中国部分地区CSFV与PRRSV流行情况调查与PRRSV标记毒株的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
2006年,我国猪群中暴发一种以高热、腹式呼吸、咳嗽、食欲不振、便秘或腹泻、眼分泌物增多等为主要症状的传染病。最初对该病的病因没有明确定论,故将之定名为“猪无名高热”或“猪高热病”。为了研究“猪高热病”中主要病毒性病原在国内的流行情况,本研究对猪繁殖与呼吸综合征病毒和猪瘟病毒进行了分子流行病学调查;分析了PRRSV国内流行株与国内外其它毒株间的遗传演化关系。在对病原基因组本身认识加深的基础上,利用反向遗传学手段获得了一株PRRSV标记毒株株并对其进行了初步免疫实验研究;进一步对PRRSV活病毒载体疫苗的可行性进行了探索。本研究为我国猪群中主要病毒病原的分子流行病学特征提供科学依据,同时也为PRRSV的防控提供了新的思路,奠定了理论基础。本研究具体内容如下:
     1、中国部分地区猪瘟病毒分子流行病学调查
     为了研究中国猪瘟病毒(CSFV)的分子流行病学,本试验用巢式RT-PCR检测2008年1月到2011年3月送检的不同猪场病料,并对其中103个CSFV分离株的E2基因序列进行分析。进化分析结果表明这些毒株分属1群的1.1亚群和2群的2.1和2.2亚群,没有3群毒株存在。2.1亚群毒株为优势流行毒株,流行范围覆盖大陆绝大部分地区。这些结果丰富了国内CSFV基因变异情况的数据,将为新的诊断方法的建立、流行病学监测以及有效的防控措施制定提供理论基础。
     2、中国部分地区猪繁殖与呼吸综合征病毒分子流行病学调查
     对来自2006-2010年中国15个不同省、自治区、直辖市的疑似猪繁殖与呼吸合征(PRRS)发病猪场的送检病料进行猪繁殖与呼吸合征病毒(PRRSV)的检测,并对其部分ORF5基因进行测序,以确定当前PRRSV在中国的分子流行病学特征,并分析PRRSV在中国的遗传变异规律。使用RT-PCR的方法对采集的样品进行PRRSV检测,并对PRRSV检测呈阳性的69份病料进行ORF5基因的序列测定和分析。1196份病料中共检测到247份阳性样品,阳性率为20.7%。对ORF5序列进行分析表明,69株PRRSV毒株序列均属于2型,与GenBank中高致病性蓝耳病(HP-PRRSV)参考毒株的氨基酸同源性为94.0%-100%。所测序列与PRRSV参考株一并,共可分为5个亚型,亚型Ⅳ与HP-PRRSV遗传距离最近。同时,进化树分析结果表明,69个毒株在空间分布上存在散在性,来源于不同省市的PRRSV毒株的遗传关系存在交叉,病毒分型并没有呈现明显的地域性;PRRSV在中国的流行株为HP-PRRSV, PRRSV在目前中国的遗传演进相对稳定。
     3、PRRSV中国流行株全基因组序列的测定与分析
     为了进一步研究猪繁殖与呼吸综合征病毒在国内的遗传变异情况及分子生物学特征,本研究在上一章研究的基础上,对一株国内分离株JS0922株进行了全基因组的序列测定。根据ATCC VR-2332标准株和JX143高致病性蓝耳病代表株的序列设计引物,对1株2009年的PRRSV江苏分离毒株JS0922全基因进行了分段扩增并测序,将测序结果拼接后,得到病毒的全基因,然后进行序列的比对分析。分析数据显示,PRRSV JS0922株属于基因2毒株,它与2006年以前的分离株相比存在明显差异,与国内早期BJ-4株的核苷酸同源性仅为89%;而与高致病蓝耳病病毒(HP-PRRSV)的同源性较高,达98%以上。就基因组各开放阅读框而言,JS0922的ORF3、ORF4基因变异较大,ORF6则较为保守。分析发现,JS0922基因组具有HP-PRRSV的分子特征,但部分位点氨基酸的突变明显区别于HP-PRRSV。综上,JS0922毒株发生了部分变异,具备了一些新的特点,但总体上划归于HP-PRRSV演化中的一个分支,属于目前国内PRRSV的优势流行株。
     4、猪繁殖与呼吸综合征病毒结构蛋白N蛋白N端非必需区的研究
     为了确定猪繁殖与呼吸综合征病毒nucleocapsid (N)蛋白N末端非重叠区域的非必需区的范围,我们在单纯将PRRSV ORF6与ORF7重叠区拉开的背景质粒上进行了系列研究。本实验参照骨架质粒p7PNX的序列设计引物,选取其N蛋白N端从起始密码子之后的氨基酸进行系列缺失,构建一系列缺失突变体。通过转染BHK-21细胞进行病毒拯救,确定在ORF7无重叠区的情况下,N末端的2-7位氨基酸对于病毒的感染性是非必需的。对缺失体盲传后发现,缺失区域在体外遗传性能稳定。对缺失体进行多步生长曲线和空斑实验,发现缺失体生长动力学和空斑形态学特征与野生型相似。本研究首次确定了2型PRRSV的N蛋白non-overlapping背景下N末端的缺失区域,为进一步解析N蛋白结构与功能、创制新型基因工程标记疫苗奠定了基础。
     5、猪繁殖与呼吸综合征结构蛋白N蛋白标记毒株的构建及初步免疫实验研究
     当前的PRRSV疫苗对疫苗免疫猪和自然感染猪上无法提供血清学鉴别。因此,我们需要利用新的方法制备一种新型的,更为有效的疫苗。利用反向遗传技术,我们构建了一个基因标记毒株—v7APMa,该候选株的核衣壳蛋白与野生毒株(vAPRRS,2型PRRSV)有所差异,v7APMa在体外的细胞培养中显示了良好的遗传稳定性,并且其基因标记的病毒特性在子代病毒中能够很好的得到复制。在体内感染实验中,标记病毒v7APMa和亲本病毒vAPRRS一样,能够诱导感染猪产生相当水平的抗N蛋白抗体,也能诱导相似滴度的中和抗体。同时,两组免疫组仔猪血清中的IL-4和IFN-γ的含量也明显升高。说明标记病毒和亲本病毒一样,能够刺激机体产生正常的免疫应答。v7APMa感染猪在在感染后14天能够产生抗基因标记特异性多肽的抗体。但是vAPRRS和对照组在整个过程未能产生针对基因标记特异性多肽的抗体。说明诊断ELISA方法能够区分vAPRRS病毒和标记病毒v7APMa。在实验28天PRRSV强毒株JX143攻毒后,对照组出现典型的PRRS临床症状,表现为体温升高、食欲下降,眼睑水肿,流鼻涕,咳嗽,皮肤发红等临床症状,且在攻毒后11天和14天分别有1头仔猪死亡。而v7APMa和vAPRRS免疫的猪体温也有体温升高,但持续时间短,临床症状较轻,无猪只死亡。说明vAPRRS和v7APMa均可以对异源毒株JX143攻毒提供一定的免疫保护。结果表明,通过这种新的方法制备出的基因标记毒株为PRRSV标记疫苗的创制提供了新的思路。
     6、猪繁殖与呼吸综合征病毒活载体疫苗候选株的构建及其病毒学特性的研究
     为了获得以PRRSV作为活病毒载体的疫苗候选株,并探究在PRRSV的ORF4与ORF5之间运载外源蛋白基因的可行性,本实验将(equine arteritis virus, EAV)的ORF4嵌合入PRRSV基因组中,经PCR、酶切和基因测序鉴定,筛选获得阳性重组质粒pAPRRS(EAV4)。转染对数生长期的BHK-21细胞,拯救获得了重组嵌合病毒vAPRRS(EAV4)。经MARC-145连续传代,证明其基因组在体外可以稳定遗传。Northern-blot、亚基因组测序和间接免疫荧光表明,PRRSV自身基因组可完成复制、转录、翻译各过程,但嵌合入的EAV的ORF4没有转录的发生。对嵌合体进行多步生长曲线和空斑实验,发现嵌合体生长动力学和空斑形态学特征与野生型相似。从而为进一步研究动脉炎病毒各个结构蛋白的功能、开发新型PRRSV活载体疫苗、标记疫苗奠定了基础。
There was an outbreak which was called "Mystery Fever Disease Syndrome" or "High Fever Disease" in pig herds in China in2006. In the beginning, it was happened in Jiangxi province. Then it spread to almost all the mainland covered more than20provinces. Tremendous loss was made via this desease to the pig industry in China. The symptom of this disease includes the anorexia, the high body temperature, constipation and diarrhoea, absorption in gestation sows and sometimes with nervous symptom, secretion with the nose especially with the eyes. The most sensitive stages were the gestation sows, the finishing and growing pigs. The desease has very highly incidence and the mortality. The purpose of this study was to investigate the epidemic situation of the PRRSV and CSFV in recent China, including uncover the "mystery" of the disease or syndrome eventually. We also sequencd and analysed the ful genome of one predominant PRRSV strain in China. On the base of these knwoledge, we generated a novel marker virus for the control of PRRS by using the reverse genetics. We also developed a PRRSV vector vaccine candidate and explored the possibilities of the foreign gene can stably exist in the PRRSV genome. These findings enhance our knowledge of the genetic diversity of pocine viral pathogens in China and contribute to the development effective strategies for swine disease control.
     1. Molecular epidemiology of CSFV field isolates in parts of China
     To gain an insight into the molecular epidemiology of classical swine fever in China, we analyzed the E2gene of103Chinese CSFV isolates. Clinical samples were collected between January2008and March2011. CSFV was detected in103out of these samples by RT-nested PCR and were selected for sequencing. Further analysis based on E2sequences revealed that all Chinese isolates belonged to subgroupsl.l,2.1and2.2. CSFV isolate of genogroup3was not found. The most significant correlation between genetic and geographical distribution for the isolates in the study, especially for the subgroup2.1strains, was they take up the widest area, since these viruses existed throughout the mainland of China. These findings enhance our knowledge of the genetic diversity of Chinese CSFV isolates, and may contribute to the development of reliable diagnostic tests, the epidemiological surveillance, and the development of effective strategies for disease control.
     2. Molecular epidemiology of PRRSV field isolates in parts of China
     A total of1196clinical samples of dead or sick pigs obtained from15different provinces of China during2006-2010were detected for PRRSV. The ORF5genes of some field isolates were amplified and sequenced for further understanding of the molecular epidemiology and the genetic diversity of PRRSV in China. PRRS viruses were identified by RT-PCR from clinical samples. Sequences of ORF5of69PRRSV positive samples was amplified and analyzed with other17strains available on the GenBank of NCBI. A total of247samples were positive and the positive rate was20.7%. Sequence analysis showed that the69isolates in this study belong to the Type2PRRSV strains. They were related closely to the highly pathogenic PRRSV (HP-PRRSV) with94.0%-100%amino acid sequence identities. The phylogenetic analysis indicated that all these Type2PRRSV strains in China were further divided into five subgenotypes and subgenotype IV showed most highly identity with HP-PRRSV. Although cross-cutting phenomenon exists in the genetic relationship of PRRSV isolates obtained from different areas, there were no obvious relations between the distribution of PRRSV and the region. The PRRSV was widespread and HP-PRRSV was the predominate strain and the genetic evolution was relatively stable in China during2006-2010. These findings enhance our knowledge of the genetic diversity of Chinese PRRSV isolates, and may contribute to the development of reliable diagnostic tests, the epidemiological surveillance, and the development of effective strategies for disease control.
     3. Genomic sequencing and phylogenetic analysis of predominant PRRSV in China
     To gain an insight into the molecular characteristics and the genetic variety of porcine reproductive and respiratory syndrome virus (PRRSV) in China, we sequencd and analysed the ful genome of one Chinese isolate. Primers were designed according to ATCC VR-2332and HP-PRRSV JX143strain. The full genome of the PRRSV strain JS0922, which was isolated from Jiangsu province in2009, was amplified and then sequenced. The genomic sequence was obtained by splicing of correct sequencing and was further aligned with other reference strains. The results showed that JS0922fell into Type2PRRSV. Even though it showed significant differences from the strains isolated before the year2006, that the homology was only89%compared with BJ-4, it shared more than98%homology with HP-PRRSV. JS0922also had different characteristics variously that ORF3and ORF4varied greatly while ORF6revealed more conservative. Analysis showed that JS0922had general molecular characteristics with HP-PRRSV, but also existed a few amino acids mutations which differed from HP-PRRSV. In summary, JS0922strain presented a few new genomic features, but still fell into a same branch of HP-PRRSV and belonged to the current predominant PRRSV in China.
     4. Study on the N-terminal non-essential domain of PRRSV N protein non-overlapping region
     To define the precise non-essential domain of porcine reproductive and respiratory syndrome virus (PRRSV) nucleocapsid (N) protein non-overlapping region, we studied a full-length infectious clone p7PNX, which overlapping region of ORF6and ORF7had been separated. Primers were designed according to the sequenc of the p7PNX. We focused on the N protein and constructed a series of N-terminal mutations, right behind the start codon of ORF7using reverse genetics. Transfection and virus rescue assay indicated that residues2-7at the N terminus were non-essential for virus viability. The series of mutants showed stable inheritance in cell culture. Growth kinetics and viral plaque assay in vitro showed that the virological characteristics of the mutant virus were samiliar with the wide type and the mutants replicated well as its parental strain. This was the first time of the investigation of N-terminal non-essential domain on N protein non-overlapping region of PRRSV. Besides, this study opens new pathways for the further elucidating the structure-function relationship of PRRSV N protein and may enable the development of novel gene marker vaccines.
     5. Development of marker virus and the preliminary immunization study in the structural protein N region of porince reproductive and respiratory syndrome virus
     Current PRRSV vaccines fail to provide serological differentiation between vaccinated and infected pigs and new strains of the virus have been isolated. Therefore, new, more efficacious vaccines developed using novel approaches are required. Using reverse genetics, a marker virus (v7APMa) was generated with a nucleocapsid protein that differs from the wild-type strains (vAPRRS, type2PRRSV). v7APMa shows stable inheritance in cell culture and the virological characteristics of the marker virus in vitro showed that v7APMa replicates well as its parental strain. In the pig model, the v7APMa marker virus induced a similar level of anti-N protein antibodies. The results also showed that all animals vaccinated with vAPRRS and v7APMa developed neutralizing antibody after14days post-infection, and both IL-4and IFN-y in serum samples were markedly induced compare with those in the control group. The v7APMa marker virus induced robust antibodies against the marker peptide, starting from14days post-infection, while the vAPRRS and the control groups didn't. Following challenge with HP-PRRSV JX143at28d, piglets in the control group showed classical PRRSV clinical signs, such as rise in temperature, decreased appetite, palpebral edema, runny nose and cough. Two piglets dead at11d and14d respectively. Meanwhile, piglets inoculated with vAPRRS and v7APMa, showing lighter clinical signs, lower viremia and no death. These indicates that v7APMa and vAPRRS could provide protection against virulent PRRSV JX143challenge in pigs. This approach, using a rationally designed marker virus, opens up a new avenue, for further development of PRRSV marker vaccines.
     6. Construction and virological characteristics of PRRSV vector vaccine candidate
     To develop a porcine reproductive and respiratory syndrome virus(PRRSV) vector vaccine candidate and to explore the possibilities of the foreign gene can stably exist and play function between ORF4and ORF5of PRRSV genome, we insert ORF4of EAV(equine arteritis virus) to gain a chimeric virus. By using PCR, enzyme digestion and sequencing analysis, the recombinant pAPRRS(EAV4) were selected and purified. After transfection of the recombinant plasmids into BHK-21cells, the recombinant viruses vAPRRS(EAV4) were obtained. The chimeric viruses showed stable inheritance in cell culture. The replication and translation of PRRSV genome was confirmed by RT-PCR and immunofluorescence assay. It was further demonstrated by Northern-blot and the sequencing of subgenome that the transcription of EAV ORF4was not detected. Growth kinetics and viral plaque assay in vitro showed that the virological characteristics of the chimeric viruses were samiliar with the wide type and the mutants replicated well as its parental strain. The chimeric virus vAPRRS(EAV4) should be useful for studying on function of the arterivius structural protein and developing novel PRRSV vector vaccine.
引文
[1]周庆雨.猪“无名高热病”病因调查[J].福建畜牧兽医,2003,(01):12
    [2]陈健雄.猪夏季无名高热病的发生与防制[J].养猪,2006,(03):31-32
    [3]王凌黎,杨建华,符小军.高温季节“高热病”的特点及防治措施[J].中国猪业,2006,(03):35-36
    [4]明心中,高琳.江西省部分地区生猪高热病发病情况及防治[J].江西畜牧兽医杂志,2006,(04):33-34
    [5]路广计,王素军,张永辉,等.河北省“猪高热病”主要病原分析[J].中国动物保健,2012,(03):9-12
    [6]丁敦志.猪高致病性“蓝耳病”疫情现状及其防治措施[J].畜禽业,2007,(09):56
    [7]韩庆安,李天艳,张永辉,等.河北省猪“高热病”流行病学调查及主要病原分析[J].养殖与饲料,2012,(02):15-17
    [8]张长刚,肖延宁,校文海.猪群高热病临床解析[J].今日畜牧兽医,2007,(09):13-15+22
    [9]王继春,金星方,陈建明,等.常熟地区“猪高热病”细菌性病原分离与鉴定[J].江苏农业科学,2007,(05):154-156
    [10]黄崇武,林光宇,谢克锦,等.从高热病猪组织血液内分离大肠埃希氏菌分析[J].福建畜牧兽医,2007,(05):10-12
    [11]徐辉,李晓成,陈伟杰,等.“猪高热病”的流行病学调查与主要病因分析[J].中国动物检疫,2007,(06):19-21
    [12]Tian K, Yu X, Zhao T, et al. Emergence of fatal PRRSV variants:unparalleled outbreaks of atypical PRRS in China and molecular dissection of the unique hallmark[J]. PLoS One,2007,2(6):e526
    [13]郑润俊,金俊杰,蒋安华,等.多病原混合感染引发生猪高热病的血清学调查与分析[J].畜禽业,2011,(07):54-55
    [14]洪雪忠,谷根林,杨宗照,等.杭州地区猪“无名高热病”病因初探[J].畜牧与兽医,2002,(10):24-25
    [15]杨汉春教授谈今年的猪无名高热病[J].今日畜牧兽医,2006,(10):19
    [16]杨汉春.猪“高热病”的流行发生状况与防控对策[J].农村养殖技术,2007,(02):24-25
    [17]贺忠海,李天艳,郭田顺,等.猪“高热病”发病情况与影响因子相关性分析[J].中国动物保健,2012,(01):12-14
    [18]黄志明,孙琦,王吉.猪高热病的诊断与防治[J].畜禽业,2012,(01):82-83
    [19]王光辉,郑彬,张艳娜.浅谈猪高热病的防治[J].畜牧与饲料科学,2009,(05):134-135
    [1]Wensvoort G, Terpstra C, Pol J M, et al. Mystery swine disease in The Netherlands:the isolation of Lelystad virus[J]. The Veterinary quarterly,1991,13(3):121-130
    [2]Stevenson G W, Van Alstine W G, Kanitz C L, et al. Endemic porcine reproductive and respiratory syndrome virus infection of nursery pigs in two swine herds without current reproductive failure[J]. Journal of veterinary diagnostic investigation:official publication of the American Association of Veterinary Laboratory Diagnosticians, Inc,1993,5(3):432-434
    [3]Carman S, Sanford S E, Dea S. Assessment of seropositivity to porcine reproductive and respiratory syndrome (PRRS) virus in swine herds in Ontario-1978 to 1982[J]. The Canadian veterinary journal. La revue veterinaire canadienne,1995,36(12):776-777
    [4]Collins J E, Benfield D A, Christianson W T, et al. Isolation of swine infertility and respiratory syndrome virus (isolate ATCC VR-2332) in North America and experimental reproduction of the disease in gnotobiotic pigs[J]. Journal of veterinary diagnostic investigation:official publication of the American Association of Veterinary Laboratory Diagnosticians, Inc,1992,4(2):117-126
    [5]郭宝清,陈章水,刘文兴,等.从疑似PRRS流产胎儿分离PRRSV的研究[J].中国畜禽传染病,1996,2:3-7
    [6]童光志,周艳君,郝晓芳,等.高致病性猪繁殖与呼吸综合征病毒的分离鉴定及其分子流行病学分析[J].中国预防兽医学报,2007,5:323-327
    [7]Tong G Z, Zhou Y J, Hao X F, et al. Highly pathogenic porcine reproductive and respiratory syndrome, China[J]. Emerging infectious diseases,2007,13(9):1434-1436
    [8]Tian K, Yu X, Zhao T, et al. Emergence of fatal PRRSV variants:unparalleled outbreaks of atypical PRRS in China and molecular dissection of the unique hallmark[J]. PloS one,2007,2(6):e526
    [9]Zhou Y J, Hao X F, Tian Z J, et al. Highly virulent porcine reproductive and respiratory syndrome virus emerged in China[J]. Transboundary and emerging diseases,2008,55(3-4):152-164
    [10]An T Q, Tian Z J, Xiao Y, et al. Origin of highly pathogenic porcine reproductive and respiratory syndrome virus, China[J]. Emerging infectious diseases,2010,16(2):365-367
    [11]Cavanagh D. Nidovirales:a new order comprising Coronaviridae and Arteriviridae[J]. Arch Virol, 1997,142(3):629-633
    [12]Snijder E J, Wassenaar A L, Spaan W J. Proteolytic processing of the N-terminal region of the equine arteritis virus replicase[J]. Adv Exp Med Biol,1993,342:227-232
    [13]Meulenberg J J, Hulst M M, de Meijer E J, et al. Lelystad virus belongs to a new virus family, comprising lactate dehydrogenase-elevating virus, equine arteritis virus, and simian hemorrhagic fever virus[J]. Arch Virol. Supplementum,1994,9:441-448
    [14]王勤,郭万柱,何涛.猪繁殖与呼吸障碍综合症病毒蛋白结构与功能[J].畜牧兽医杂志,2005(01):13-15
    [15]杨汉春,黄芳芳,郭鑫,等.猪繁殖与呼吸综合征病毒(PRRSV)BJ-4株全基因组序列测定与分析[J].农业生物技术学报,2001,3:212-218
    [16]Spilman M S, Welbon C, Nelson E, et al. Cryo-electron tomography of porcine reproductive and respiratory syndrome virus:organization of the nucleocapsid[J]. J Gen Virol,2009,90(Pt 3):527-535
    [17]Morrison R B, Collins J E, Harris L, et al. Serologic evidence incriminating a recently isolated virus (ATCC VR-2332) as the cause of swine infertility and respiratory syndrome (SIRS)[J]. Journal of veterinary diagnostic investigation:official publication of the American Association of Veterinary Laboratory Diagnosticians, Inc,1992,4(2):186-188
    [18]Dea S, Gagnon C A, Mardassi H, et al. Current knowledge on the structural proteins of porcine reproductive and respiratory syndrome (PRRS) virus:comparison of the North American and European isolates[J]. Arch Virol,2000,145(4):659-688
    [19]Doan D N, Dokland T. Structure of the nucleocapsid protein of porcine reproductive and respiratory syndrome virus[J]. Structure,2003,11(11):1445-1451
    [20]Bloemraad M, de Kluijver E P, Petersen A, et al. Porcine reproductive and respiratory syndrome: temperature and pH stability of Lelystad virus and its survival in tissue specimens from viraemic pigs[J]. Vet Microbiol,1994,42(4):361-371
    [21]Benfield D A, Nelson E, Collins J E, et al. Characterization of swine infertility and respiratory syndrome (SIRS) virus (isolate ATCC VR-2332)[J]. Journal of veterinary diagnostic investigation: official publication of the American Association of Veterinary Laboratory Diagnosticians, Inc,1992, 4(2):127-133
    [22]Plagemann P G, Moennig V. Lactate dehydrogenase-elevating virus, equine arteritis virus, and simian hemorrhagic fever virus:a new group of positive-strand RNA viruses[J]. Adv Virus Res, 1992,41:99-192
    [23]Snijder E J, Meulenberg J J. The molecular biology of arteriviruses[J]. J Gen Virol,1998,79 (Pt 5):961-979
    [24]den Boon J A, Faaberg K S, Meulenberg J J, et al. Processing and evolution of the N-terminal region of the arterivirus replicase ORFla protein:identification of two papainlike cysteine proteases[J]. J Virol,1995,69(7):4500-4505
    [25]Wu W H, Fang Y, Farwell R, et al. A 10-kDa structural protein of porcine reproductive and respiratory syndrome virus encoded by ORF2b[J]. Virology,2001,287(1):183-191
    [26]Johnson C R, Griggs T F, Gnanandarajah J, et al. Novel structural protein in porcine reproductive and respiratory syndrome virus encoded by an alternative ORF5 present in all arteriviruses[J]. J Gen Virol,2011,92(Pt 5):1107-1116
    [27]Firth A E, Zevenhoven-Dobbe J C, Wills N M, et al.Discovery of a small arterivirus gene that overlaps the GP5 coding sequence and is important for virus production[J]. J Gen Virol,2011,92(Pt 5):1097-1106
    [28]Ziebuhr J, Snijder E J, Gorbalenya A E. Virus-encoded proteinases and proteolytic processing in the Nidovirales[J]. J Gen Virol,2000,81(Pt 4):853-879
    [29]Jusa E R, Inaba Y, Kouno M, et al. Characterization of porcine reproductive and respiratory syndrome virus hemagglutinin[J]. The Journal of veterinary medical science/the Japanese Society of Veterinary Science,1997,59(4):281-286
    [30]Delputte P L, Vanderheijden N, Nauwynck H J, et al. Involvement of the matrix protein in attachment of porcine reproductive and respiratory syndrome virus to a heparinlike receptor on porcine alveolar macrophages[J]. J Virol,2002,76(9):4312-4320
    [31]Vanderheijden N, Delputte P, Nauwynck H, et al. Effects of heparin on the entry of porcine reproductive and respiratory syndrome virus into alveolar macrophages[J]. Advances in experimental medicine and biology,2001,494:683-689
    [32]Plana Duran J, Climent I, Sarraseca J, et al. Baculovirus expression of proteins of porcine reproductive and respiratory syndrome virus strain Olot/91. Involvement of ORF3 and ORF5 proteins in protection[J]. Virus Genes,1997,14(1):19-29
    [33]Delputte P L, Costers S, Nauwynck H J. Analysis of porcine reproductive and respiratory syndrome virus attachment and internalization:distinctive roles for heparan sulphate and sialoadhesin[J]. J Gen Virol,2005,86(Pt 5):1441-1445
    [34]Vanderheijden N, Delputte P L, Favoreel H W, et al. Involvement of sialoadhesin in entry of porcine reproductive and respiratory syndrome virus into porcine alveolar macrophages[J]. J Virol,2003, 77(15):8207-8215
    [35]Ducreux J, Vanbever R, Crocker P R. The inhibitory potencies of monoclonal antibodies to the macrophage adhesion molecule sialoadhesin are greatly increased following PEGylation[J]. Bioconjugate chemistry,2008,19(10):2088-2094
    [36]Calvert J G, Slade D E, Shields S L, et al. CD 163 expression confers susceptibility to porcine reproductive and respiratory syndrome viruses[J]. J Virol,2007,81(14):7371-7379
    [37]Van Gorp H, Van Breedam W, Delputte P L, et al. The porcine reproductive and respiratory syndrome virus requires trafficking through CD163-positive early endosomes, but not late endosomes, for productive infection[J]. Arch Virol,2009,154(12):1939-1943
    [38]Das P B, Dinh P X, Ansari I H, et al. The minor envelope glycoproteins GP2a and GP4 of porcine reproductive and respiratory syndrome virus interact with the receptor CD163[J]. J Virol,2010, 84(4):1731-1740
    [39]Sawicki S G, Sawicki D L. Coronaviruses use discontinuous extension for synthesis of subgenome-length negative strands[J]. Advances in experimental medicine and biology,1995, 380:499-506
    [40]van Marle G, Dobbe J C, Gultyaev A P, et al. Arterivirus discontinuous mRNA transcription is guided by base pairing between sense and antisense transcription-regulating sequences[J]. Proceedings of the National Academy of Sciences of the United States of America,1999, 96(21):12056-12061
    [41]Pasternak A O, van den Born E, Spaan W J, et al. Sequence requirements for RNA strand transfer during nidovirus discontinuous subgenomic RNA synthesis[J]. The EMBO journal,2001, 20(24):7220-7228
    [42]Fang Y, Snijder E J. The PRRSV replicase:exploring the multifunctionality of an intriguing set of nonstructural proteins[J]. Virus Res,2010,154(1-2):61-76
    [43]Pasternak A O, Spaan W J, Snijder E J. Nidovirus transcription:how to make sense...?[J]. J Gen Virol,2006,87(Pt 6):1403-1421
    [44]Sawicki S G, Sawicki D L, Siddell S G. A contemporary view of coronavirus transcription[J]. J Virol, 2007,81(1):20-29
    [45]van Dinten L C, van Tol H, Gorbalenya A E, et al. The predicted metal-binding region of the arterivirus helicase protein is involved in subgenomic mRNA synthesis, genome replication, and virion biogenesis[J]. J Virol,2000,74(11):5213-5223
    [46]Nedialkova D D, Gorbalenya A E, Snijder E J. Arterivirus Nspl modulates the accumulation of minus-strand templates to control the relative abundance of viral mRNAs[J]. PLoS pathogens,2010, 6(2):e 1000772
    [47]Zhou L, Yang H. Porcine reproductive and respiratory syndrome in China[J]. Virus Res,2010, 154(1-2):31-37
    [48]Chen J, Liu T, Zhu C G, et al. Genetic variation of Chinese PRRSV strains based on ORF5 sequence[J]. Biochemical genetics,2006,44(9-10):425-435
    [49]Zhou L, Chen S, Zhang J, et al. Molecular variation analysis of porcine reproductive and respiratory syndrome virus in China[J]. Virus Res,2009,145(1):97-105
    [50]Tijms M A, Snijder E J. Equine arteritis virus non-structural protein 1, an essential factor for viral subgenomic mRNA synthesis, interacts with the cellular transcription co-factor p100[J]. J Gen Virol, 2003,84(Pt9):2317-2322
    [51]Oleksiewicz M B, Snijder E J, Normann PPhage display of the Equine arteritis virus nspl ZF domain and examination of its metal interactions[J]. Journal of virological methods,2004, 119(2):159-169
    [52]Kroese M V, Zevenhoven-Dobbe J C, Bos-de Ruijter J N, et al. The nspl alpha and nspl papain-like autoproteinases are essential for porcine reproductive and respiratory syndrome virus RNA synthesis[J]. J Gen Virol,2008,89(Pt 2):494-499
    [53]Music N, Gagnon C A. The role of porcine reproductive and respiratory syndrome (PRRS) virus structural and non-structural proteins in virus pathogenesis[J]. Anim Health Res Rev,2010, 11 (2):135-163
    [54]Beura L K, Sarkar S N, Kwon B, et al. Porcine reproductive and respiratory syndrome virus nonstructural protein 1beta modulates host innate immune response by antagonizing IRF3 activation[J]. J Virol,2010,84(3):1574-1584
    [55]Chen Z, Lawson S, Sun Z, et al. Identification of two auto-cleavage products of nonstructural protein 1 (nspl) in porcine reproductive and respiratory syndrome virus infected cells:nsp1 function as interferon antagonist[J]. Virology,2010,398(1):87-97
    [56]Han J, Liu G, Wang Y, et al. Identification of nonessential regions of the nsp2 replicase protein of porcine reproductive and respiratory syndrome virus strain VR-2332 for replication in cell culture[J]. J Virol,2007,81(18):9878-9890
    [57]Wassenaar A L, Spaan W J, Gorbalenya A E, et al. Alternative proteolytic processing of the arterivirus replicase ORFla polyprotein:evidence that NSP2 acts as a cofactor for the NSP4 serine protease[J]. J Virol,1997,71(12):9313-9322
    [58]Snijder E J. The arterivirus replicase. The road from RNA to protein(s), and back again[J]. Adv Exp Med Biol,1998,440:97-108
    [59]Allende R, Lewis T L, Lu Z, et al. North American and European porcine reproductive and respiratory syndrome viruses differ in non-structural protein coding regions[J]. J Gen Virol,1999, 80(Pt2):307-315
    [60]Kim D Y, Calvert J G, Chang K O, et al. Expression and stability of foreign tags inserted into nsp2 of porcine reproductive and respiratory syndrome virus (PRRSV)[J]. Virus Res,2007, 128(1-2):106-114
    [61]Faaberg K S, Kehrli M E, Jr., Lager K M, et al. In vivo growth of porcine reproductive and respiratory syndrome virus engineered nsp2 deletion mutants[J]. Virus Res,2010,154(1-2):77-85
    [62]Song C, Krell P, Yoo D. Nonstructural protein 1 alpha subunit-based inhibition of NF-kappaB activation and suppression of interferon-beta production by porcine reproductive and respiratory syndrome virus[J]. Virology,2010,407(2):268-280
    [63]Hayden M S, West A P, Ghosh S. NF-kappaB and the immune response[J]. Oncogene,2006, 25(51):6758-6780
    [64]Lenschow D J, Lai C, Frias-Staheli N, et al. IFN-stimulated gene 15 functions as a critical antiviral molecule against influenza, herpes, and Sindbis viruses[J]. Proceedings of the National Academy of Sciences of the United States of America,2007,104(4):1371-1376
    [65]Pedersen K W, van der Meer Y, Roos N, et al. Open reading frame 1a-encoded subunits of the arterivirus replicase induce endoplasmic reticulum-derived double-membrane vesicles which carry the viral replication complex[J]. J Virol,1999,73(3):2016-2026
    [66]Snijder E J, van Tol H, Roos N, et al. Non-structural proteins 2 and 3 interact to modify host cell membranes during the formation of the arterivirus replication complex[J]. J Gen Virol,2001,82(Pt 5):985-994
    [67]Kwon B, Ansari I H, Pattnaik A K, et al. Identification of virulence determinants of porcine reproductive and respiratory syndrome virus through construction of chimeric clones[J]. Virology, 2008,380(2):371-378
    [68]Tian X, Lu G, Gao F, et al. Structure and cleavage specificity of the chymotrypsin-like serine protease (3CLSP/nsp4) of Porcine Reproductive and Respiratory Syndrome Virus (PRRSV)[J]. J Mol Biol,2009,392(4):977-993
    [69]van Aken D, Snijder E J, Gorbalenya A E. Mutagenesis analysis of the nsp4 main proteinase reveals determinants of arterivirus replicase polyprotein autoprocessingfJ]. J Virol,2006,80(7):3428-3437
    [70]Szeredi L, Hornyak A, Denes B, et al. Equine viral arteritis in a newborn foal:parallel detection of the virus by immunohistochemistry, polymerase chain reaction and virus isolation[J]. J Vet Med. B, Infectious diseases and veterinary public health,2003,50(6):270-274
    [71]Bautista E M, Faaberg K S, Mickelson D, et al. Functional properties of the predicted helicase of porcine reproductive and respiratory syndrome virus[J]. Virology,2002,298(2):258-270
    [72]O'Reilly E K, Kao C C. Analysis of RNA-dependent RNA polymerase structure and function as guided by known polymerase structures and computer predictions of secondary structure[J]. Virology,1998,252(2):287-303
    [73]Posthuma C C, Nedialkova D D, Zevenhoven-Dobbe J C, et al. Site-directed mutagenesis of the Nidovirus replicative endoribonuclease NendoU exerts pleiotropic effects on the arterivirus life cycle[J]. J Virol,2006,80(4):1653-1661
    [74]Nedialkova D D, Ulferts R, van den Born E, et al. Biochemical characterization of arterivirus nonstructural protein 11 reveals the nidovirus-wide conservation of a replicative endoribonuclease[J]. J Virol,2009,83(11):5671-5682
    [75]Shi M, Lam T T, Hon C C, et al. Phylogeny-based evolutionary, demographical, and geographical dissection of North American type 2 porcine reproductive and respiratory syndrome viruses[J]. J Virol,2010,84(17):8700-8711
    [76]Wissink E H, Kroese M V, Maneschijn-Bonsing J G, et al. Significance of the oligosaccharides of the porcine reproductive and respiratory syndrome virus glycoproteins GP2a and GPS for infectious virus production[J]. J Gen Virol,2004,85(Pt 12):3715-3723
    [77]Wu W H, Fang Y, Rowland R R, et al. The 2b protein as a minor structural component of PRRSV[J]. Virus Res,2005,114(1-2):177-181
    [78]Wissink E H, Kroese M V, van Wijk H A, et al. Envelope protein requirements for the assembly of infectious virions of porcine reproductive and respiratory syndrome virus[J]. J Virol,2005, 79(19):12495-12506
    [79]Lee C, Yoo D. The small envelope protein of porcine reproductive and respiratory syndrome virus possesses ion channel protein-like properties[J]. Virology,2006,355(1):30-43
    [80]Wu R F, Liao C X, Tomita S, et al. Porcine FAD-containing monooxygenase metabolizes lidocaine, bupivacaine and propranolol in vitro[J]. Life Sci,2004,75(8):1011-1019
    [81]Liao Y, Lescar J, Tam J P, et al. Expression of SARS-coronavirus envelope protein in Escherichia coli cells alters membrane permeability[J]. Biochemical and biophysical research communications, 2004,325(1):374-380
    [82]Madan V, Garcia Mde J, Sanz M A, et al. Viroporin activity of murine hepatitis virus E protein[J]. FEBS letters,2005,579(17):3607-3612
    [83]Wilson L, McKinlay C, Gage P, et al. SARS coronavirus E protein forms cation-selective ion channels[J]. Virology,2004,330(l):322-331
    [84]Lee C, Yoo D. Cysteine residues of the porcine reproductive and respiratory syndrome virus small envelope protein are non-essential for virus infectivity[J]. J Gen Virol,2005,86(Pt 11):3091-3096
    [85]Vu H L, Kwon B, Yoon K J, et al. Immune evasion of porcine reproductive and respiratory syndrome virus through glycan shielding involves both glycoprotein 5 as well as glycoprotein 3[J]. J Virol,2011,85(11):5555-5564
    [86]Cancel-Tirado S M, Evans R B, Yoon K J. Monoclonal antibody analysis of porcine reproductive and respiratory syndrome virus epitopes associated with antibody-dependent enhancement and neutralization of virus infection[J]. Vet Immunol Immunopathol,2004,102(3):249-262
    [87]Jiang W, Jiang P, Li Y, et al. Analysis of immunogenicity of minor envelope protein GP3 of porcine reproductive and respiratory syndrome virus in mice[J]. Virus Genes,2007,35(3):695-704
    [88]Jiang W, Jiang P, Wang X, et al. Enhanced immune responses of mice inoculated recombinant adenoviruses expressing GP5 by fusion with GP3 and/or GP4 of PRRS virus[J]. Virus Res,2008, 136(1-2):50-57
    [89]van Nieuwstadt A P, Meulenberg J J, van Essen-Zanbergen A, et al. Proteins encoded by open reading frames 3 and 4 of the genome of Lelystad virus (Arteriviridae) are structural proteins of the virion[J]. J Virol,1996,70(7):4767-4772
    [90]Van Gorp H, Van Breedam W, Delputte P L, et al. Sialoadhesin and CD163 join forces during entry of the porcine reproductive and respiratory syndrome virus[J]. J Gen Virol,2008,89(Pt 12):2943-2953
    [91]Van Gorp H, Van Breedam W, Van Doorsselaere J, et al. Identification of the CD 163 protein domains involved in infection of the porcine reproductive and respiratory syndrome virus[J]. J Virol, 2010,84(6):3101-3105
    [92]Gonin P, Pirzadeh B, Gagnon C A, et al. Seroneutralization of porcine reproductive and respiratory syndrome virus correlates with antibody response to the GP5 major envelope glycoprotein[J]. Journal of veterinary diagnostic investigation:official publication of the American Association of Veterinary Laboratory Diagnosticians, Inc,1999, 11(1):20-26
    [93]Costers S, Vanhee M, Van Breedam W, et al. GP4-specific neutralizing antibodies might be a driving force in PRRSV evolution[J]. Virus Res,2010,154(1-2):104-113
    [94]Lee C, Bachand A, Murtaugh M P, et al. Differential host cell gene expression regulated by the porcine reproductive and respiratory syndrome virus GP4 and GP5 glycoproteins[J]. Vet Immunol Immunopathol,2004,102(3):189-198
    [95]Welch S K, Jolie R, Pearce D S, et al. Construction and evaluation of genetically engineered replication-defective porcine reproductive and respiratory syndrome virus vaccine candidates[J]. Vet Immunol Immunopathol,2004,102(3):277-290
    [96]Mardassi H, Mounir S, Dea S. Molecular analysis of the ORFs 3 to 7 of porcine reproductive and respiratory syndrome virus, Quebec reference strain[J]. Arch Virol,1995,140(8):1405-1418
    [97]Meng X J, Paul P S, Halbur P G, et al. Sequence comparison of open reading frames 2 to 5 of low and high virulence United States isolates of porcine reproductive and respiratory syndrome virus[J]. J Gen Virol,1995,76(Pt 12):3181-3188
    [98]Andreyev V G, Wesley R D, Mengeling W L, et al. Genetic variation and phylogenetic relationships of 22 porcine reproductive and respiratory syndrome virus (PRRSV) field strains based on sequence analysis of open reading frame 5[J]. Arch Virol,1997,142(5):993-1001
    [99]Suarez P, Diaz-Guerra M, Prieto C, et al. Open reading frame 5 of porcine reproductive and respiratory syndrome virus as a cause of virus-induced apoptosis[J]. J Virol,1996,70(5):2876-2882
    [100]Kapur V, Elam M R, Pawlovich T M, et al. Genetic variation in porcine reproductive and respiratory syndrome virus isolates in the midwestern United States[J]. J Gen Virol,1996,77 (Pt 6):1271-1276
    [101]Yuan S, Nelsen C J, Murtaugh M P, et al. Recombination between North American strains of porcine reproductive and respiratory syndrome virus[J]. Virus Res,1999,61(1):87-98
    [102]Pirzadeh B, Dea S. Immune response in pigs vaccinated with plasmid DNA encoding ORF5 of porcine reproductive and respiratory syndrome virus[J]. J Gen Virol,1998,79 (Pt 5):989-999
    [103]Ostrowski M, Galeota J A, Jar A M, et al. Identification of neutralizing and nonneutralizing epitopes in the porcine reproductive and respiratory syndrome virus GP5 ectodomain[J]. J Virol, 2002,76(9):4241-4250
    [104]Pirzadeh B, Dea S. Monoclonal antibodies to the ORF5 product of porcine reproductive and respiratory syndrome virus define linear neutralizing determinants[J]. J Gen Virol,1997,78 (Pt 8):1867-1873
    [105]Zhang Y, Sharma R D, Paul P S. Monoclonal antibodies against conformationally dependent epitopes on porcine reproductive and respiratory syndrome virus[J]. Vet Microbiol,1998, 63(2-4):125-136
    [106]Weiland E, Wieczorek-Krohmer M, Kohl D, et al. Monoclonal antibodies to the GP5 of porcine reproductive and respiratory syndrome virus are more effective in virus neutralization than monoclonal antibodies to the GP4[J]. Vet Microbiol,1999,66(3):171-186
    [107]Kheyar A, Jabrane A, Zhu C, et al. Alternative codon usage of PRRS virus ORF5 gene increases eucaryotic expression of GP(5) glycoprotein and improves immune response in challenged pigs[J]. Vaccine,2005,23(31):4016-4022
    [108]Ansari I H, Kwon B, Osorio F A, et al. Influence of N-linked glycosylation of porcine reproductive and respiratory syndrome virus GP5 on virus infectivity, antigenicity, and ability to induce neutralizing antibodies[J]. J Virol,2006,80(8):3994-4004
    [109]Wissink E H, van Wijk H A, Kroese M V, et al. The major envelope protein, GP5, of a European porcine reproductive and respiratory syndrome virus contains a neutralization epitope in its N-terminal ectodomain[J]. J Gen Virol,2003,84(Pt 6):1535-1543
    [110]Leng X, Li Z, Xia M, et al. Mutations in the genome of the highly pathogenic porcine reproductive and respiratory syndrome virus potentially related to attenuation[J]. Vet Microbiol,2011, 157(1-2):50-60
    [111]Helenius A. How N-linked oligosaccharides affect glycoprotein folding in the endoplasmic reticulum[J]. Molecular biology of the cell,1994,5(3):253-265
    [112]Helenius A A M. Intracellular functions of N-linked glycans[J]. Science,2011, 291(5512):2364-2369
    [113]Duan X, Nauwynck H J, Favoreel H W, et al. Identification of a putative receptor for porcine reproductive and respiratory syndrome virus on porcine alveolar macrophages[J]. J Virol,1998, 72(5):4520-4523
    [114]Delputte P L, Meerts P, Costers S, et al. Effect of virus-specific antibodies on attachment, internalization and infection of porcine reproductive and respiratory syndrome virus in primary macrophages[J]. Veterinary immunology and immunopathology,2004,102(3):179-188
    [115]Fernandez A, Suarez P, Castro J M, et al. Characterization of regions in the GP5 protein of porcine reproductive and respiratory syndrome virus required to induce apoptotic cell death[J]. Virus Res, 2002,83(1-2):103-118
    [116]Gagnon C A, Lachapelle G, Langelier Y, et al. Adenoviral-expressed GP5 of porcine respiratory and reproductive syndrome virus differs in its cellular maturation from the authentic viral protein but maintains known biological functions[J]. Arch Virol,2003,148(5):951-972
    [117]Meulenberg J J, Hulst M M, de Meijer E J, et al. Lelystad virus, the causative agent of porcine epidemic abortion and respiratory syndrome (PEARS), is related to LDV and EAV[J]. Virology, 1993,192(1):62-72
    [118]Verheije M W T, Jansen HT, Rottier PJ, et al. Chimeric arteriviruses generated by swapping of the M protein ectodomain rule out a role of this domain in viral targeting[J]. Virology,2002, 303(2):364-373
    [119]Jiang Y, Xiao S, Fang L, et al. DNA vaccines co-expressing GPS and M proteins of porcine reproductive and respiratory syndrome virus (PRRSV) display enhanced immunogenicity[J]. Vaccine,2006,24(15):2869-2879
    [120]Bastos R G, Dellagostin O A, Barletta R G, et al. Construction and immunogenicity of recombinant Mycobacterium bovis BCG expressing GP5 and M protein of porcine reproductive respiratory syndrome virus[J]. Vaccine,2002,21(1-2):21-29
    [121]Loemba H D, Mounir S, Mardassi H, et al. Kinetics of humoral immune response to the major structural proteins of the porcine reproductive and respiratory syndrome virus[J]. Arch Virol,1996, 141(3-4):751-761
    [122]Wootton S K, Yoo D. Homo-oligomerization of the porcine reproductive and respiratory syndrome virus nucleocapsid protein and the role of disulfide linkages[J]. J Virol,2003,77(8):4546-4557
    [123]Hiscox J A, Wurm T, Wilson L, et al. The coronavirus infectious bronchitis virus nucleoprotein localizes to the nucleolus[J]. J Virol,2001,75(1):506-512
    [124]Wurm T, Chen H, Hodgson T, et al. Localization to the nucleolus is a common feature of coronavirus nucleoproteins, and the protein may disrupt host cell division[J]. J Virol,2001, 75(19):9345-9356
    [125]Tijms M A, van der Meer Y, Snijder E J. Nuclear localization of non-structural protein 1 and nucleocapsid protein of equine arteritis virus[J]. J Gen Virol,2002,83(Pt 4):795-800
    [126]Yoon K J, Wu L L, Zimmerman J J, et al. Antibody-dependent enhancement (ADE) of porcine reproductive and respiratory syndrome virus (PRRSV) infection in pigs[J]. Viral immunology,1996, 9(1):51-63
    [127]Elazhary, Y, Weber, J, Bikour, H. et al.'Mystery swine disease' in Canada[J]. Vet Rec,1991, 129(22):495-496
    [128]Keffaber KK. Reproductive failure of unknown etiology[J]. Swine Pract Newsl,1989,1:1-9
    [129]Collins JE, Benfield DA, Christianson WT, et al. Isolation of swine infertility and respiratory syndrome virus (isolate ATCC VR-2332) in North America and experimental reproduction of the disease in gnotobiotic pigs[J]. J Vet Diagn Invest,1992,4(2):117-126
    [130]Wensvoort G, Terpstra C, Pol JM, et al. Mystery swine disease in The Netherlands:the isolation of Lelystad virus[J]. Vet Q,1991,13(3):121-30
    [131]Nelson EA, Christopher-Hennings J, Drew T, et al. Differentiation of U.S. and European isolates of porcine reproductive and respiratory syndrome virus by monoclonal antibodies[J]. J Clin Microbiol,1993,31(12):3184-3189
    [132]Murtaugh MP, Elam MR, Kakach LT. Comparison of the structural protein coding sequences of the VR-2332 and Lelystad virus strains of the PRRS virus[J]. Arch Virol,1995,140(8):1451-1460
    [133]Meng XJ, Paul PS, Halbur PG Molecular cloning and nucleotide sequencing of the 3'-terminal genomic RNA of the porcine reproductive and respiratory syndrome virus[J]. J Gen Virol,1994, 75(7):1795-1801
    [134]Suarez P, Zardoya R, Martin MJ, et al. Phylogenetic relationships of european strains of porcine reproductive and respiratory syndrome virus (PRRSV) inferred from DNA sequences of putative ORF-5 and ORF-7 genes[J]. Virus Res,1996,42(1-2):159-165
    [135]Mateu E, Diaz I. The challenge of PRRS immunology[J]. Vet J,2008,177(3):345-351
    [136]Kimman TG, Cornelissen LA, Moormann RJ, et al. Challenges for porcine reproductive and respiratory syndrome virus (PRRSV) vaccinology[J]. Vaccine,2009,27(28):3704-3718
    [137]Hache G, Mansky LM, Harris RS. Human APOBEC3 proteins, retrovirus restriction, and HIV drug resistance[J]. AIDS Rev,2006,8(3):148-157
    [138]Goens SD. The evolution of bovine viral diarrhea:a review[J]. Can Vet J 2002;43(12):946-954.
    [139]Peterhans E, Bachofen C, Stalder H, et al. Cytopathic bovine viral diarrhea viruses (BVDV): emerging pestiviruses doomed to extinction[J]. Vet Rev,2010,41(6):44
    [140]Murtaugh MP, Stadejek T, Abrahante JE, et al. The ever-expanding diversity of porcine reproductive and respiratory syndrome virus[J]. Virus Res,2010,154(1-2):18-30
    [141]Shi M, Lam T-Y, Hui C-CH, et al. Molecular epidemiology of PRRSV:a phylogenetic perspective[J]. Virus Res,2010,154(1-2):7-17
    [142]Shi M, Lam TT-Y, Hon C-C, et al. Phylogeny-based evolutionary, demographical, and geographical dissection of North American type 2 Porcine reproductive and respiratory syndrome viruses[J]. J Virol,2010,84(17):8700-8711
    [143]Kapur V, Elam MR, Pawlovich TM, et al. Genetic variation in porcine reproductive and respiratory syndrome virus isolates in the midwestern United States[J]. J Gen Virol,1996,77(6):1271-1276
    [144]Greiner LL, Stahly TS, Stabel TJ. Quantitative relationship of systemic virus concentration on growth and immune response in pigs[J]. J Anim Sci,2000,78(10):2690-2695
    [145]van Reeth K, Labarque Q Nauwynck H, et al. Differential production of proinflammatory cytokines in the pig lung during different respiratory virus infections:correlations with pathogenicity[J]. Res Vet Sci,1999,67(1):47-52
    [146]Beura LK, Sarkar SN, Kwon B, et al. Porcine reproductive and respiratory syndrome virus nonstructural protein 1beta modulates host innate immune response by antagonizing IRF3 activation[J]. J Virol,2010,84(3):1574-1584
    [147]Chen Z, Lawson S, Sun Z, et al. Identification of two auto-cleavage products of nonstructural protein 1 (nspl) in porcine reproductive and respiratory syndrome virus infected cells:nspl function as interferon antagonist[J]. Virology,2010,398(1):87-97
    [148]Sun Z, Chen Z, Lawson SR, et al. The cysteine protease domain of porcine reproductive and respiratory syndrome virus nonstructural protein 2 possesses deubiquitinating and interferon antagonism functions[J]. J Virol,2010,84(15):7832-7846
    [149]Drexler CS, Witvliet MH, Raes M, et al. Efficacy of combined porcine reproductive and respiratory syndrome virus and Mycoplasma hyopneumoniae vaccination in piglets[J]. Vet Rec, 2010,166(3):70-74
    [150]Prieto C, Alvarez E, Martinez-Lobo FJ, et al. Similarity of European porcine reproductive and respiratory syndrome virus strains to vaccine strain is not necessarily predictive of the degree of protective immunity conferred[J]. Vet J,2008,175(3):356-363
    [151]Diaz I, Darwich L, Pappaterra G, et al. Immune responses of pigs after experimental infection with a European strain of Porcine reproductive and respiratory syndrome virus[J]. J Gen Virol,2005, 86(7):1943-1951
    [152]Duan X, Nauwynck HJ, Pensaert MB. Virus quantification and identification of cellular targets in the lungs and lymphoid tissues of pigs at different time intervals after inoculation with porcine reproductive and respiratory syndrome virus (PRRSV) [J]. Vet Microbiol,1997,56(1-2):9-19
    [153]Labarque G, Van Gucht S, Van Reeth K, et al. Respiratory tract protection upon challenge of pigs vaccinated with attenuated porcine reproductive and respiratory syndrome virus vaccines[J]. Vet Microbiol,2003,95(3):187-197
    [154]Johnson W, Roof M, Vaughn E, et al. Pathogenic and humoral immune responses to porcine reproductive and respiratory syndrome virus (PRRSV) are related to viral load in acute infection[J]. Vet Immunol Immunopathol,2004,102(3):233-247
    [155]Lee SM, Schommer SK, Kleiboeker SB. Porcine reproductive and respiratory syndrome virus field isolates differ in in vitro interferon phenotypes[J]. Vet Immunol Immunopathol,2004, 102(3):217-231
    [156]Liu Y, Shi W, Zhou E, et al. Dynamic changes in inflammatory cytokines in pigs infected with highly pathogenic porcine reproductive and respiratory syndrome virus[J]. Clin Vaccine Immunol, 2010,17(9):1439-1445
    [157]Mulupuri P, Zimmerman JJ, Hermann J, et al. Antigen-specific B-cell responses to porcine reproductive and respiratory syndrome virus infection[J]. J Virol,2008,82(1):358-370
    [158]Chung HK, Chae C. Expression of interleukin-10 and interleukin-12 in piglets experimentally infected with porcine reproductive and respiratory syndrome virus (PRRSV) [J]. J Comp Pathol, 2003,129(2-3):205-212
    [159]Diaz I, Darwich L, Pappaterra G, et al. Different European-type vaccines against porcine reproductive and respiratory syndrome virus have different immunological properties and confer different protection to pigs[J]. Virology,2006,351(2):249-259
    [160]Feng WH, Tompkins MB, Xu JS, et al. Analysis of constitutive cytokine expression by pigs infected in-utero with porcine reproductive and respiratory syndrome virus[J]. Vet Immunol Immunopathol,2003,94(1-2):35-45
    [161]Gomez-Laguna J, Salguero FJ, De Marco MF, et al. Changes in lymphocyte subsets and cytokines during European porcine reproductive and respiratory syndrome:increased expression of IL-12 and IL-10 and proliferation of CD4(-)CD8(high)[J]. Viral Immunol,2009,22(4):261-271
    [162]Johnsen CK, Botner A, Kamstrup S, et al. Cytokine mRNA profiles in bronchoalveolar cells of piglets experimentally infected in utero with porcine reproductive and respiratory syndrome virus: association of sustained expression of IFN-gamma and IL-10 after viral clearance[J]. Viral Immunol, 2002,15(4):549-556
    [163]Silva-Campa E, Cordoba L, Fraile L, et al. European genotype of porcine reproductive and respiratory syndrome (PRRSV) infects monocyte-derived dendritic cells but does not induce Treg cells[J]. Virology,2010,396(2):264-271
    [164]Silva-Campa E, Flores-Mendoza L, Resendiz M, et al. Induction of T helper 3 regulatory cells by dendritic cells infected with porcine reproductive and respiratory syndrome virus[J]. Virology,2009, 387(2):373-379
    [165]Suradhat S, Thanawongnuwech R. Upregulation of interleukin-10 gene expression in the leukocytes of pigs infected with porcine reproductive and respiratory syndrome virus[J]. J Gen Virol,2003,84(10):2755-2760
    [166]Thanawongnuwech R, Thacker EL. Interleukin-10, interleukin-12, and interferon-gamma levels in the respiratory tract following mycoplasma hyopneumoniae and PRRSV infection in pigs[J]. Viral Immunol,2003,16(3):357-367
    [167]Sipos W, Duvigneau C, Pietschmann P, et al. Parameters of humoral and cellular immunity following vaccination of pigs with a European modified-live strain of porcine reproductive and respiratory syndrome virus (PRRSV)[J]. Viral Immunol,2003,16(3):335-346
    [168]Baarsch MJ, Scamurra RW, Burger K, et al. Inflammatory cytokine expression in swine experimentally infected with Actinobacillus pleuropneumoniae[J]. Infect Immun,1995, 63(9):3587-3594
    [169]Klinge KL, Vaughn EM, Roof MB, et al. Age-dependent resistance to Porcine reproductive and respiratory syndrome virus replication in swine[J]. Virol J,2009,6:177
    [170]Jung K, Renukaradhya GJ, Alekseev KP, et al. Porcine reproductive and respiratory syndrome virus modifies innate immunity and alters disease outcome in pigs subsequently infected with porcine respiratory coronavirus:implications for respiratory viral co-infections[J]. J Gen Virol, 2009,90(11):2713-2723
    [171]Murtaugh MP, Johnson CR, Xiao Z, et al. Species specialization in cytokine biology:is interleukin-4 central to the T(H)1-T(H)2 paradigm in swine?[J]. Dev Comp Immunol,2009, 33(3):344-352
    [172]Sullivan NJ. Antibody-mediated enhancement of viral disease[J]. Curr Top Microbiol Immunol, 2001,260:145-169
    [173]Halstead SB, O'Rourke EJ. Dengue viruses and mononuclear phagocytes. I. Infection enhancement by non-neutralizing antibody[J]. J Exp Med,1977,146(1):201-217
    [174]Yoon KJ, Wu LL, Zimmerman JJ, et al. Antibody-dependent enhancement (ADE) of porcine reproductive and respiratory syndrome virus (PRRSV) infection in pigs[J]. Viral Immunol,1996, 9(1):51-63
    [175]Yoon KJ, Wu LL, Zimmerman JJ, et al. Field isolates of porcine reproductive and respiratory syndrome virus (PRRSV) vary in their susceptibility to antibody dependent enhancement (ADE) of infection[J]. Vet Microbiol,1997,55(1-4):277-287
    [176]Okuda Y, Kuroda M, Ono M, et al. Efficacy of vaccination with porcine reproductive and respiratory syndrome virus following challenges with field isolates in Japan[J]. J Vet Med Sci,2008, 70(10):1017-1025
    [177]Martelli P, Gozio S, Ferrari L, et al. Efficacy of a modified live porcine reproductive and respiratory syndrome virus (PRRSV) vaccine in pigs naturally exposed to a heterologous European (Italian cluster) field stra Clinical protection cell-mediated F immunity [J]. Vaccine,2009, 27(28):3788-3799
    [178]Cano JP, Dee SA, Murtaugh MP, et al. Impact of a modified-live porcine reproductive and respiratory syndrome virus vaccine intervention on a population of pigs infected with a heterologous isolate[J]. Vaccine,2007,25(22):4382-4391
    [179]Lopez OJ, Oliveira MF, Garcia EA, et al. Protection against porcine reproductive and respiratory syndrome virus (PRRSV) infection through passive transfer of PRRSV-neutralizing antibodies is dose dependent[J]. Clin Vaccine Immunol,2007,14(3):269-275
    [180]Delputte PL, Meerts P, Costers S, et al. Effect of virus-specific antibodies on attachment, internalization and infection of porcine reproductive and respiratory syndrome virus in primary macrophages[J]. Vet Immunol Immunopathol,2004,102(3):179-188
    [181]Rodriguez-Calvo T, Diaz-San Segundo F, Sanz-Ramos M, et al. A replication analysis of foot-and-mouth disease virus in swine lymphoid tissue might indicate a putative carrier stage in pigs[J]. Vet Res,2011,42(1):22
    [182]Alexandersen S, Quan M, Murphy C, et al. Studies of quantitative parameters of virus excretion and transmission in pigs and cattle experimentally infected with foot-and-mouth disease virus[J]. J Comp Pathol,2003,129(4):268-282
    [183]Brown IH, Done SH, Spencer YI, et al. Pathogenicity of a swine influenza H1N1 virus antigenically distinguishable from classical and European strains[J]. Vet Rec,1993, 132(24):598-602
    [184]Bierk MD, Dee SA, Rossow KD, et al. Transmission of porcine reproductive and respiratory syndrome virus from persistently infected sows to contact controls[J]. Can J Vet Res,2001, 65(4):261-266
    [185]Wills RW, Doster AR, Galeota JA, et al. Duration of infection and proportion of pigs persistently infected with porcine reproductive and respiratory syndrome virus[J]. J Clin Microbiol,2003, 41(1):58-62
    [186]Allende R, Laegreid WW, Kutish GF, et al. Porcine reproductive and respiratory syndrome virus: description of persistence in individual pigs upon experimental infection[J]. J Virol,2000, 74(22):10834-10837
    [187]Evans CM, Medley GF, Creasey SJ, et al. A stochastic mathematical model of the within-herd transmission dynamics of Porcine Reproductive and Respiratory Syndrome Virus (PRRSV): fade-out and persistence[J]. Prev Vet Med,2010,93(4):248-257
    [188]Stueckemann JA, Holth M, Swart WJ, et al. Replication of lactate dehydrogenase-elevating virus in macrophages. Mechanism of persistent infection in mice and cell culture[J]. J Gen Virol,1982, 59(2):263-272
    [189]Patton JF, Balasuriya UB, Hedges JF, et al. Phylogenetic characterization of a highly attenuated strain of equine arteritis virus from the semen of a persistently infected standardbred stallion[J]. Arch Virol,1999,144(4):817-827
    [190]Onyekaba CO, Harty JT, Even C, et al. Persistent infection of mice by lactate dehydrogenase-elevating virus:effects of immunosuppression on virus replication and antiviral immune responses[J]. Virus Res,1989,14(4):297-315
    [191]Schaefer N, Morrison R. Effect on total pigs weaned of herd closure for elimination of porcine reproductive and respiratory syndrome virus[J]. J Swine Health Prod,2007,15:152-155
    [192]Torremorell M, Moore C, Christianson WT. Establishment of a herd negative for porcine reproductive and respiratory syndrome virus (PRRSV) from PRRSV-positive sources[J]. J Swine Health Prod,2002,10:153-160
    [193]Corzo CA, Mondaca E, Wayne S, et al. Control and elimination of porcine reproductive and respiratory syndrome virus[J]. Virus Res,2010,154(1-2):185-192
    [194]Osorio FA, Galeota JA, Nelson E, et al. Passive transfer of virus-specific antibodies confers protection against reproductive failure induced by a virulent strain of porcine reproductive and respiratory syndrome virus and establishes sterilizing immunity[J]. Virology,2002,302(1):9-20
    [195]Lopez OJ, Osorio FA. Role of neutralizing antibodies in PRRSV protective immunity[J]. Vet Immunol Immunopathol,2004,102(3):155-163
    [196]Nelson EA, Christopher-Hennings J, Benfield DA. Serum immune responses to the proteins of porcine reproductive and respiratory syndrome (PRRS) virus[J]. J Vet Diagn Invest,1994, 6(4):410-415
    [197]Vezina SA, Loemba H, Fournier M, et al. Antibody production and blastogenic response in pigs experimentally infected with porcine reproductive and respiratory syndrome virus[J]. Can J Vet Res, 1996,60(2):94-99
    [198]Plagemann PG GP5 ectodomain epitope of porcine reproductive and respiratory syndrome virus, strain Lelystad virus. Virus Res,2004,102(2):225-230
    [199]Plagemann PG, Rowland RR, Faaberg KS. The primary neutralization epitope of porcine respiratory and reproductive syndrome virus strain VR-2332 is located in the middle of the GP5 ectodomain[J]. Arch Virol,2002,147(12):2327-2347
    [200]Plagemann PG The primary GP5 neutralization epitope of North American isolates of porcine reproductive and respiratory syndrome virus[J]. Vet Immunol Immunopathol,2004,102(3):263-275
    [201]Wissink EH, van Wijk HA, Kroese MV, et al. The major envelope protein GP5, of a European porcine reproductive and respiratory syndrome virus contains a neutralization epitope in its N-terminal ectodomain[J]. J Gen Virol,2003,84(6):1535-1543
    [202]Ostrowski M, Galeota JA, Jar AM, et al. Identification of neutralizing and nonneutralizing epitopes in the porcine reproductive and respiratory syndrome virus GP5 ectodomain[J]. J Virol,2002, 76(9):4241-4250
    [203]Prieto C, Martinez-Lobo FJ, Diez-Fuertes F, et al. Immunisation of pigs with a major envelope protein sub-unit vaccine against porcine reproductive and respiratory syndrome virus (PRRSV) results in enhanced clinical disease following experimental challenge[J]. Vet J,2011, 189(3):323-329
    [204]Ansari IH, Kwon B, Osorio FA, et al. Influence of N-linked glycosylation of porcine reproductive and respiratory syndrome virus GP5 on virus infectivity, antigenicity, and ability to induce neutralizing antibodies[J]. J Virol,2006,80(8):3994-4004
    [205]Faaberg KS, Hocker JD, Erdman MM, et al. Neutralizing antibody responses of pigs infected with natural GP5 Nglycan mutants of porcine reproductive and respiratory syndrome virus[J]. Viral Immunol,2006,19(2):294-304
    [206]Gagnon CA, Lachapelle G, Langelier Y, et al. Adenoviral-expressed GP5 of porcine respiratory and reproductive syndrome virus differs in its cellular maturation from the authentic viral protein but maintains known biological functions[J]. Arch Virol,2003,148(5):951-972
    [207]Jiang W, Jiang P, Wang X, et al. Influence of porcine reproductive and respiratory syndrome virus GP5 glycoprotein N-linked glycans on immune responses in mice[J]. Virus Genes,2007, 35(3):663-671
    [208]Firth AE, Zevenhoven-Dobbe JC, Wills NM, et al. Discovery of a small arterivirus gene that overlaps the GP5 coding sequence and is important for virus production[J]. J Gen Virol,2011, 92(5):1097-1106
    [209]Johnson CR, Griggs TF, Gnanandarajah J, et al. Novel structural protein in porcine reproductive and respiratory syndrome virus encoded by an alternative ORF5 present in all arteriviruses[J]. J Gen Virol,2011,92(5):1107-1116
    [210]Dobbe JC, van der Meer Y, Spaan WJ, et al. Construction of chimeric arteriviruses reveals that the ectodomain of the major glycoprotein is not the main determinant of equine arteritis virus tropism in cell culture[J]. Virology,2001,288(2):283-294
    [211]Vanhee M, Van Breedam W, Costers S, et al. Characterization of antigenic regions in the porcine reproductive and respiratory syndrome virus by the use of peptide-specific serum antibodies[J]. Vaccine,2011,29(29-30):4794-4804
    [212]Vanhee M, Costers S, Van Breedam W, et al. A variable region in GP4 of European-type porcine reproductive and respiratory syndrome virus induces neutralizing antibodies against homologous but not heterologous virus strains[J]. Viral Immunol,2010,23(4):403-413
    [213]Costers S, Vanhee M, Van Breedam W, et al. GP4-specific neutralizing antibodies might be a driving force in PRRSV evolution[J]. Virus Res,2010,154(1-2):104-13
    [214]Weiland E, Wieczorek-Krohmer M, Kohl D, et al. Monoclonal antibodies to the GP5 of porcine reproductive and respiratory syndrome virus are more effective in virus neutralization than monoclonal antibodies to the GP4[J]. Vet Microbiol,1999,66(3):171-186
    [215]Wissink EH, Kroese MV, van Wijk HA, et al. Envelope protein requirements for the assembly of infectious virions of porcine reproductive and respiratory syndrome virus[J]. J Virol,2005, 79(19):12495-12506
    [216]Das PB, Vu HLX, Dinh PX, et al. Glycosylation of minor envelope glycoproteins of porcine reproductive and respiratory syndrome virus in infectious virus recovery, receptor interaction, and immune response[J]. Virology,2011,410(2):385-394
    [217]Das PB, Dinh PX, Ansari IH, et al. The minor envelope glycoproteins GP2a and GP4 of porcine reproductive and respiratory syndrome virus interact with the receptor CD163[J]. J Virol,2010, 84(4):1731-1740
    [218]Vu HL, Kwon B, Yoon KJ, et al. Immune evasion of porcine reproductive and respiratory syndrome virus through glycan shielding involves both glycoprotein 5 as well as glycoprotein 3[J]. J Virol,2011,85(11):5555-5564
    [219]Murtaugh MP, Genzow M. Immunological solutions for treatment and prevention of porcine reproductive and respiratory syndrome (PRRS) [J]. Vaccine,2011,29(46):8192-8204
    [220]Jiang P, Jiang W, Li Y, et al. Humoral immune response induced by oral administration of S. typhimurium containing a DNA vaccine against porcine reproductive and respiratory syndrome virus[J]. Vet Immunol Immunopathol,2004,102(3):321-328
    [221]Jiang W, Jiang P, Wang X, et al. Enhanced immune responses of mice inoculated recombinant adenoviruses expressing GP5 by fusion with GP3 and/or GP4 of PRRS virus[J]. Virus Res,2008, 136(1-2):50-57
    [222]Jiang Y, Fang L, Xiao S, et al. Immunogenicity and protective efficacy of recombinant pseudorabies virus expressing the two major membrane-associated proteins of porcine reproductive and respiratory syndrome virus[J]. Vaccine,2007,25(3):547-560
    [223]Jiang Y, Xiao S, Fang L, et al. DNA vaccines co-expressing GP5 and M proteins of porcine reproductive and respiratory syndrome virus (PRRSV) display enhanced immunogenicity[J]. Vaccine,2006,24(15):2869-2879
    [224]Shen G, Jin N, Ma M, et al. Immune responses of pigs inoculated with a recombinant fowlpox virus coexpressing GP5/GP3 of porcine reproductive and respiratory syndrome virus and swine IL-18[J]. Vaccine,2007,25(21):4193-4202
    [225]Boyer J C, Haenni A L. Infectious transcripts and cDNA clones of RNA viruses[J]. Virology,1994, 198(2):415-426
    [226]Neumann G, Whitt M A, Kawaoka Y. A decade after the generation of a negative-sense RNA virus from cloned cDNA-what have we learned?[J]. J Gen Virol,2002,83(Pt 11):2635-2662
    [227]Meulenberg J J, Bos-de Ruijter J N, van de Graaf R, et al. Infectious transcripts from cloned genome-length cDNA of porcine reproductive and respiratory syndrome virus[J]. J Virol,1998, 72(1):380-387
    [228]Nielsen H S, Liu G, Nielsen J, et al. Generation of an infectious clone of VR-2332, a highly virulent North American-type isolate of porcine reproductive and respiratory syndrome virus[J]. J Virol,2003,77(6):3702-3711
    [229]Choi Y J, Yun S I, Kang S Y, et al. Identification of 5' and 3' cis-acting elements of the porcine reproductive and respiratory syndrome virus:acquisition of novel 5' AU-rich sequences restored replication of a 5'-proximal 7-nucleotide deletion mutant[J]. J Virol,2006,80(2):723-736
    [230]Fang Y, Rowland R R, Roof M, et al. A full-length cDNA infectious clone of North American type 1 porcine reproductive and respiratory syndrome virus:expression of green fluorescent protein in the Nsp2 region[J]. J Virol,2006,80(23):11447-11455
    [231]Lv J, Zhang J, Sun Z, et al. An infectious cDNA clone of a highly pathogenic porcine reproductive and respiratory syndrome virus variant associated with porcine high fever syndrome[J]. J Gen Virol, 2008,89(Pt9):2075-2079
    [232]Truong H M, Lu Z, Kutish G F, et al. A highly pathogenic porcine reproductive and respiratory syndrome virus generated from an infectious cDNA clone retains the in vivo virulence and transmissibility properties of the parental virus[J]. Virology,2004,325(2):308-319
    [233]Yoo D, Welch S K, Lee C, et al. Infectious cDNA clones of porcine reproductive and respiratory syndrome virus and their potential as vaccine vectors[J]. Vet Immunol Immunopathol,2004, 102(3):143-154
    [234]Zhou L, Zhang J, Zeng J, et al. The 30-amino-acid deletion in the Nsp2 of highly pathogenic porcine reproductive and respiratory syndrome virus emerging in China is not related to its virulence[J]. J Virol,2009,83(10):5156-5167
    [235]Lee C, Calvert J G, Welch S K, et al. A DNA-launched reverse genetics system for porcine reproductive and respiratory syndrome virus reveals that homodimerization of the nucleocapsid protein is essential for virus infectivity[J]. Virology,2005,331(1):47-62
    [236]Huang Y W, Fang Y, Meng X J. Identification and characterization of a porcine monocytic cell line supporting porcine reproductive and respiratory syndrome virus (PRRSV) replication and progeny virion production by using an improved DNA-launched PRRSV reverse genetics system[J]. Virus Res,2009,145(1):1-8
    [237]Kwon B, Ansari I H, Osorio F A, et al. Infectious clone-derived viruses from virulent and vaccine strains of porcine reproductive and respiratory syndrome virus mimic biological properties of their parental viruses in a pregnant sow model[J]. Vaccine,2006,24(49-50):7071-7080
    [238]Kwon B, Ansari I H, Pattnaik A K, et al. Identification of virulence determinants of porcine reproductive and respiratory syndrome virus through construction of chimeric clones[J]. Virology, 2008,380(2):371-378
    [239]Gudmundsdottir I, Risatti G R. Infection of porcine alveolar macrophages with recombinant chimeric porcine reproductive and respiratory syndrome virus:effects on cellular gene transcription and virus growth[J]. Virus Res,2009,145(1):145-150
    [240]Wang Y, Liang Y, Han J, et al. Attenuation of porcine reproductive and respiratory syndrome virus strain MN184 using chimeric construction with vaccine sequence[J]. Virology,2008, 371(2):418-429
    [241]Ellingson J S, Wang Y, Layton S, et al. Vaccine efficacy of porcine reproductive and respiratory syndrome virus chimeras[J]. Vaccine,2010,28(14):2679-2686
    [242]Chen Z, Zhou X, Lunney J K, et al. Immunodominant epitopes in nsp2 of porcine reproductive and respiratory syndrome virus are dispensable for replication, but play an important role in modulation of the host immune response[J]. J Gen Virol,2010,91(Pt 4):1047-1057
    [243]Kim D Y, Kaiser T J, Horlen K, et al. Insertion and deletion in a non-essential region of the nonstructural protein 2 (nsp2) of porcine reproductive and respiratory syndrome (PRRS) virus: effects on virulence and immunogenicity[J]. Virus Genes,2009,38(1):118-128
    [244]Oleksiewicz M B, Botner A, Toft P, et al. Epitope mapping porcine reproductive and respiratory syndrome virus by phage display:the nsp2 fragment of the replicase polyprotein contains a cluster of B-cell epitopes[J]. J Virol,2001,75(7):3277-3290
    [245]de Lima M, Kwon B, Ansari I H, et al. Development of a porcine reproductive and respiratory syndrome virus differentiable (DIVA) strain through deletion of specific immunodominant epitopes[J]. Vaccine,2008,26(29-30):3594-3600
    [246]de Lima M, Pattnaik A K, Flores E F, et al. Serologic marker candidates identified among B-cell linear epitopes of Nsp2 and structural proteins of a North American strain of porcine reproductive and respiratory syndrome virus[J]. Virology,2006,353(2):410-421
    [247]Fang Y, Christopher-Hennings J, Brown E, et al. Development of genetic markers in the non-structural protein 2 region of a US type 1 porcine reproductive and respiratory syndrome virus: implications for future recombinant marker vaccine development[J]. J Gen Virol,2008,89(Pt 12):3086-3096
    [248]Kim D Y, Calvert J G, Chang K O, et al. Expression and stability of foreign tags inserted into nsp2 of porcine reproductive and respiratory syndrome virus (PRRSV)[J]. Virus Res,2007, 128(1-2):106-114
    [249]McCullough K C, Summerfield A. Targeting the porcine immune system--particulate vaccines in the 21st century[J]. Dev Comp Immunol,2009,33(3):394-409
    [250]Steinman R M, Banchereau J. Taking dendritic cells into medicine[J]. Nature,2007, 449(7161):419-426
    [251]Tacken P J, de Vries I J, Gijzen K, et al. Effective induction of naive and recall T-cell responses by targeting antigen to human dendritic cells via a humanized anti-DC-SIGN antibody[J]. Blood,2005, 106(4):1278-1285
    [252]Revilla C, Poderoso T, Martinez P, et al. Targeting to porcine sialoadhesin receptor improves antigen presentation to T cells[J]. Vet Res,2009,40(3):14
    [253]Chaung H C, Chen C W, Hsieh B L, et al. Toll-Like Receptor expressions in porcine alveolar macrophages and Dendritic Cells in responding to poly IC stimulation and porcine reproductive and respiratory syndrome virus (PRRSV) infection[J]. Comp Immunol Microbiol Infect Dis,2010, 33(3):197-213
    [254]Sang Y, Ross C R, Rowland R R, et al. Toll-like receptor 3 activation decreases porcine arterivirus infection[J]. Viral Immunol,2008,21(3):303-313
    [255]Huang Y W, Meng X J. Identification of a porcine DC-SIGN-related C-type lectin, porcine CLEC4G (LSECtin), and its order of intron removal during splicing:comparative genomic analyses of the cluster of genes CD23/CLEC4G/DC-SIGN among mammalian species[J]. Dev Comp Immunol,2009,33(6):747-760
    [256]Huang Y W, Dryman B A, Li W, et al. Porcine DC-SIGN:molecular cloning, gene structure, tissue distribution and binding characteristics[J]. Dev Comp Immunol,2009,33(4):464-480
    [257]Nfon C K, Dawson H, Toka F N, et al. Langerhans cells in porcine skin[J]. Vet Immunol Immunopathol,2008,126(3-4):236-247
    [258]Toka F N, Suvas S, Rouse B T. CD4+CD25+T cells regulate vaccine-generated primary and memory CD8+ T-cell responses against herpes simplex virus type 1[J]. J Virol,2004, 78(23):13082-13089
    [259]Stober C B, Lange U G, Roberts M T, et al. IL-10 from regulatory T cells determines vaccine efficacy in murine Leishmania major infection[J]. J Immunol,2005,175(4):2517-2524
    [260]Wathelet M G, Orr M, Frieman M B, et al. Severe acute respiratory syndrome coronavirus evades antiviral signaling:role of nsp1 and rational design of an attenuated strain[J]. J Virol,2007, 81(21):11620-11633
    [261]Zust R, Cervantes-Barragan L, Kuri T, et al. Coronavirus non-structural protein 1 is a major pathogenicity factor:implications for the rational design of coronavirus vaccines[J]. PLoS Pathog, 2007,3(8):e109
    [262]Richt J A, Garcia-Sastre A. Attenuated influenza virus vaccines with modified NS1 proteins[J]. Curr Top Microbiol Immunol,2009,333:177-195
    [263]Beura L K, Sarkar S N, Kwon B, et al. Porcine reproductive and respiratory syndrome virus nonstructural protein 1beta modulates host innate immune response by antagonizing IRF3 activation[J]. J Virol,2010,84(3):1574-1584
    [264]Chen Z, Lawson S, Sun Z, et al. Identification of two auto-cleavage products of nonstructural protein 1 (nspl) in porcine reproductive and respiratory syndrome virus infected cells:nspl function as interferon antagonist[J]. Virology,2010,398(1):87-97
    [1]Paton DJ, Greiser-Wilke I. Classical swine fever--an update[J]. Res Vet Sci,2003,75(3):169-178
    [2]Becher P, Avalos Ramirez R, Orlich M, et al. Genetic and antigenic characterization of novel pestivirus genotypes:implications for classification[J]. Virology,2003,311(1):96-104
    [3]Tu C, Lu Z, Li H, et al. Phylogenetic comparison of classical swine fever virus in China[J]. Virus Res,2001,81(1-2):29-37
    [4]Meyers G, Thiel HJ, Rumenapf T. Classical swine fever virus:recovery of infectious viruses from cDNA constructs and generation of recombinant cytopathogenic defective interfering particles[J]. J Virol,1996,70(3):1588-1595
    [5]Blacksell SD, Khounsy S, Boyle DB, et al. Genetic typing of classical swine fever viruses from Lao PDR by analysis of the 5'non-coding region[J]. Virus Genes,2005,31(3):349-355
    [6]Patil SS, Hemadri D, Shankar BP, et al. Genetic typing of recent classical swine fever isolates from India[J]. Vet Microbiol,2010,141(3-4):367-373
    [7]Sabogal ZY, Mogollon JD, Rincon MA, et al. Phylogenetic analysis of recent isolates of classical swine fever virus from Colombia[J]. Virus Res,2006,115(1):99-103
    [8]Pereda AJ, Greiser-Wilke I, Schmitt B, et al. Phylogenetic analysis of classical swine fever virus (CSFV) field isolates from outbreaks in South and Central America[J]. Virus Res,2005, 110(1-2):111-118
    [9]Vilcek S, Nettleton PF, Paton DJ, et al. Molecular characterization of ovine pestiviruses[J]. J Gen Virol,1997,78 (4):725-735
    [10]Paton DJ, McGoldrick A, Greiser-Wilke I, et al. Genetic typing of classical swine fever virus[J]. Vet Microbiol,2000,73(2-3):137-157
    [11]Deng MC, Huang CC, Huang TS, et al. Phylogenetic analysis of classical swine fever virus isolated from Taiwan[J]. Vet Microbiol,2005,106(3-4):187-193
    [12]Hofmann MA, Brechtbuhl K, Stauber N. Rapid characterization of new pestivirus strains by direct sequencing of PCR-amplified cDNA from the 5'noncoding region[J]. Arch Virol,1994, 139(1-2):217-229
    [13]Lowings P, Ibata G, Needham J, et al. Classical swine fever virus diversity and evolution[J]. J Gen Virol,1996,77 (6):1311-1321
    [14]Vilcek S, Stadejek T, Ballagi-Pordany A, et al. Genetic variability of classical swine fever virus[J]. Virus Res,1996,43(2):137-147
    [15]Widjojoatmodjo MN, van Gennip HG, de Smit AJ, et al. Comparative sequence analysis of classical swine fever virus isolates from the epizootic in The Netherlands in 1997-1998[J]. Vet Microbiol,1999,66(4):291-299
    [16]Lowings P, Ibata G, De Mia GM, et al. Classical swine fever in Sardinia:epidemiology of recent outbreaks[J]. Epidemiol Infect,1999,122(3):553-559
    [17]Biagetti M, Greiser-Wilke I, Rutili D. Molecular epidemiology of classical swine fever in Italy[J]. Vet Microbiol,2001,83(3):205-215
    [18]Hurtado A, Garcia-Perez AL, Aduriz G, et al. Genetic diversity of ruminant pestiviruses from Spain[J]. Virus Res,2003,92(l):67-73
    [19]Blacksell SD, Khounsy S, Boyle DB, et al. Phylogenetic analysis of the E2 gene of classical swine fever viruses from Lao PDR[J]. Virus Res,2004,104(1):87-92
    [20]Patil SS, Hemadri D, Veeresh H, et al. Phylogenetic analysis of NS5B gene of classical swine fever virus isolates indicates plausible Chinese origin of Indian subgroup 2.2 viruses[J]. Virus Genes, 2012,44(l):104-108
    [21]Paton DJ, Lowings JP, Barrett AD. Epitope mapping of the gp53 envelope protein of bovine viral diarrhea virus[J]. Virology,1992,190(2):763-772
    [22]van Rijn PA, Miedema GK, Wensvoort G, et al. Antigenic structure of envelope glycoprotein El of hog cholera virus[J]. J Virol,1994,68(6):3934-3942
    [23]Cha SH, Choi EJ, Park JH, et al. Phylogenetic characterization of classical swine fever viruses isolated in Korea between 1988 and 2003[J]. Virus Res,2007,126(1-2):256-261
    [24]Blome S, Grotha I, Moennig V, et al. Classical swine fever virus in South-Eastern Europe--retrospective analysis of the disease situation and molecular epidemiology[J]. Vet Microbiol,2010,146(3-4):276-284
    [25]Chen N, Hu H, Zhang Z, et al. Genetic diversity of the envelope glycoprotein E2 of classical swine fever virus:recent isolates branched away from historical and vaccine strains[J]. Vet Microbiol, 2008,127(3-4):286-299
    [26]Chen N, Li D, Yuan X, et al. Genetic characterization of E2 gene of classical swine fever virus by restriction fragment length polymorphism and phylogenetic analysis[J]. Virus Genes,2010, 40(3):389-396
    [27]Luo TR, Liao SH, Wu XS, et al. Phylogenetic analysis of the E2 gene of classical swine fever virus from the Guangxi Province of southern China[J]. Virus Genes2011,42(3):347-354
    [28]Shen H, Pei J, Bai J, et al. Genetic diversity and positive selection analysis of classical swine fever virus isolates in south China[J]. Virus Genes,2011,43(2):234-242
    [29]Pan CH, Jong MH, Huang TS, et al. Phylogenetic analysis of classical swine fever virus in Taiwan[J]. Arch Virol,2005,150(6):1101-1119
    [30]Moormann RJ, van Gennip HG, Miedema GK, et al. Infectious RNA transcribed from an engineered full-length cDNA template of the genome of a pestivirus[J]. J Virol,1996, 70(2):763-770
    [31]Chenut G, Saintilan AF, Burger C, et al. Oral immunisation of swine with a classical swine fever vaccine (Chinese strain) and transmission studies in rabbits and sheep[J]. Vet Microbiol,1999, 64(4):265-276
    [32]David D, Edri N, Yakobson BA, et al. Emergence of classical swine fever virus in Israel in 2009[J]. Vet J,2011,190(2):146-149.
    [33]He CQ, Ding NZ, Chen JG, et al. Evidence of natural recombination in classical swine fever virus[J]. Virus Res,2007,126(1-2):179-185
    [34]van Rijn PA, van Gennip HG, de Meijer EJ, et al. Epitope mapping of envelope glycoprotein E1 of hog cholera virus strain Brescia[J]. J Gen Virol,1993,74 (10):2053-2060
    [1]Rossow KD. Porcine reproductive and respiratory syndrome[J]. Vet Pathol,1998,35(1):1-20
    [2]Zimmerman JJ, Yoon KJ, Wills RW, et al. General overview of PRRSV:a perspective from the United States[J]. Vet Microbiol,1997,55(1-4):187-196
    [3]Wensvoort G, Terpstra C, Pol JM, et al. Mystery swine disease in The Netherlands:the isolation of Lelystad virus[J]. Vet Q,1991,13(3):121-130
    [4]Wensvoort G, Terpstra C, Pol JM.'Lelystad agent'--the cause of abortus blauw (mystery swine disease)[J]. Tijdschr Diergeneeskd,1991,116(13):675-676
    [5]郭宝清,陈章水,刘文兴,等.从疑似PRRS流产胎儿分离PRRSV的研究[J].中国畜禽传染病,1996,(02):3-7
    [6]Dea S, Gagnon CA, Mardassi H, et al. Current knowledge on the structural proteins of porcine reproductive and respiratory syndrome (PRRS) virus:comparison of the North American and European isolates[J]. Arch Virol,2000,145(4):659-688
    [7]Collins JE, Benfield DA, Christianson WT, et al. Isolation of swine infertility and respiratory syndrome virus (isolate ATCC VR-2332) in North America and experimental reproduction of the disease in gnotobiotic pigs[J]. J Vet Diagn Invest,1992,4(2):117-126
    [8]Meulenberg JJ. PRRSV, the virus[J]. Vet Res,2000,31 (1):11-21
    [9]Gorbalenya AE, Enjuanes L, Ziebuhr J, et al. Nidovirales:evolving the largest RNA virus genome[J]. Virus Res,2006,117(1):17-37
    [10]Meng XJ, Paul PS, Halbur PG, et al. Phylogenetic analyses of the putative M (ORF 6) and N (ORF 7) genes of porcine reproductive and respiratory syndrome virus (PRRSV):implication for the existence of two genotypes of PRRSV in the U.S.A. and Europe[J]. Arch Virol,1995, 140(4):745-755
    [11]Kapur V, Elam MR, Pawlovich TM, et al. Genetic variation in porcine reproductive and respiratory syndrome virus isolates in the midwestern United States[J]. J Gen Virol,1996,77 (6):1271-1276
    [12]Meng XJ. Heterogeneity of porcine reproductive and respiratory syndrome virus:implications for current vaccine efficacy and future vaccine development[J]. Vet Microbiol,2000,74(4):309-329
    [13]Nelsen CJ, Murtaugh MP, Faaberg KS. Porcine reproductive and respiratory syndrome virus comparison:divergent evolution on two continents[J]. J Virol,1999,73(1):270-280
    [14]Ropp SL, Wees CE, Fang Y, et al. Characterization of emerging European-like porcine reproductive and respiratory syndrome virus isolates in the United States[J]. J Virol,2004,78(7):3684-3703
    [15]Stadejek T, Oleksiewicz MB, Potapchuk D, et al. Porcine reproductive and respiratory syndrome virus strains of exceptional diversity in eastern Europe support the definition of new genetic subtypes[J]. J Gen Virol,2006,87(7):1835-1841
    [16]Snijder EJ, Meulenberg JJ. The molecular biology of arteriviruses[J]. J Gen Virol,1998,79 (5):961-979
    [17]Firth AE, Zevenhoven-Dobbe JC, Wills NM, et al. Discovery of a small arterivirus gene that overlaps the GP5 coding sequence and is important for virus production[J]. J Gen Virol,2011, 92(5):1097-1106
    [18]Johnson CR, Griggs TF, Gnanandarajah J, et al. Novel structural protein in porcine reproductive and respiratory syndrome virus encoded by an alternative ORF5 present in all arteriviruses[J]. J Gen Virol,2011,92(5):1107-1116
    [19]Tian K, Yu X, Zhao T, et al. Emergence of fatal PRRSV variants:unparalleled outbreaks of atypical PRRS in China and molecular dissection of the unique hallmark[J]. PLoS One,2007,2(6):e526
    [20]Tong GZ, Zhou YJ, Hao XF, et al. Highly pathogenic porcine reproductive and respiratory syndrome, China[J]. Emerg Infect Dis,2007,13(9):1434-1436
    [21]Key KF, Haqshenas G, Guenette DK, et al. Genetic variation and phylogenetic analyses of the ORF5 gene of acute porcine reproductive and respiratory syndrome virus isolates[J]. Vet Microbiol, 2001,83(3):249-263
    [22]Shi M, Lam TT, Hon CC, et al. Molecular epidemiology of PRRSV:a phylogenetic perspective[J]. Virus Res,2010,154(1-2):7-17
    [23]An TQ, Tian ZJ, Xiao Y, et al. Origin of highly pathogenic porcine reproductive and respiratory syndrome virus, China[J]. Emerg Infect Dis,2010,16(2):365-367
    [24]Zhou YJ, Hao XF, Tian ZJ, et al. Highly virulent porcine reproductive and respiratory syndrome virus emerged in China[J]. Transbound Emerg Dis,2008,55(3-4):152-164
    [25]Yin G, Gao L, Shu X, et al. Genetic Diversity of the ORF5 Gene of Porcine Reproductive and Respiratory Syndrome Virus Isolates in Southwest China from 2007 to 2009[J]. PLoS One,2012, 7(3):e33756
    [26]An TQ, Zhou YJ, Liu GQ, et al. Genetic diversity and phylogenetic analysis of glycoprotein 5 of PRRSV isolates in mainland China from 1996 to 2006:coexistence of two NA-subgenotypes with great diversity[J]. Vet Microbiol,2007,123(1-3):43-52
    [27]Zhou YJ, Yu H, Tian ZJ, et al. Genetic diversity of the ORF5 gene of porcine reproductive and respiratory syndrome virus isolates in China from 2006 to 2008[J]. Virus Res,2009, 144(1-2):136-144
    [28]Cha SH, Choi EJ, Park JH, et al. Molecular characterization of recent Korean porcine reproductive and respiratory syndrome (PRRS) viruses and comparison to other Asian PRRS viruses[J]. Vet Microbiol,2006,117(2-4):248-257
    [29]Indik S, Schmoll F, Sipos W, et al. Genetic variability of PRRS virus in Austria:consequences for molecular diagnostics and viral quantification[J]. Vet Microbiol,2005,107(3-4):171-178
    [30]Plagemann PG The primary GP5 neutralization epitope of North American isolates of porcine reproductive and respiratory syndrome virus[J]. Vet Immunol Immunopathol,2004,102(3):263-275
    [31]Plagemann PG, Rowland RR, Faaberg KS. The primary neutralization epitope of porcine respiratory and reproductive syndrome virus strain VR-2332 is located in the middle of the GP5 ectodomain[J]. Arch Virol,2002,147(12):2327-2347
    [32]Ostrowski M, Galeota JA, Jar AM, et al. Identification of neutralizing and nonneutralizing epitopes in the porcine reproductive and respiratory syndrome virus GP5 ectodomain[J]. J Virol,2002, 76(9):4241-4250
    [1]Zimmerman JJ, Yoon KJ, Wills RW, et al. General overview of PRRSV:a perspective from the United States[J]. Vet Microbiol,1997,55(1-4):187-196
    [2]Rossow KD. Porcine reproductive and respiratory syndrome[J]. Vet Pathol,1998,35(1):1-20
    [3]Snijder EJ, Meulenberg JJ. The molecular biology of arteriviruses[J]. J Gen Virol,1998,79 (5):961-979
    [4]郭宝清,陈章水,刘文兴,等.从疑似PRRS流产胎儿分离PRRSV的研究[J].中国畜禽传染病,1996,(02):3-7
    [5]Cavanagh D. Nidovirales:a new order comprising Coronaviridae and Arteriviridae[J]. Arch Virol, 1997,142(3):629-633
    [6]Firth AE, Zevenhoven-Dobbe JC, Wills NM, et al. Discovery of a small arterivirus gene that overlaps the GP5 coding sequence and is important for virus production[J]. J Gen Virol,2011, 92(5):1097-1106
    [7]Johnson CR, Griggs TF, Gnanandarajah J, et al. Novel structural protein in porcine reproductive and respiratory syndrome virus encoded by an alternative ORF5 present in all arteriviruses[J]. J Gen Virol,2011,92(5):1107-1116
    [8]Wensvoort G, Terpstra C, Pol JM, et al. Mystery swine disease in The Netherlands:the isolation of Lelystad virus[J]. Vet Q,1991,13(3):121-130
    [9]Wensvoort G, Terpstra C, Pol JM.'Lelystad agent'--the cause of abortus blauw (mystery swine disease)[J].Tijdschr Diergeneeskd,1991,116(13):675-676
    [10]Benfield DA, Nelson E, Collins JE, et al. Characterization of swine infertility and respiratory syndrome (SIRS) virus (isolate ATCC VR-2332)[J]. J Vet Diagn Invest,1992,4(2):127-133
    [11]Forsberg R, Oleksiewicz MB, Petersen AM, et al. A molecular clock dates the common ancestor of European-type porcine reproductive and respiratory syndrome virus at more than 10 years before the emergence of disease[J]. Virology,2001,289(2):174-179
    [12]Forsberg R, Storgaard T, Nielsen HS, et al. The genetic diversity of European type PRRSV is similar to that of the North American type but is geographically skewed within Europe[J]. Virology, 2002,299(1):38-47
    [13]Zhou L, Yang H. Porcine reproductive and respiratory syndrome in China[J]. Virus Res,2010, 154(1-2):31-37
    [14]Tian K, Yu X, Zhao T, et al. Emergence of fatal PRRSV variants:unparalleled outbreaks of atypical PRRS in China and molecular dissection of the unique hallmark[J]. PLoS One,2007,2(6):e526
    [15]张长刚,肖延宁,校文海.猪群高热病临床解析[J].今日畜牧兽医,2007,(09):13-15+22
    [16]An TQ, Tian ZJ, Xiao Y, et al. Origin of highly pathogenic porcine reproductive and respiratory syndrome virus, China[J]. Emerg Infect Dis,2010,16(2):365-367
    [17]Tong GZ, Zhou YJ, Hao XF, et al. Highly pathogenic porcine reproductive and respiratory syndrome, China[J]. Emerg Infect Dis,2007,13(9):1434-1436
    [18]Allende R, Kutish GF, Laegreid W, et al. Mutations in the genome of porcine reproductive and respiratory syndrome virus responsible for the attenuation phenotype[J]. Arch Virol,2000, 145(6):1149-1161
    [19]薛青红,张彦明,刘湘涛,等.中国部分地区2005-2007年猪繁殖与呼吸综合征病毒分离株ORF5基因和Nsp2基因遗传变异分析[J].中国农业科学,2009,(05):1805-1812
    [1]Dokland T. The structural biology of PRRSV[J]. Virus Res,2010,154(1-2):86-97
    [2]Rossow KD. Porcine reproductive and respiratory syndrome[J]. Vet Pathol,1998,35(1):1-20
    [3]Zimmerman JJ, Yoon KJ, Wills RW, et al. General overview of PRRSV:a perspective from the United States[J]. Vet Microbiol,1997,55(1-4):187-196
    [4]Plagemann PG, Moennig V. Lactate dehydrogenase-elevating virus, equine arteritis virus, and simian hemorrhagic fever virus:a new group of positive-strand RNA viruses[J]. Adv Virus Res, 1992,41:99-192
    [5]Snijder EJ, Meulenberg JJ. The molecular biology of arteriviruses[J]. J Gen Virol,1998,79 (5):961-979
    [6]Dea S, Gagnon CA, Mardassi H, et al. Current knowledge on the structural proteins of porcine reproductive and respiratory syndrome (PRRS) virus:comparison of the North American and European isolates[J]. Arch Virol,2000,145(4):659-688
    [7]Meulenberg JJ, Bende RJ, Pol JM, et al. Nucleocapsid protein N of Lelystad virus:expression by recombinant baculovirus, immunological properties, and suitability for detection of serum antibodies[J]. Clin Diagn Lab Immunol,1995,2(6):652-656
    [8]Murtaugh MP, Xiao Z, Zuckermann F. Immunological responses of swine to porcine reproductive and respiratory syndrome virus infection[J]. Viral Immunol,2002,15(4):533-547
    [9]Yuan S, Wei Z. Construction of infectious cDNA clones of PRRSV:separation of coding regions for nonstructural and structural proteins[J]. Sci China C Life Sci,2008,51(3):271-279
    [10]Tan F, Wei Z, Li Y, et al. Identification of non-essential regions in nucleocapsid protein of porcine reproductive and respiratory syndrome virus for replication in cell culture[J]. Virus Res,2011, 158(1-2):62-71
    [11]Meng XJ, Paul PS, Morozov I, et al. A nested set of six or seven subgenomic mRNAs is formed in cells infected with different isolates of porcine reproductive and respiratory syndrome virus[J]. J Gen Virol,1996,77 (6):1265-1270
    [12]Nelsen CJ, Murtaugh MP, Faaberg K.S. Porcine reproductive and respiratory syndrome virus comparison:divergent evolution on two continents[J]. J Virol,1999,73(1):270-280
    [13]谭菲菲.猪繁殖与呼吸综合征病毒核衣壳蛋白在病毒复制过程中的作用研究[J].中国农业科学院博士毕业论文,2010
    [14]Meulenberg JJ, Hulst MM, de Meijer EJ, et al. Lelystad virus, the causative agent of porcine epidemic abortion and respiratory syndrome (PEARS), is related to LDV and EAV[J]. Virology, 1993,192(1):62-72
    [15]Stadejek T, Oleksiewicz MB, Scherbakov AV, et al. Definition of subtypes in the European genotype of porcine reproductive and respiratory syndrome virus:nucleocapsid characteristics and geographical distribution in Europe[J]. Arch Virol,2008,153(8):1479-1488
    [16]Yoo D, Wootton SK, Li G, et al. Colocalization and interaction of the porcine arterivirus nucleocapsid protein with the small nucleolar RNA-associated protein fibrillarin[J]. J Virol,2003, 77(22):12173-12183
    [17]Meng XJ, Paul PS, Halbur PG, et al. Phylogenetic analyses of the putative M (ORF 6) and N (ORF 7) genes of porcine reproductive and respiratory syndrome virus (PRRSV):implication for the existence of two genotypes of PRRSV in the U.S.A. and Europe[J]. Arch Virol,1995, 140(4):745-755
    [18]Verheije MH, Kroese MV, Rottier PJ, et al. Viable porcine arteriviruses with deletions proximal to the 3' end of the genome[J]. J Gen Virol,2001,82(11):2607-2614
    [19]Yoo D, Welch SK, Lee C, et al. Infectious cDNA clones of porcine reproductive and respiratory syndrome virus and their potential as vaccine vectors[J]. Vet Immunol Immunopathol,2004, 102(3):143-154
    [20]Groot Bramel-Verheije MH, Rottier PJ, Meulenberg JJ. Expression of a foreign epitope by porcine reproductive and respiratory syndrome virus[J]. Virology,2000,278(2):380-389
    [1]Snijder EJ, Meulenberg JJ. The molecular biology of arteriviruses[J]. J Gen Virol,1998,79 (5):961-979
    [2]Wensvoort G, de Kluyver EP, Pol JM, et al. Lelystad virus, the cause of porcine epidemic abortion and respiratory syndrome:a review of mystery swine disease research at Lelystad[J]. Vet Microbiol, 1992,33(1-4):185-193
    [3]Benfield DA, Nelson E, Collins JE, et al. Characterization of swine infertility and respiratory syndrome (SIRS) virus (isolate ATCC VR-2332)[J]. J Vet Diagn Invest,1992,4(2):127-133
    [4]Meng XJ, Paul PS, Halbur PG, et al. Phylogenetic analyses of the putative M (ORF 6) and N (ORF 7) genes of porcine reproductive and respiratory syndrome virus (PRRSV):implication for the existence of two genotypes of PRRSV in the U.S.A. and Europe[J]. Arch Virol,1995, 140(4):745-755
    [5]Nelsen CJ, Murtaugh MP, Faaberg KS. Porcine reproductive and respiratory syndrome virus comparison:divergent evolution on two continents[J]. J Virol,1999,73(1):270-280
    [6]Neumann EJ, Kliebenstein JB, Johnson CD, et al. Assessment of the economic impact of porcine reproductive and respiratory syndrome on swine production in the United States[J]. J Am Vet Med Assoc,2005,227(3):385-392
    [7]Kimman TG, Cornelissen LA, Moormann RJ, et al. Challenges for porcine reproductive and respiratory syndrome virus (PRRSV) vaccinology[J]. Vaccine,2009,27(28):3704-3718
    [8]Tong GZ, Zhou YJ, Hao XF, et al. Highly pathogenic porcine reproductive and respiratory syndrome, China[J]. Emerg Infect Dis,2007,13(9):1434-1436
    [9]An TQ, Tian ZJ, Xiao Y, et al. Origin of highly pathogenic porcine reproductive and respiratory syndrome virus, China[J]. Emerg Infect Dis,2010,16(2):365-367
    [10]Zhou L, Yang H. Porcine reproductive and respiratory syndrome in China[J]. Virus Res,2010, 154(1-2):31-37
    [11]Lunney JK, Benfield DA, Rowland RR. Porcine reproductive and respiratory syndrome virus:an update on an emerging and re-emerging viral disease of swine[J]. Virus Res,2010,154(1-2):1-6
    [12]Corzo CA, Mondaca E, Wayne S, et al. Control and elimination of porcine reproductive and respiratory syndrome virus[J]. Virus Res,2010,154(1-2):185-192
    [13]de Lima M, Pattnaik AK, Flores EF, et al. Serologic marker candidates identified among B-cell linear epitopes of Nsp2 and structural proteins of a North American strain of porcine reproductive and respiratory syndrome virus[J]. Virology,2006,353(2):410-421
    [14]Yuan S, Wei Z. Construction of infectious cDNA clones of PRRSV:separation of coding regions for nonstructural and structural proteins[J]. Sci China C Life Sci,2008,51(3):271-279
    [15]de Lima M, Kwon B, Ansari IH, et al. Development of a porcine reproductive and respiratory syndrome virus differentiable (DIVA) strain through deletion of specific immunodominant epitopes[J]. Vaccine,2008,26(29-30):3594-3600
    [16]Fang Y, Christopher-Hennings J, Brown E, et al. Development of genetic markers in the non-structural protein 2 region of a US type 1 porcine reproductive and respiratory syndrome virus: implications for future recombinant marker vaccine development J]. J Gen Virol,2008, 89(12):3086-3096
    [17]Nelson EA, Christopher-Hennings J, Benfield DA. Serum immune responses to the proteins of porcine reproductive and respiratory syndrome (PRRS) virus[J]. J Vet Diagn Invest,1994, 6(4):410-415
    [18]Dea S, Gagnon CA, Mardassi H, et al. Current knowledge on the structural proteins of porcine reproductive and respiratory syndrome (PRRS) virus:comparison of the North American and European isolates[J]. Arch Virol,2000,145(4):659-688
    [19]Tan F, Wei Z, Li Y, et al. Identification of non-essential regions in nucleocapsid protein of porcine reproductive and respiratory syndrome virus for replication in cell culture[J]. Virus Res,2011, 158(1-2):62-71
    [20]Yu D, Lv J, Sun Z, et al. Reverse genetic manipulation of the overlapping coding regions for structural proteins of the type Ⅱ porcine reproductive and respiratory syndrome virus[J]. Virology, 2009,383(1):22-31
    [21]Tan F, Zhang R, Wei Z, et al. Translational control of nucleocapsid protein of porcine reproductive and respiratory syndrome virus[J]. Acta Veterinaria et Zootechnica Sinica,2010,41(7):847-853
    [22]Lv J, Zhang J, Sun Z, et al. An infectious cDNA clone of a highly pathogenic porcine reproductive and respiratory syndrome virus variant associated with porcine high fever syndrome[J]. J Gen Virol, 2008,89(9):2075-2079
    [23]Zheng H, Sun Z, Zhu XQ, et al. Recombinant PRRSV expressing porcine circovirus sequence reveals novel aspect of transcriptional control of porcine arterivirus[J]. Virus Res,2010, 148(1-2):8-16
    [24]Lu J, Gao F, Wei Z, et al. A 5'-proximal stem-loop structure of 5' untranslated region of porcine reproductive and respiratory syndrome virus genome is key for virus replication[J]. Virol J,2011, 8:172
    [25]Tian D, Zheng H, Zhang R, et al. Chimeric porcine reproductive and respiratory syndrome viruses reveal full function of genotype 1 envelope proteins in the backbone of genotype 2[J]. Virology, 2011,412(1):1-8
    [26]Key KF, Haqshenas G, Guenette DK, et al. Genetic variation and phylogenetic analyses of the ORF5 gene of acute porcine reproductive and respiratory syndrome virus isolates[J]. Vet Microbiol, 2001,83(3):249-263
    [27]Shi M, Lam TT, Hon CC, et al. Molecular epidemiology of PRRSV:a phylogenetic perspective[J]. Virus Res,2010,154(1-2):7-17
    [28]Zhou YJ, Hao XF, Tian ZJ, et al. Highly virulent porcine reproductive and respiratory syndrome virus emerged in China [J]. Transbound Emerg Dis,2008,55(3-4):152-164
    [29]Tian K, Yu X, Zhao T, et al. Emergence of fatal PRRSV variants:unparalleled outbreaks of atypical PRRS in China and molecular dissection of the unique hallmark[J]. PLoS One,2007,2(6):e526
    [30]Madsen KG, Hansen CM, Madsen ES, et al. Sequence analysis of porcine reproductive and respiratory syndrome virus of the American type collected from Danish swine herds[J]. Arch Virol, 1998,143(9):1683-1700
    [31]Murtaugh MP, Genzow M. Immunological solutions for treatment and prevention of porcine reproductive and respiratory syndrome (PRRS)[J]. Vaccine,2011,29(46):8192-8204
    [32]Murtaugh MP, Xiao Z, Zuckermann F. Immunological responses of swine to porcine reproductive and respiratory syndrome virus infection[J]. Viral Immunol,2002,15(4):533-547
    [33]Labarque G, Van Gucht S, Van Reeth K, et al. Respiratory tract protection upon challenge of pigs vaccinated with attenuated porcine reproductive and respiratory syndrome virus vaccines[J]. Vet Microbiol,2003,95(3):187-197
    [34]Storgaard T, Oleksiewicz M, Botner A. Examination of the selective pressures on a live PRRS vaccine virus[J]. Arch Virol,1999,144(12):2389-2401
    [35]Kim DY, Kaiser TJ, Horlen K, et al. Insertion and deletion in a non-essential region of the nonstructural protein 2 (nsp2) of porcine reproductive and respiratory syndrome (PRRS) virus: effects on virulence and immunogenicity[J]. Virus Genes,2009,38(1):118-128
    [36]van Dinten LC, den Boon JA, Wassenaar AL, et al. An infectious arterivirus cDNA clone: identification of a replicase point mutation that abolishes discontinuous mRNA transcription[J]. Proc Natl Acad Sci U S A,1997,94(3):991-996
    [37]Yoo D, Song C, Sun Y, et al. Modulation of host cell responses and evasion strategies for porcine reproductive and respiratory syndrome virus[J]. Virus Res,2010,154(1-2):48-60
    [38]Verheije MH, Kroese MV, Rottier PJ, et al. Viable porcine arteriviruses with deletions proximal to the 3' end of the genome[J]. J Gen Virol,2001,82(11):2607-2614
    [39]Groot Bramel-Verheije MH, Rottier PJ, Meulenberg JJ. Expression of a foreign epitope by porcine reproductive and respiratory syndrome virus[J]. Virology,2000,278(2):380-389
    [1]Cavanagh D. Nidovirales:a new order comprising Coronaviridae and Arteriviridae[J]. Arch Virol, 1997,142(3):629-633
    [2]Gonzalez JM, Gomez-Puertas P, Cavanagh D, et al. A comparative sequence analysis to revise the current taxonomy of the family Coronaviridae[J]. Arch Virol,2003,148(11):2207-2235
    [3]Dea S, Gagnon CA, Mardassi H, et al. Current knowledge on the structural proteins of porcine reproductive and respiratory syndrome (PRRS) virus:comparison of the North American and European isolates[J]. Arch Virol,2000,145(4):659-688
    [4]Godeny EK, de Vries AA, Wang XC, et al. Identification of the leader-body junctions for the viral subgenomic mRNAs and organization of the simian hemorrhagic fever virus genome:evidence for gene duplication during arterivirus evolution[J]. J Virol,1998,72(1):862-867
    [5]Meulenberg JJ. PRRSV, the virus[J]. Vet Res,2000,31(1):11-21
    [6]Smith SL, Wang X, Godeny EK. Sequence of the 3'end of the simian hemorrhagic fever virus genome[J]. Gene,1997,191(2):205-210
    [7]Snijder EJ, Meulenberg JJ. The molecular biology of arteriviruses[J]. J Gen Virol,1998,79 (5):961-979
    [8]An TQ, Tian ZJ, Xiao Y, et al. Origin of highly pathogenic porcine reproductive and respiratory syndrome virus, China[J]. Emerg Infect Dis,2010,16(2):365-367
    [9]Tian K, Yu X, Zhao T, et al. Emergence of fatal PRRSV variants:unparalleled outbreaks of atypical PRRS in China and molecular dissection of the unique hallmark[J]. PLoS One,2007,2(6):e526
    [10]Zhou YJ, Hao XF, Tian ZJ, et al. Highly virulent porcine reproductive and respiratory syndrome virus emerged in China[J]. Transbound Emerg Dis,2008,55(3-4):152-164
    [11]Zhou L, Yang H. Porcine reproductive and respiratory syndrome in China[J]. Virus Res,2010, 154(1-2):31-37
    [12]Chen J, Wang C, Shi H, et al. Molecular epidemiology of porcine epidemic diarrhea virus in China[J]. Arch Virol,2010,155(9):1471-1476
    [13]徐辉,李晓成,陈伟杰,等.“猪高热病”的流行病学调查与主要病因分析[J].中国动物检疫,2007,(06):19-21
    [14]Tian D, Zheng H, Zhang R, et al. Chimeric porcine reproductive and respiratory syndrome viruses reveal full function of genotype 1 envelope proteins in the backbone of genotype 2[J]. Virology, 2011,412:1-8
    [15]Fang Y, Christopher-Hennings J, Brown E, et al. Development of genetic markers in the non-structural protein 2 region of a US type 1 porcine reproductive and respiratory syndrome virus: implications for future recombinant marker vaccine development[J]. J Gen Virol,2008, 89(12):3086-3096
    [16]Han J, Liu G, Wang Y, et al. Identification of nonessential regions of the nsp2 replicase protein of porcine reproductive and respiratory syndrome virus strain VR-2332 for replication in cell culture[J]. J Virol,2007,81(18):9878-9890
    [17]Pei Y, Hodgins DC, Wu J, et al. Porcine reproductive and respiratory syndrome virus as a vector: immunogenicity of green fluorescent protein and porcine circovirus type 2 capsid expressed from dedicated subgenomic RNAs[J]. Virology,2009,389(1-2):91-99
    [18]de Vries AA, Glaser AL, Raamsman MJ, et al. Recombinant equine arteritis virus as an expression vector[J]. Virology,2001,284(2):259-276
    [19]Zheng H, Sun Z, Zhu XQ, et al. Recombinant PRRSV expressing porcine circovirus sequence reveals novel aspect of transcriptional control of porcine arterivirus[J]. Virus Res,2010, 148(1-2):8-16