+(500℃、5h、空冷),在此工艺下硬度为41.17HRC,冲击韧性为0.713kgf.m,抗拉强度为625Mpa。达到硬度最大值45.84 HRC的工艺是(950℃、2h、油淬)+(580℃、5h、空冷);达到冲击韧性最大0.723 kgf.m的工艺是(950℃、2h、油淬)+(460℃、1h、空冷)。
Multi-aluminum bronze has been widly applied in some area such as machine industry, automobile and plane manufacture, shipbuilding industry and ocean industry because it possesses some super properties, for example mechanical properties wear-resistant, corrosive resistance, oxidation resistance. With the rapid development of modern industry, traditional trademark's aluminum bronze don't accord with usefulness request in the certain situation. So, many people who research science are exploiting a new- aluminum bronze and our team are researching a new- aluminum bronze that possesses high strength, high hardness and is made with die. In this paper the effect of as-cast microstructure on mechanical properties of multi-aluminum bronze, the transformation of microstructure of multi-aluminum bronze with homogenizing annealing were studied and optimizing technics of heat treatment. The results shows as following:
    1.The as-cast microstructure of multi-aluminum bronze are a phase,B ' phase, Y 2 phase and K phase. There are imbalance phases and supersaturational insoluable element and dendrite segregation in the as-cast microstructure, besides those, there are also insoluable element, intermetallic composite, impurities phase, nonmetallic lard on grain boundary. The as-cast of multi-aluminum bronze possesses high strength, high hardness but low toughness. Grain size, content of a phase, distributing of r2 phase ,shape of K phase impact on mechanical properties of as-cast multi-aluminum bronze. Grain size of as-cast multi-aluminum bronze is 0.000475cm, and it make the plasticity and toughness decrease; lack of a phase and coarse Y 2 phase distributing along grain boundary cause the brittleness of alloy. The main function of the K phase is dispersion-strengthening and the coarse flowery K phase deteriorate the mechanical properties of alloy to a certain extent.
    2.In low temperature homogeneous annealing, microstructure of multi-aluminum bronze are same to it's as-cast, and the alloy still possesses high strength, high hardness, but toughness has evidently declined trend.
    3.In a set of experiment that didn't vary time but temperature , the microstructure transformed most complete than others processes at 980 C homogeneous annealing, but at 950C homogeneous annealing hardness is highest than others.
    4.In a set of experiment that didn't vary temperature but time, we found the K phase were easily affected by the heat holding-time. At heating temperature 950 C,holding time 20h, the k phases have completed the homogeneous process from precipitating, growing to splitting, re-assembling,; At heating temperature 950C,holding time 2h, the ( a + Y 2) phase , a phase, y 2 phase have completed the homogeneous process. With increasing holding time, the Y 2 phase become coarse. According data of hardness, at heating temperature 950C .holding time 2h, the hardness arrive at the top.
    5.The Multi-aluminum bronze which had been oil quenched after holding 950 for 2h then tempered 500 for 5h had the best tensile strength 625MPa, hardness 41.17HRC,toughness 0.713kg f. m. The Multi-aluminum bronze which had been oil
    
    
    
    quenched after holding 950 for 2h then tempered 460 for Ih had the best toughness 0. 723 kg f. m, which had been oil quenched after holding 950 for 2h then tempered 580 for 5h had the best hardness 45.84HRC.
引文
[1] 尹志民,张生龙.高强高导铜合金研究热点及发展趋势.矿业工程2002,(6):1-6
    [2] 王绍雄.铜和铜合金在电子工业中的新趋势。铜加工,1992,(3):6
    [3] 王隆寿。宝钢铬锆铜结晶器铜板的研制.冶金设备,1999,12(6):34
    [4] 五十岚廉.引线框架材料.日本金属学会会报,198991):63
    [5] 尹志民,高培庆,汪明朴,等.中国发明专利(99101884.9),1999
    [6] 温宏权,等.高速列车用新型铜合金接触线.材料导报,1998,1(2):25
    [7] Batra I S, Dey G K. Microstructure and properties of a Cu-Cr-Zr alloy. Journal of nuclear Materials, 2000(299):91~100
    [8] 张晓辉,李永年,等.高强度、高导电性cu-ag合金的研究进展.贵金属,2001,3(1):47
    [9] 杨朝聪.高强高到铜合金的研究及进展.云南冶金,2000,12(6):26~27
    [10] 方正春.耐热和导电铜合金的发展现状[J] .材料开发与应用,1997 Vol.12No.4,(8):27
    [11] 张化龙.高强度高导电率Cu-Cr-Zr-Mg合金的熔炼[J] .铸造技术,1996.3:14-17
    [12] 廖素三,尹志民,蒋牵.热处理对Cu-Cr(-Zr)合金力学性能和导电性的影响[J] .中国有色金属学报,2000 Vol.10(5):680-687
    [13] 凌云汉,周张键,李江涛等.超高压梯度烧结法制备W/Cu功能材料[J] .中国有色金属学报,2001Vol.11No.4,(8):576
    [14] Adachi K, Takeuchi T. Plastic deformation of Cu-Cr composite cold rolling. Journal of the Japan institute of Metals, 1997,61(5):391~396
    [15] 刘淳.铜基弹性材料的研究[J] .湖南冶金,1996(1):15-19
    [16] TAN Shu-song(谭树松).马氏体相变的动态观察[J] .The Chinese Journal of Nonforrous Metals(中国有色金属学报),1994,4(2):47
    [17] 王碧文,李红,王世民,王涛晶粒细化对Cu-12.2AI-4.OMn形状记忆合金加工性能的影响[J] .中国有色金属学报,1999 Vol.9 No.3,(9):552
    [18] 娄明珠,杨树林,王碧文等.Cu-11.9A1-6.43Mn合金形状记忆效应[J] .中国有色金属学报,Vol.10 No.3,2000(6):323
    [19] Z.G. WEI, H.Y. ZOU. Aging Effects in a Cu-12Ai-5Ni-2Mn-1Ti shape memory Alloy [J] , Met Trans, 1997.28A:955
    [20] Pado M. Martensitic transformation in Cu-Mn-Al Alloy[J] .Seripa Metallurica et aterinlia, 1995,33:877
    [21] 印飞,王亦新,洪慎章。挤压铸造的应用与模具材料[J] .机械工程材料,2000Vol.24(2):28-29.
    [22] 龚红英,罗晨苗,陈学义.LCT铜合金的研制及在压铸模压射头上的应用[J] .材料开发与应用,1999 Vol.14(5):83-90
    [24] 林嘉明,王凤芝,白津生.THS-HL2铜基钎料的研制与应用.焊接材料与设备Vol.30.No.3Jun.2001.
    [23] Dalle T Peters博士.用于工业构件的铜合金[M] 国际铜业协会亚洲铜业理事会上海会议,1999.
    [25] 芦笙,刘和法.铍铅青铜气孔的成因及消除方法[J] 铸造,1996.9:7-12
    
    
    [26] 胡大禄,曹建春,周兆.新型高强度耐磨青铜的组织与性能[J] .有色金属,1998Vol.50(3):99-1030.
    [27] 纪胜如,陈慧敏,陈菁.高强度铝青铜合金的研究[J] .湖北工业学报,1998.6:57-59.
    [28] 李元元,夏伟,张文等.高强度耐磨铝青铜合金及其摩擦学特性[J] .中国有色金属学报,1996 Vol.6(3):76-80.
    [29] 孟繁杰,彭其凤.模具材料.机械工业出版社.1989.12:1-3
    [30] 梁金生,梁广川,高兴华。不锈钢器皿拉深模具材料研究的最新进展[J] .中国有色金属学报,1997(1):45-47
    [31] 森永正彦.合金设计[J] .工业材料,1992 vol.440(6):39.
    [32] John Roumble, Jr. computer Aided Innovation of new Materials of new Materials Ⅱ [M] , Elsevier Science Publishers B.V, 1993.53-56.
    [33] 何献忠.优化技术及其应用[M] .北京:北京理工大学出版社,1995
    [34] 李文生.模具铜合金材料硬化热处理工艺的研究.兰州理工大学硕士学位论文
    [35] 《铸造有色合金及其熔炼》联合编写组.铸造有色合金及其熔炼[M] .北京:国防工业出版社,1981
    [36] 《铸造手册》编写组.铸造有色合金手册[M] .北京:机械工业出版社,1978
    [37] Y Li, et al. In: proceedings of the 18# International Colloquium (Tribology 2000). Ostfildem,Germany: 1992
    [38] 梁金生.模具铜合金材料[M] .铸造世界报,2000 Vol.250(8),
    [39] 张鲁阳.我国冷作模具选材的趋向[J] .金属热处理.1999(2):4-6
    [40] 周敬恩.模具材料选用、热处理及使用寿命[J] .金属热处理,1999(5):1-13
    [41] 程培源.模具寿命与材料[M] .北京:机械工业出版社,1999
    [42] 徐进等.模具钢[M] .冶金工业出版社,1998.10:1-46
    [43] 金玉花.模具铜合金材料摩擦磨损特性的研究.兰州理工大学硕士学位论文
    [44] 潘振鹏,冯颖璋,塑料模具的研制与应用[J] .金属热处理,1999,1,22-25
    [45] 俞芙芳,林纪宗等,影响塑料模具使用寿命的因素及改进方法[J] 模具技术,2000,(1)49-51
    [46] 半连续铸锭缺陷及其预防措施(续Ⅱ).彭学仕,王蔼茹,匡永祥.铝加工.1995.Vol.18,No1:7-15
    [47] 林治平,谢水生,程军,编著.金属塑性变形的实验方法.冶金工业出版社2002.6:22-25
    [48] 杨道明,朱勋,李紫桐.金属力学性能与失效分析.冶金工业出版社.1991.3:8
    [49] 《有色金属及其热处理》编写组.有色金属及其热处理[M] .北京:国防工业出版社,1981
    [50] 喻利花,刘惠南,刘和法等.A1,Be含量对Cu-Al-Be-X合金相变点的影响[J] .金属功能材料,1997(6):267-269
    [51] 崔昆.钢铁材料及有色合金材料[M] .北京: 机械工业出版社,1989
    [52] AASHISH RDHATGI, KENNETH S. VECCHID, GEORGE T. GRAY Ⅲ. The influence of stacking fault energy on the mechanical behavior of Cu and Cu-A1 alloys[J] .Met.& Mat. Trans. A, 2001 Vol32A(1):135-145
    [53] 向培森,有色金属加工手册,第一册[M] .北京:冶金工业出版社,1979
    [54] WEI Z G . Reverse transformation in CuAlNiMnTi alloy at elevated
    
    temperatures[J] .Acta materialia, 1996,44(3):1189-1199
    [55] BREZINA P. Heat treatment of complx aluminium bronzes[J] .International metals Reviews, 1982,27(2):77-120
    [56] 愈德刚.钢的强韧化理论与设计[M] .上海:上海交通大学出版社.1990,20-60
    [57] 徐国富,等.锆及钛对QA110-4-4铝青铜缓冷脆性的影响[J] .材料科学与工艺.2001,9(4):363-366
    [58] 张永刚.金间化合物结构材料.北京:国防工业出版社.2001,4-6
    [59] 陈全明.金属材料及强化技术[M] .上海:同济大学出版社.1992,30-43
    [60] 刘淑云。铜及铜合金热处理[M] .北京:机械工业出版社.1990,85-111