苦荞麦化学成分及其代谢产物分析和鉴定方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
苦荞麦是蓼科(Polygonaceae)荞麦属(Fagopyrum Mill)一年生草本植物,具有辅助降糖、抗氧化以及抗肿瘤等药理作用。近年来苦荞麦被加工成各种保健食品。目前,关于苦荞麦化学成分、代谢产物分析和鉴定的研究较少。本论文对苦荞麦的化学成分、分析方法及体内代谢产物三个方面进行了研究,为深入认识苦荞麦药效物质基础以及合理进行质量控制和资源开发利用奠定基础。
     首先采用色谱分离技术,从苦荞麦70%乙醇提取物中提取分离得到11个主要化学成分,通过紫外光谱(UV)、质谱(MS)和核磁共振(NMR)技术鉴定化合物的结构。11个主要化学成分包括糖苷类、酰胺类和黄酮类化合物,分别是1,3,6'-tri-p-coumaroyl-6-feruloyl sucrose (1),3,6-di-p-coumaroyl-1,6'-di-feruloyl sucrose (2),1,6,6'-tri-feruloyl-3-p-coumaroyl sucrose (3),1,3,6,6'-tetra-feruloyl sucrose (4), N-trans-feruloyltyramine (5), Quercetin-3-O-β-D-galactoside (6), Quercetin-3-O-β-D-glucoside (7), Kaempferol-3-O-β-D-galactoside (8), Kaempferol-3-O-β-D-glucoside (9), Quercetin-3-O-α-L-rhamnoside (10), Quercetin-3-O-[β-D-xylosyl-(1→2)-α-L-rhamnoside](11),其中1个化合物(4)为新化合物,有4个化合物(2、3、5、11)首次从该属中分离得到。体外活性筛选发现糖苷类化合物(2、3、4)、酰胺类化合物(5)和部分黄酮类化合物(10和11)具有较好的抗氧化活性,糖苷类化合物(2和3)具有较好的肝保护活性。
     为了进一步深入分析和鉴定苦荞麦中微量和难以分离得到的化学成分,采用HPLC-PDA/LTQ-FTICRMS技术,建立了苦荞麦70%乙醇提取物中化学成分的分析方法,采用Kinetex C18反相色谱柱(4.6×100mm,2.6μm, Phenomenex),以0.1%冰醋酸水溶液和乙腈为流动相,梯度洗脱,流速0.5mL/min;柱温35℃;进样量2μL;检测波长320nm;分流比1:1,采用ESI离子源正离子检测模式。一级质谱采用全扫描模式获得高分辨质谱数据,通过数据依赖性扫描模式获得多级质谱数据。分析了11个单体化合物的高分辨质谱数据、多级质谱数据和特征紫外吸收光谱等信息,总结了已知化学成分的质谱裂解规律;基于总结的质谱裂解规律和检测到苦荞麦中其他化合物的高分辨质谱数据和多级质谱数据以及紫外光谱等信息,从苦荞麦提取物中共计鉴定了36个化学成分,其中15个化学成分确定其结构,另外21个化学成分通过质谱数据推测了它们可能的结构。
     为了能够同时定量分析苦荞麦中极性差别大、结构类似的多种化学成分,采用在线中心切割二维高效液相色谱技术,建立了苦荞麦中12个化学成分定量分析方法。第一维采用Acclaim Mixed-Mode HILIC-10(2.1×10mm,3μm)色谱柱,第二维采用Acclaim RSLC Phenyl-1(2.1×150mm,3μm)和Acclaim RSLC PolarAdvantage Ⅱ (2.1×150mm,2.2μm)两根色谱柱,通过两个切换阀以并联的方式连接;柱温40℃;检测波长320nm;流速0.5mL/min;进样量4μL;以0.03%磷酸水溶液和乙腈为流动相,洗脱方式为梯度洗脱。利用阀切换通过正向和反向冲洗相结合的洗脱方式,将苦荞麦提取物分成两个部分,一部分主要含有黄酮和酰胺类化合物,另一部主要含有糖昔类化合物,两个部分分别在不同固定相的第二维色谱柱中进行分离分析,结果使得极性相差较大、结构类似的12个化合物实现完全分离。方法验证结果显示,所建立的在线中心切割二维高效液相色谱分析方法能够满足苦荞麦中12个化学成分准确测定的要求,重复性(RSD<3.4%),日内精密度和日间精密度(RSD<4.6%),加样回收率(91.21-107.76%),检出限(0.05-0.21μg/mL)和定量限(0.10-0.41μg/mL)。表明所建立的方法准确、可靠,能够对苦荞麦不同部位以及全草进行定量分析,为评价苦荞麦的质量和资源合理开发,提供可靠的数据支持。在线中心切割二维高效液相色谱分析方法与常规HPLC分析方法相比,显著提高了分离的选择性,能够同时定量分析中草药中的不同结构类型以及同类型结构相似的多个化学成分。
     大鼠原位肝肠灌流模型能够有效模拟大鼠体内肝肠代谢情况,具有基质相对简单,原药用量少等优势。因此采用大鼠原位肝肠灌流模型对从苦荞麦中分离得到的有效成分酰胺类、黄酮类和糖苷类三类11个化学成分进行代谢产物研究。建立了HPLC-PDA/LTQ-FTICRMS分析方法,分析灌流液、肠内容物以及胆汁样品中的代谢产物。采用Kinetex C18反相色谱柱(4.6×100mm,2.6μm, Phenomenex)色谱柱;流动相采用0.1%冰醋酸水溶液和乙腈体系,梯度洗脱,进样量2μL;检测波长320nm;柱温35℃,流速0.6mL/min。选用ESI离子源,采用正离子检测模式,一级质谱采用全扫描模式获得高分辨质谱数据,采用数据依赖性扫描模式获得多级质谱数据。通过对灌流液、肠内容物和胆汁样品中检测到代谢产物的高分辨质谱质谱数据、多级质谱数据和紫外吸收光谱等信息进行分析,结果发现酰胺类化合物的7个代谢产物,黄酮类化合物的17个代谢产物,糖苷类化合物的10个代谢产物,共计发现34个代谢产物。糖苷类化合物的代谢转化反应主要包括酯水解的Ⅰ相代谢,酰胺类和黄酮类化合物的代谢反应主要为甲基化、硫酸化和葡萄糖醛酸化的Ⅱ相代谢。
     基于11个单体化合物在大鼠原位肝肠灌流模型上代谢产物的研究结果,进一步探索了苦荞麦提取物复杂体系在大鼠体内的代谢情况。采用大鼠经口灌胃苦荞麦提取物方式,分别收集给药后0-24h和24-48h的粪便和尿液样品;0-12h、12-24h和24-48h的胆汁样品;以及0.5h、1h、3h和6h的血浆样品。样品前处理后,采用建立的大鼠肝肠灌流模型样品的HPLC-PDA/LTQ-FTICRMS分析方法。在粪便中发现和鉴定了5个原型成分(P2,3,4,5,6)和3个代谢产物;在尿液中发现和鉴定了1个原型成分(P3)和代谢产物6个;在胆汁样品中发现和鉴定了1个原型成分(P1)和代谢产物10个;在血浆样品中发现代谢产物3个。共计分析和鉴定了23个化合物,其中17个代谢产物,6个原型成分。苦荞麦提取物在大鼠体内的代谢转化反应与各个单体化合物在大鼠原位肝肠灌流模型上的代谢反应类似,主要为酯水解的Ⅰ相代谢、葡萄糖醛酸化和硫酸化的Ⅱ相代谢,结合已有的研究结果阐述了苦荞麦化学成分在大鼠体内的代谢特点和代谢途径。
Tartary buckwheat belongs to the Polygonaceae family. Tartary buckwheat (Fagopyrum tataricum Gaertn) has antidiabetic, antioxidant and antirumor activities. In recent years, tartary buckwheat has been used to make various healthful foods. However, its chemical constituents and metabolites in vivo have not yet been fully characterized and identified. In this thesis the chemical composition, analytical method and metabolism in vivo of tartary buckwheat were studied in order to elucidate the active substances and provide scientific evidences for quality control and rational use.
     Eleven compounds had been isolated from70%ethanol extract of tartary buckwheat by various chromatographic techniques. These structures were elucidated by UV, MS and NMR experiments, including phenlypropanoid glycosides, nitrogen compound and flavonoids, namely1,3,6-tri-p-coumaroyl-6'-feruloyl sucrose (1),3,6-di-p-coumaroyl-1,6'-di-feruloyl sucrose (2),1,6,6'-tri-feruloyl-3-p-coumaroyl sucrose (3),1,3,6,6'-tetra-feruloyl sucrose (4), N-?rans-feruloyltyramine (5), quercetin-3-O-β-D-galactoside (6), quercetin-3-O-β-D-glucoside (7), kaempferol-3-O-β-D-galactoside (8), kaempferol-3-O-β-D-glucoside (9), quercetin-3-O-a-L-rhamnoside (10), quercetin-3-O-β-D-xylosyl-(1→2)-a-L-rhamnoside](11).1,3,6,6'-tetra-feruloyl sucrose (4) named taroside as a new phenlypropanoid glycoside, together with3,6-di-p-coumaroyl-1,6'-di-feruloyl sucrose (2),1,6,6'-tri-feruloyl-3-p-coumaroyl sucrose (3), N-trans-feruloyltyramine (5) and quercetin-3-O-[β-D-xylosyl-(1→2)α-L-rhamnoside](11) were isolated for the first time from the Fagopyrum species. The partial phenlypropanoid glycosides (2,3and4), nitrogen compound (5) and flavonoids (5and11) have good antioxidant and phenlypropanoid glycosides (2and3) have good liver protective activities in vitro.
     In order to comprehensively identify the minor and hardly separated chemical compositions in tartary buckwheat, a novel high performance liquid chromatography coupled with photodiode array detector and linear ion trap FTICR hybrid mass spectrometry (HPLC-PDA/LTQ-FTICRMS) method was established. HPLC separation was performed on a Kinetex C18reverse phase column (4.6x100mm,2.6μm, Phenomenex) by gradient elution using water containing0.1%acetic acid and acetonitrile as mobile phase at a flow rate of0.5mL/min. The eluent from HPLC system was split (1:1) and sprayed into mass spectrometer with an electrospray interface operating in positive ionization. The high resolution and accurate mass spectral data were obtained by the first stage full-scan FTICRMS analysis. MS" data were acquired by data-dependent mode of multiple stage mass analysis. The retention time, maximum UV absorption wavelength, accurate mass weight and characteristic fragment ions of11single compounds were collected on line and their characteristic fragment pattern were summaried. On the basis of the retention time, UV spectral data, accurate molecular weight and mass fragmentation pattern of detected compounds in tartary buckwheat, a total of36chemical compositions that15compounds were unequivocally identified and21compounds tentatively assigned.
     An on-line heart-cutting two-dimensional high performance liquid chromatography (2D-LC) coupled with a diode array detector was explored to determine the different polarities and similarly structural chemical compositions in tartary buckwheat. The combination of various stationary phases were developed and optimized with two switch valves as the interface. Acclaim Mixed-Mode HILIC-10(2.1x10mm,3μm) was used for the first dimensional column. Acclaim RSLC Phenyl-1(2.1x150mm,3μm) and Acclaim RSLC Polar Advantage Ⅱ (2.1x150mm,2.2μm) in parallel were used for the second dimensional columns. The mobile phase was acetonitrile and0.03%aqueous phosphoric acid in water. The temperature in the compartment of the autosampler was20℃, the column temperature was40℃, the injection volume was4μL, and UV absorbance was detected at a wavelength of320nm. The on-line heart-cutting automated2D-LC system was successfully developed by means of valve switching and back-flush. The optimum2D-LC system was established and initially validated to profile and simultaneously determine12major constituents in tartary buckwheat. It showed good performance in terms of repeatability (R.S.D.<3.4%), intra-day and inter-day precision (R.S.D.<4.6%), recovery (91.21-107.76%), limit of detection (0.05-0.21μg/mL), and limit of quantification (0.10-0.41μg/mL). The established2D-LC method was accurate and reliable to determine12major compounds in the different parts and entire plant of tartary buckwheat and provide the reference for quality control and resonable use of tartary buckwheat.
     The in situ liver-intestinal perfusion model can simulate enterohepatic metabolism. In addition, its advantages are beneficial for metabolites identification due to the relatively simple biological matrix and the small amount of drug. Eleven single compounds of three chemical classes including nitrogen compound, flavonoids and phenlypropanoid glycosides were investgated on this model. A HPLC-PDA/LTQ-FTICRMS method was established. Chromatographic separation was carried out on a Kinetex C18reverse phase column (4.6×100mm,2.6μm, Phenomenex). The mobile phase was acetonitrile and0.1%acetic acid aqueous solution in water. The flow rate was set at0.6mL/min, and the column temperature was maintained at35℃. The injection volume was2μL. The positive ESI mode was performed. The high resolution and accurate mass spectral data were obtained by the first stage full-scan FTICRMS analysis. MS" data were acquired by data-dependent mode of multiple stage mass analysis. On the basis of the retention time, UV spectral data, accurate molecular weight and mass fragmentation pattern of detected compounds in biological samples. A total of thirty-four metabolites, that is, seven metabolites from nitrogen compound, seventeen metabolites from flavonoids, ten metabolites from phenlypropanoid glycosides were found and identified. Metabolic reaction include the phase I metabolism of ester hydrolysis and the phase Ⅱ metabolism of methylation, sulfation and glucuronidation.
     On the basis of metabolism of eleven single compounds on the in situ liver-intestinal perfusion model, the metabolites of tartary buckwheat extract in rats were probed. Fece and urine samples during0-24h and24-48h, bile samples during0-12h,12-24h and24-48h and plasma samples at0.5h,1h,3h, and6h were collected after oral administration of the tartary buckwheat extract to rats. After the pretreatment of biological samples, the established HPLC-PDA/LTQ-FTICRMS method for liver-intestinal perfusion study was applied to analyze metabolites. In feces, three metabolites derived from hydrolysis of the phenlypropanoid glycosides and five phenlypropanoid glycosides (P2,3,4,5and6) were detected and identified. Six metabolites including N-trans-feruloyltyramine glucuronidate and sulfate as well as kaempferol glycosides glucuronidation and one prototype drug (P3) were found and identified in urine. In addition, ten metabolites and one prototype drug (P1) were identified in bile. Three metabolites including quercetin-diglucuronide, N-/rans-feruloyltyramine glucuronide and kaempferol-monoglucuronide were identified in plasma. A total of twenty-three compounds including seventeen metabolites as well as six prototype drugs were identified. The metabolic pathways of tartary buckwheat extract in rats were similar with those of eleven single compounds on the in situ liver-intestinal perfusion model. The phenlypropanoid glycosides were easily underwent by the phase Ⅰ metabolic reaction of ester hydrolysis and the nitrogen compound and flavonoids were mainly metabolized by phase Ⅱ metabolic reaction of methylation, sulfation and glucuronidation. Moreover, the metabolic pathways of nitrogen compound, flavonoids and phenlypropanoid glycosides were proposed.
引文
[1]中国科学院中国植物志编委会编.中国植物志[M].北京:科学出版社1999,25(1):111-116
    [2]国家药典委员会编.中华人民共和国药典[M].2010年版,一部,北京:中国医药科技出版社,203
    [3]朱瑞,卞庆亚,林宏英,等.苦荞麦种子化学成分研究[J].中医药信息,2003,20(3):17-18
    [4]包塔娜,周止质,张帆,等.苦荞麦麸皮的化学成分研究[J].天然产物研究与开发,2003,15(2):116-117
    [5]包塔娜,彭树林,周正质,等.苦荞粉中的化学成分[J].天然产物研究与开发,2003,15(1):24-26
    [6]Y.Q. Wu, B.H. Sun, J. Huang, et al. A new flavonoid glycoside from the seeds of Fagopyrum tataricum [J]. Asian Journal of Traditional Medicines,2007,2 (5):202-205
    [7]田磊,徐丽珍,杨世林.金荞麦地上部分化学成分的研究[J].中国中药杂志,1997,22(12):743-745
    [8]郭爱华.金荞麦化学成分的研究[J].山西中医学院学报,2000,1(2):56-58
    [9]邵萌,杨跃辉,高慧媛,等.金荞麦的化学成分研究[J].沈阳药科大学学报,2005,22(2):101-102
    [10]J. Zhang, Z.Q. Yin, P. Cao, et al. A new flavonol derivative from Fagopyrum dibotrys [J]. Chemistry of Natural Compound,2008,44 (6):701-703
    [11]D. Dietrych-Szostak, W. Oleszek. Effect of processing on the flavonoid conetent in buckwheat seed(Fagopyrum esculentum Moench) grain [J]. Journal of Agricultural and Food Chemistry, 1999,47 (10):4384-4387
    [12]吴和珍,周洁云,潘宏林.金荞麦化学成分的研究[J].中国医院药学杂志,2008,28(21):1829-1831
    [13]孙博航,吴雅清,高慧媛,等.苦荞麦的化学成分[J].沈阳药科大学学报,2008,25(7):541-543
    [14]王嘉庆,王喆星,黄健,等.苦荞麦种子的化学成分[J].沈阳药科大学学报,2009,26(14):270-273
    [15]邵萌,杨跃辉,高慧媛,等.金荞麦中的酚酸类成分[J].中国中药杂志,2005,30(20):1591-1593
    [16]Z.Z. Bai, X.H. Zhang, L.J. Xuan, et al. A phenolic glycoside from Fagopyrum dibotrys (D. Don) Hara [J]. Chinese Chemical Letters,2007,18 (9):1087-1088
    [17]魏均娴,曹树明,梁宁珈,等.荞麦蜂花粉的化学成分研究[J].中国中药杂志,1990,15(5):37-39
    [18]K.J. Wang, Y.J. Zhang, C.R. Yang. Antioxidant phenolic constituents from Fagopyrum dibotrys [J]. Journal of Ethnopharmacology,2005,99 (2):259-264
    [19]J.Y. Qian, D. Mayer, M. Kuhn. Flavonoids in fine buckwheat [Fagopyrum esculentum Moench) flour and their free radical scanveging activities [J]. Deutsche Lebensmittel-Rundschau,1999,95 (9):343-349
    [20]张雯洁,李兴从,刘玉青,等.威麦宁的酚性成分[J].云南植物研究,1994,16(4):354-356
    [21]M. Watanabe. Catechins as antioxidants from buckwheat (Fagopyrum esculentum Moench) groats [J]. Journal Agricultural and Food Chemistry,1998,46 (3):839-845
    [22]D. Dietrych-Szostak, W. Oleszek. Effect of processing on the flavonoid content in buckwheat (Fagopyrum esculentum Moench) grain [J]. Journal Agricultural and Food Chemistry,1999,47 (10):4384-4387
    [23]M. Watanabe, Y. Ohshita, T. Tsushida. Antioxidant compound from buckwheat(Fagopyrum esculentum Moench) hulls [J]. Journal Agricultural and Food Chemistry,1997,45 (4):1039-1044
    [24]D. Dietrych-Szostak, W. Oleszek. Effect of processing on the flavonoid content in buckwheat (Fagopyrum esculentum Moench) grain [J]. Journal Agricultural and Food Chemistry,1999,47 (10):4384-4387
    [25]C. Quettier-Deleu, B. Gressier, J. Vasseur, et al. Phenolic compounds and antioxidant activities of buckwheat (Fagopyrum esculentum Moench) hulls and flour [J]. Journal of Ethnopharmacology, 2000,72 (1-2):35-42
    [26]N. Fabjan, J. Rode, I.J. Kosyir, et al. Tartary buckwheat (Fagopyrum tataricum Gaertn.) as a source of dietary rutin and quercitrin [J]. Journal Agricultural and Food Chemistry,2003,51 (22): 6452-6455
    [27]B.G Liu, Y.Y. Zhu. Extraction of flavonoids from flavonoid-rich parts in tartary buckwheat and identification of the main flavonoids [J]. Journal of Food Engineering,2007,78 (2):584-587
    [28]S.J. Kim, I.S.M. Zaidul, T. Maeda, et al. A time-course study of flavonoids in the sprouts of tartary (Fagopyrum tataricum Gaertn.) buckwheats [J]. Scientia Horticulturae,2007,115 (1): 13-18
    [29]S.J. Kim, I.S.M. Zaidul, T. Suzuki, et al. Comparison of phenolic compositions between common and tartary buckwheat (Fagopyrum) sprouts [J]. Food Chemistry,2008,110 (4):814-820
    [30]J. Kalinova, N. Vrchotova. Level of catechin, myricetin, quercetin and isoquercitrin in buckwheat (Fagopyrum esculentum Moench) changes of their levels during vegetation and their effect on the growth of selected weeds [J]. Journal Agricultural and Food Chemistry,2009,57 (7): 2719-2725
    [31]Y. Moumou, F. Trotin. Influence of cultures conditions on polyphenol production by Fagopyrum Esculentum tissue cultures [J]. Journal of Natural Product,1992,55 (1):33-38
    [32]I. Hinneburg, R.H.H. Neubert. Influence of extraction parameters on the phytochemical characteristics of extracts from buckwheat (Fagopyrum esculentum Moench) herb [J]. Journal Agricultural and Food Chemistry,2005,53 (1):3-7
    [33]A.M. Danila, A. Kotani, H. Hakamata, et al. Determination of rutin, catechin, epicatechin, and epicatechin gallate in buckwheat Fagopyrum esculentum by micro-high-performance liquid chromatography with electrochemical detection [J]. Journal Agricultural and Food Chemistry, 2007,55(4):1139-1143
    [34]Y. Moumou, J. Vasseur, F. Trotin. Catechin production by callus cultures of Fagopyrum esculentum [J]. Phytochemistry,1992,31 (4):1239-1241
    [35]C. Olschlager, I. Regos, F.J. Zeller, et al. Identification of galloylated propelargonidins and procyanidins in buckwheat grain and quantification of rutin and flavanols from homostylous hybrids originating from F. esculentum x F. homotropicum [J]. Phytochemistry,2008,69 (6): 1389-1397
    [36]Y.K. Kim, X.H. Li, H. Xu, et al. Production of phenolic compounds in hairy root culture of tartary buckwheat (Fagopyrum tataricum Gaertn) [J]. Journal Crop Science Biotechnology,2009, 12(1):53-58
    [37]S.J. Kim, T. Maeda, M.Z.I. Sarker, et al. Identification of anthocyanins in the sprouts of buckwheat [J]. Journal Agricultural and Food Chemistry,2007,55 (15):6314-6318
    [38]T. Suzuki, S.J. Kim, Z.I.M. Sarker, et al. Structural identification of anthocyanins and analysis of concentrations during growth and flowering in buckwheat (Fagopyrum esculentum Moench) petals [J]. Journal Agricultural and Food Chemistry,2007,55 (23):9571-9575
    [39]T. Matsui, A. Kudo, S. Tokuda, et al. Identification of a new natural vasorelaxatant compound, (+)-osbeckic acid, from rutin-free tartary buckwheat extract [J]. Journal Agricultural and Food Chemistry,2010,58 (20):10876-10879
    [40]J.Y. Cho, H.K. Kim, S.J. Ma, et al. Isolation and identification of azelaic acid and 3, 4-dihydroxybenzoic acid from buckwheat hull as antimicrobial substances [J]. Food Science Biotechnology,2000,9 (5):313-316
    [41]V.H. Pham, N. Morita. Distribution of phenolic compounds in the graded flours milled from whole buckwheat grains and their antioxidant capacities [J]. Food Chemistry,2008,109 (2): 325-331
    [42]C.J. Zheng, C.L. Hua, X.Q. Ma, et al. Cytotoxic phenylpropanoid glycosides from Fagopyrum tataricum (L.) Gaertn [J]. Food Chemistry,2012,132 (1):433-438
    [43]L. Nemcova, J. Zima, J. Barek, et al. Determination of resveratrol in grains, hulls and leaves of common and tartary buckwheat by HPLC with electrochemical detection at carbon paste electrode [J]. Food Chemistry,2011,126 (1):374-378
    [44]R.L. Obendorf, K.J. Steadman, D.J. Fuller, et al. Molecular structure of fagopyritol Al (O-a-D-galactopyranosyl-(1→3)-D-chiro-inositol) by NMR [J]. Carbohydrate Research,2000, 328 (4):623-627
    [45]N. Yang, G.X. Ren. Determination of D-chiro-inositol in tartary buckwheat using high performance liquid chromatography with an evaporative light-scattering detector [J]. Journal Agricultural and Food Chemistry,2008,56 (3):757-760
    [46]D. Janes, S. Kreft. Salicylaldehyde is a characteristic aroma component of buckwheat groats [J]. Food Chemistry,2008,109 (2):293-298
    [47]郑一敏,胥秀英,傅善权,等.HPLC测定金荞麦中的金丝桃营[J].华西药学杂志,2008,23(6):724-725
    [48]韩淑英,王树华,刘江,等HPLC测定金荞麦中芦丁的含量[J].华西药学杂志,2007,22(3):335-336
    [49]方玲芬.HPLC法测定贵州苦荞麦种皮中槲皮素含量[J].贵阳中医学院学报,2009,31(4):71-73
    [50]陈燕.荞麦蜂花粉中槲皮素、异鼠李素含量的测定[J].食品科技,2009,34(9):267-269
    [51]陈熙.HPLC法测定金荞麦片中原儿茶素和表儿茶素的含量[J].药物分析杂志,2010,30(4):641-643
    [52]魏永生,郑敏燕,曹蕾.苯酚-硫酸法测定荞麦蜂花粉多糖含量[J].咸阳师范学院学报,2008,23(4):32-34
    [53]K.H. Kim, K.W. Lee, D.Y. Kim, et al. Optimal recovery of high-purity rutin crystals from the whole plant of Fagopyrum esculentum Moench (buckwheat) by extraction, fractionation, and recrystalliztion [J]. Bioresource Technology,2005,96 (15):1709-1712
    [54]I. Kreft, N. Fabjan, K. Yasumoto. Rutin content in buckwheat (Fagopyrum esculentum Moench) food materials and products [J]. Food Chemistry,2006,98 (3):508-512
    [55]C.K. Hsu, B.H. Chiang, Y.S. Chen, et al. Improving the antioxidant activity of buckwheat (Fagopyrum tataricm Gaertn) sprout with trace element water [J]. Food Chemistry,2008,108 (2): 633-641
    [56]C.L. Liu, Y.S. Chen, J.H. Yang, et al. Antioxidant activity of tartary (Fagopyrum tataricum (L.) Gaertn.) and common (Fagopyrum esculentum Moench) buckwheat sprouts [J]. Journal Agricultural and Food Chemistry,2008,56 (1):173-178
    [57]V. Verardo, D. Arraez-Roman, A. Segura-Carretero, et al. Identification of buckwheat phenolic compounds by reverse phase high performance liquid chromatography-electrospray ionization-time of flight-mass spectrometry (RP-HPLC-ESI-TOF-MS) [J]. Journal of Cereal Science,2010,52 (2):170-176
    [58]J. Kalinova, N. Vrchotova, J. Triska. Exudation of allelopathic substances in buckwheat (Fagopyrum esculentum Moench) [J]. Journal Agricultural and Food Chemistry,2007,55 (16): 6453-6459
    [59]陈效忠,武国荣.超临界萃取荞麦中芦丁的研究[J].黑龙江医药科学,2005,28(2):22-23
    [60]王军,王敏,季璐.苦荞麦麸皮总黄酮提取工艺及其数学模型研究[J].农业工程学报2006,22(7):223-225
    [61]许刚.苦荞麦黄酮提取最佳条件及抗氧化研究[J].中国食品学报,2008,8(3):78-83
    [62]肖诗明,李勇,张忠,等.苦荞麦茎叶中黄酮的提取工艺研究[J].西昌农业高等专科学校学报,2003,17(4):16-18
    [63]王云庆.苦荞麦叶中总黄酮的乙醇提取工艺研究[J].特产研究,2008,3:59-64
    [64]程俊丽,田晋,冯翠萍.荞麦粉中黄酮类化合物提取工艺的研究[J].农产品加工学刊,2009,5(5):33-36
    [65]陈燕.荞麦蜂花粉中总黄酮提取工艺研究[J].榆林学院学报,2009,19(4):58-61
    [66]李守君,杨春荣,江欣,等.荞麦中天然芦丁萃取方法的研究[J].黑龙江医药科学,2003,26(5):106-107
    [67]杨芙莲,任蓓蕾,夏银,等.陕北荞麦壳中生理活性成分的研究[J].食品科学,2007,28(12):156-160
    [68]刘仁杰,王月娇,郭宏伟,等.荞麦蛋白复合物对糖尿病小鼠降血糖作用的研究[J].吉林农业大学学报,2009,31(1):102-104
    [69]韩淑英,王志路,储金秀,等.荞麦花叶黄酮对Ⅱ型糖尿病大鼠胰岛素抵抗及肝组织PTP1B的影响[J].中国中药杂志,2009,34(23):3114-3118
    [70]韩淑英,张宝忠,朱丽莎,等.荞麦花总黄酮对实验性大鼠Ⅱ型糖尿病高脂血症的防治作用[J].中国药理学通报,2003,19(4):477-478
    [71]韩刚,姚国贤,林庆辉,等.荞麦种子不同提取物对Ⅱ型糖尿病大鼠的影响[J].现代预防医学,2008,35(23):4677-4678
    [72]朱莉莎,韩淑英,吕华,等.荞麦种子提取物对糖尿病小鼠的降血糖作用[J].中成药,2002,24(4):307-308
    [73]韩淑英,吕华,朱莉莎,等.荞麦种子总黄酮降血脂、血糖及抗脂质过氧化作用的研究[J].中国药理学通报,2001,17(6):694-696
    [74]J.M. Kawa, C.G Taylor, R. Przybylski. Buckwheat concentrate reduces serum glucose in streptozotocin-diabetic rats [J]. Journal Agricultural and Food Chemistry,2003,51 (25): 7287-7291
    [75]M. Watanabe, J. Ayugase. Effects of buckwheat sprouts on plasma and hepatic parameters in type 2 diabetic db/db mice [J]. Journal of Food Science,2010,75 (9):294-299
    [76]H. Tomotake, N. Yamamoto, N. Yanaka, et al. High protein buckwheat flour suppresses hypercholesterolemia in rats and gallstone formation in mice by hypercholesterolemic diet and body fat in rats because of its low protein digestibility [J]. Nutrition,2006,22 (2):166-173
    [77]Y. Yao, F. Shan, J.S Bian, et al. D-chiro-inositol-enriched tartary buckwheat bran extract lowers the blood glucose level in KK-Ay mice [J]. Journal Agricultural and Food Chemistry,2008,56 (21):10027-10031
    [78]赵保路.氧自由基和天然抗氧化剂[M].北京科学出版社,1999,7
    [79]熊双丽,李安林,任飞,等.苦荞和甜荞麦粉及麦壳中总黄酮的提取和自由基清除活性[J].食品科学,2009,30(3):118-122
    [80]T. Mukoda, B.X. Sun, A. Ishiguro. Antioxidant activities of buckwheat hull extract toward various oxidative stress in vitro and in vivo [J]. Biological and Pharmaceutical Bullentin,2001, 24 (3):209-213
    [81]M. Holasova, V. Fiedlerova, H. Smrcinova, et al. Buckwheat the source of antioxidant activity in functional foods [J]. Food Research International,2002,35 (2-3):207-211
    [82]T. Sun, C.T. Ho. Antioxidant activities of buckwheat extracts [J]. Food Chemistry,2005,90 (4): 743-749
    [83]D. Zielinska, D. Szawara-Nowak, A. Ornatowska, et al. Use of cyclic voltammetry, photochemiluminescence, and spectrophotometric methods for the measurement of the antioxidant capacity of buckwheat sprouts [J]. Journal Agricultural and Food Chemistry,2007, 55 (24):9891-9898
    [84]C.H. Tang, J. Peng, D.W. Zhen, et al. Physicochemical and antioxidant properties of buckwheat (Fagopyrum esculentum Moench) protein hydrolysates [J]. Food Chemistry,2009,115 (2): 672-678
    [85]Z.H. Wang, L. Gao, Y.Y. Li, et al. Induction of apoptosis by buckwheat trypsin inhibitor in chronic myeloid leukemia K562 cells [J]. Biological and Pharmaceutical Bullentin,2007,30 (4): 783-786
    [86]P.K. Chan. Inhibition of tumor growth in vitro by the extract of Fagopyrum cymosum (fago-c) [J]. Life Sciences,2003,72 (16):1851-1858
    [87]S.H. Kim, C.B. Cui, J. Kang, et al. Cytotoxic effect of buckwheat (Fagopyrum esculentum Moench) hull against cancer cells [J]. Journal of Medicinal Food,2007,10 (2):232-238
    [88]X.N. Guo, K.X. Zhu, H. Zhang, et al. Purification and characterization of the antitumor protein from Chinese tartary buckwheat (Fagopyrum tataricum Gaertn.) water-soluble extracts [J]. Journal Agricultural and Food Chemistry,2007,55 (17):6958-6961
    [89]冯黎莎,陈放,白洁,等.金荞麦的抑菌活性研究[J].武汉植物学研究,2006,24(3):240-244
    [90]闫继平,王立波,李维,等.金荞麦抗菌活性研究[J].中国现代中药,2006,8(6):21-23
    [91]冯黎莎,陈放,白洁,等.金荞麦的抑菌活性研究[J].武汉植物学研究,2006,24(3):240-244
    [92]G. Zhao, L. Zou, Z.G. Wang, et al. Pharmacokinetic profile of total quercetin after single oral dose of tartary buckwheat extracts in rats [J]. Journal Agricultural and Food Chemistry,2011,59 (9):4435-4441
    [1]G. Bonafaccia, M. Marocchini, I. Kreft. Composition and technological properties of the flour and bran from common and tartary buckwheat [J]. Food Chemistry,2003,80 (1):9-15
    [2]B. Javornik, B.O. Eggum, I. Kreft. Studies on protein fractions and protein quality of buckwheat [J]. Genetika,1981,13 (2):115-121
    [3]H. Kitabayashi, A. Ujihara, T. Hirose. On the genotypic differences for rutin content in tatary buckwheat, Fagopyrum tataricum Gaertn [J]. Breeding Science,1995,45 (2):189-194
    [4]N. Fabjan, J. Rode, I.J. Kosir, et al. Tartary Buckwheat(Fagopyrum tataricum Gaertn.) as a source of dietary rutin and quercitrin [J]. Journal Agricultural and Food Chemistry,2003,51 (22): 6452-6455
    [5]Y. Pomeranz, G.S. Robbins. Amino acids composition of buckwheat protein [J]. Journal Agricultural and Food Chemistry,1972,20 (2):270-274
    [6]K. Ikeda, M. Kishida, Digestibility of proteins in buckwheat seed. Fagopyrum,1993,13,21-24
    [7]X.N. Guo, K.X. Zhu, H. Zhang, et al. Purification and characterization of the antitumor protein from Chinese tartary buckwheat(Fagopyrum tataricum Gaertn.) water-soluble extracts [J]. Journal Agricultural and Food Chemistry,2007,55 (17):6958-6961
    [8]M. Watanabe. Catechins as antioxidants from buckwheat(Fagopyrum esculentum Moench) groats [J]. Journal Agricultural and Food Chemistry,1998,46 (3):839-845
    [9]B. Sure. Nutritive value of proteins in buckwheat and their role as supplements to proteins in cereal grains [J]. Journal Agricultural and Food Chemistry,1955,3 (9):793-795
    [10]S.J. Kim, I.S.M. Zaidul, T. Maeda, et al. A time-course study of flavonoids in the sprouts of tartary(Fagopyrum tataricum Gaertn.) buckwheats [J]. Scientia Horticulturae,2007,115 (1): 13-18
    [11]Y.K. Kim, X.H.Li, H. Xu, et al. Production of phenolic compounds in hairy root culture of tartary buckwheat(Fagopyrum tataricum Gaertn) [J]. Journal of Crop Science and Biotechnology,2009, 12(1):53-58
    [12]C.J. Zheng, C.L.Hu, X.L.Ma, et al. Cytotoxic phenylpropanoid glycosides from Fagopyrum tataricum (L.) Gaertn [J]. Food Chemistry,2012,132 (1):433-438
    [13]M. Watanabe, Y. Ohshita, T. Tsushida. Antioxidant compound from buckwheat(Fagopyrum esculentum Moench) hulls [J]. Journal Agricultural and Food Chemistry,1997,45 (4):1039-1044
    [14]Y. Yao, F. Shan, J.S. Bian, et al. D-chiro-inositol-enriched tartary buckwheat bran extract lowers the blood glucose level in KK-Ay mice [J]. Journal Agricultural and Food Chemistry,2008,56 (21):10027-10031
    [15]Y.Q. Li, F.C. Zhou, F. Gao, et al. Comparative evaluation of quercetin, isoquercetin and rutin as inhibitors of alpha-glucosidase [J]. Journal Agricultural and Food Chemistry,2009,57 (24): 11463-11468
    [16]M. Wang, J.R. Liu, J.M. Gao, et al. Antioxidant activity of tartary buckwheat bran extract and its effect on the lipid profile of hyperlipidemic rats [J]. Journal Agricultural and Food Chemistry, 2009,57(11):5106-5112
    [17]T. Mukoda, B. Sun, A. Ishiguro. Antioxidant activities of buckwheat hull extract toward various oxidative stress in vitro and in vivo [J]. Biological Pharmaceutical Bulletin,2001,24 (3): 209-213
    [18]谢羽能,吴暎,周素娣.贯叶连翘两个黄酮的分离与鉴定[J].中药材,2001,24(11):803-804
    [19]蒋海强,王建平,刘玉红,等.鬼针草化学成分的分离和鉴定[J].食品与药品,2008,10(9):15-17
    [20]王永刚,淡墨,李咏华,等.猴耳环化学成分的研究[J].中药材,2005,28(9):774-775
    [21]H. Soicke, K. Gorler, H. Waring. Flavonol glycosides from Moghaniafaginea [J]. Planta Medica, 1990,56 (4):410-412
    [1]R.M. Alonso-Salces, K. Ndjoko, E.F. Queiroz, et al. On-line characterisation of apple polyphenols by liquid chromatography coupled with mass spectrometry and ultraviolet absorbance detection [J]. Journal of Chromatography A,2004,1046 (1-2):89-100
    [2]R. Jaiswal, N. Kuhnert. How to identify and discriminate between the methyl quinates of chlorogenic acids by liquid chromatography-tandem mass spectrometry [J]. Journal of Mass Spectrometry,2011,46 (3):269-281
    [3]A. Vallverdu-Queralt, O. Jauregui, G. Di Lecce, et al. Screening of the polyphenol content of tomato-based products through accurate-mass spectrometry (HPLC-ESI-QTOF) [J]. Food Chemistry,2011,129 (3):877-883
    [4]V. Verardo, D. Arraez-Roman, A. Segura-Carretero, et al. Identification of buckwheat phenolic compounds by reverse phase high performance liquid chromatography-electrospray ionization-time of flight-mass spectrometry (RP-HPLC-ESI-TOF-MS) [J]. Journal of Cereal Science,2010,52 (2):170-176
    [5]B. Pekic, V. Kovac, E. Alonso, et al. Study of the extraction of proanthocyanidins from grape seeds [J]. Food Chemistry,1998,61 (1-2):201-206
    [6]W.X. Sun, J.M. Miller, Tandem mass spectrometry of the B-type procyanidins in wine and B-type dehydrodicatechins in an autoxidation mixture of (+)-catechin and (-)-epicatechin [J]. Journal of Mass Spectrometry,2003,38 (4):438-446
    [7]P.J. Sarnoski, J..V. Johnson, K.A. Reed, et al. Separation and characterisation of proanthocyanidins in Virginia type peanut skins by LC-MS" [J]. Food Chemistry,2012,131(3):927-939
    [8]Y.Y. Soong, P.J. Barlow. Isolation and structure elucidation of phenolic compounds from longan (Dimocarpus longan Lour.) seed by high-performance liquid chromatography-electrospray ionization mass spectrometry [J]. Journal of Chromatography A,2005,1085 (2):270-277
    [9]J. Wollgast, L. Pallaroni, M.E. Agazzi, et al. Analysis of procyanidins in chocolate by reversed-phase high-performance liquid chromatography with electrospray ionization mass spectrometric and tandem mass spectrometric detection [J]. Journal of Chromatography A,2001, 926(1):211-220
    [10]F. He, Q.H. Pan, Y. Shi, et al. Identification of autoxidation oligomers of flavan-3-ols in model solutions by HPLC-MS/MS [J]. Journal of Mass Spectrometry,2009,44 (5):633-640
    [11]D. Irene, C.T. Gian, D. Antonio. Phenolic constituents of kancolla seeds [J]. Food Chemistry, 2004,84 (2):163-168
    [12]M. Ye, Y.N. Yan, D.A. Guo. Characterization of phenolic compounds in the Chinese herbal drug Tu-Si-Zi by liquid chromatography coupled to electrospray ionization mass spectrometry [J]. Rapid Communications in Mass Spectrometry,2005,19 (11):1469-1484
    [1]P. Donato, F. Cacciola, E. Sommella, et al. Online comprehensive RPLC x RPLC with mass spectrometry detection for the analysis of proteome samples [J]. Analytical Chemistry,2011,83 (7):2485-2491
    [2]J.R. Griffiths, S. Perkins, Y. Connolly, et al. The utility of porous graphitic carbon as a stationary phase in proteomics workflows:two-dimensional chromatography of complex peptide samples [J]. Journal of Chromatography A,2012,1232 (6):276-280
    [3]M. Truscha, K. Tillack, M. Kwiatkowski, et al. Displacement chromatography as first separating step in online two-dimensional liquid chromatography coupled to mass spectrometry analysis of a complex protein sample-the proteome of neutrophils [J]. Journal of Chromatography A,2012, 1232 (6):288-294
    [4]A. Motoyama, T. Xu, C.I. Ruse, et al. Anion and cation mixed-bed ion exchange for enhanced multidimensional separations of peptides and phosphopeptides [J]. Analytical Chemistry,2007,79 (10):3623-3634
    [5]Y. Xu, J.T. Mehl, R. Bakhtiar, et al. Immunoaffinity purification using anti-PEG antibody followed by two-dimensional liquid chromatography/tandem mass spectrometry for the quantification of a PEGylated therapeutic peptide in human plasma [J]. Analytical Chemistry, 2010,82 (16):6877-6886
    [6]A. Ginzburg, T. Macko, V. Dolle, et al. Characterization of polyolefins by comprehensive high-temperature two-dimensional liquid chromatography (HT 2D-LC) [J]. European Polymer Journal,2011,47 (3):319-329
    [7]S. Ahn, K. Im, T. Chang, et al.2D-LC characterization of comb-shaped polymers using isotope effect [J]. Analytical Chemistry,2011,83 (11):4237-4242
    [8]F. Cacciola, P. Jandera, Z. Hajdu, et al. Comprehensive two-dimensional liquid chromatography with parallel gradients for separation of phenolic and flavone antioxidants [J]. Journal of Chromatography A,2007,1149 (1):73-87
    [9]K.M. Kalili, A. de Villiers, Off-line comprehensive two-dimensional hydrophilic interaction x reversed phase liquid chromatography analysis of procyanidins [J]. Journal of Chromatography A, 2009,1216 (35):6274-6284
    [10]X.G. Chen, L. Kong, X.Y. Su, et al. Separation and identification of compounds in Rhizoma chuanxiong by comprehensive two-dimensional liquid chromatography coupled to mass spectrometry [J]. Journal of Chromatography A,2004,1040 (2):169-178
    [11]L.H. Hu, X.G. Chen, L. Kong, et al. Improved performance of comprehensive two-dimensional HPLC separation of traditional Chinese medicines by using a silica monolithic column and normalization of peak heights [J]. Journal of Chromatography A,2005,1092 (2):191-198
    [12]Y. Zhou, Y. Wang, R.F. Wang, et al. Two-dimensional liquid chromatography coupled with mass spectrometry for the analysis of Lobelia chinensis Lour. using an ESI/APCI multimode ion source [J]. Journal of Separation Science,2008,31 (13):2388-2394
    [13]S. Ma, L.X. Chen, G.A. Luo, et al. Off-line comprehensive two-dimensional high-performance liquid chromatography system with size exclusion column and reverse phase column for separation of complex traditional Chinese medicine Qingkailing injection [J]. Journal of Chromatography A,2006,1127 (1-2):207-213
    [14]Y. Wang, X. Lu, G.W. Xu, Development of a comprehensive two-dimensional hydrophilic interaction chromatography/quadrupole time-of-flight mass spectrometry system and its application in separation and identification of saponins from Quillaja saponaria [J]. Journal of Chromatography A,2008,1181 (1-2):51-59
    [15]Y.M. Liu, X.Y. Xue, Z.M. Guo, et al. Novel two-dimensional reversed-phase liquid chromatography/hydrophilic interaction chromatography, an excellent orthogonal system for practical analysis [J]. Journal of Chromatography A,2008,1208 (1-2):133-140
    [16]Y. Wang, L. Kong, X.Y. Lei, et al. Comprehensive two-dimensional high-performance liquid chromatography system with immobilized liposome chromatography column and reversed-phase column for separation of complex traditional Chinese medicine Longdan Xiegan Decoction [J]. Journal of Chromatography A,2009,1216 (11):2185-2191
    [17]Y.L.Wei, T.Lan, T.Tang, et al. A comprehensive two-dimensional normal-phase* reversed-phase liquid chromatography based on the modification of mobile phases [J]. Journal of Chromatography A,2009,1216 (44):7466-7471
    [18]J. Zeng, X.L. Zhang, Z.M. Guo, et al. Separation and identification of flavonoids from complex samples using off-line two-dimensional liquid chromatography tandem mass spectrometry [J]. Journal of Chromatography A,2012,1220 (13):50-56
    [19]S.W. Wang, C. Wang, X. Zhao, et al. Comprehensive two-dimensional high performance liquid chromatography system with immobilized liposome chromatography column and monolithic column for separation of the traditional Chinese medicine Schisandra chinensis [J]. Analytica Chimica Acta,2012,713 (3):121-129
    [20]C.T. Scoparo, L.M. de Souza, N. Dartora, et al. Analysis of Camellia sinensis green and black teas via ultra high performance liquid chromatography assisted by liquid-liquid partition and two-dimensional liquid chromatography (size exclusion × reversed phase) [J]. Journal of Chromatography A,2012,1222 (27):29-37
    [21]X.F Chen, Y. Cao, D.Y. Lv, et al. Comprehensive two-dimensional HepG2/cell membrane chromatography/monolithic column/time-of-flight mass spectrometry system for screening anti-tumor components from herbal medicines [J]. Journal of Chromatography A,2012,1242 (15):67-74
    [22]L.W. Cao, D.H. Yu, X.L. Wang, et al. The development of an evaluation method for capture columns used in two-dimensional liquid chromatography [J]. Analytica Chimica Acta,2011,706 (1):184-190
    [23]Q. Ren, C.S. Wu, Y. Ren, et al. Characterization and identification of the chemical constituents from tartary buckwheat (Fagopyrum tataricum Gaertn) by high performance liquid chromatography/photodiode array detector/linear ion trap FTICR hybrid mass spectrometry [J]. Food Chemistry,2013,136 (3-4):1377-1789
    [1]H. Hirayama, X. Xu, K.S. Pang. Viability of the vascularly perfused, recirculating rat intestine and intestine-liver preparations [J]. The American journal of physiology,1989,257 (2 Pt 1) G249-258
    [2]X. Xu, H. Hirayama, K.S. Pang. First-pass metabolism of salicylamide. Studies in the once-through vascularly perfused rat intestine-liver preparation [J]. Drug metabolism and disposition,1989,17 (5):556-563
    [3]M.H. Omar, W. Mullen, A. Stalmach, et al. Absorption, disposition, metabolism, and excretion of [3-14C] caffeic acid in rats [J]. Journal of Agricultural and Food Chemistry,2012,60 (20): 5205-5214
    [1]G. Zhao, L. Zou, Z.G. Wang. Pharmacokinetic profile of total quercetin after single oral dose of tartary buckwheat extracts in rats [J]. Journal of Agricultural and Food Chemistry,2011,59 (9): 4435-4441