花生脱壳与损伤机理及立锥式脱壳机研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
花生是我国重要的油料和经济作物,在世界油料生产和国际贸易中仅次于大豆而居第二位。我国花生年种植面积达500万公顷,占世界花生种植面积的20%以上;年均总产量1438.5万吨,占世界花生总产的42%以上;年出口花生米(仁)、花生制品约70万吨,占世界贸易量的47%左右,位居全球第一
     无论国内还是国外、食用还是加工、甚至种植,花生都必须进行脱壳,可以说花生脱壳的加工量就是花生的总产量。花生脱壳是一个复杂的过程,受到花生壳和花生米的物理机械特性、花生品种及施加力的大小和方式等多种因素共同影响。
     传统的花生脱壳是手工剥壳,虽然效率低但不存在花生米损伤问题,但在大面积种植时,无法解决剥壳问题。花生脱壳机脱壳效率高,一般高出人工10-50倍。然而机脱无法像人手一样不出现花生米损伤,破碎率较高,且破碎的花生多数是饱满籽粒。破碎的花生米价格低,影响经济效益;损伤的花生米存有潜在的危害,由于缺少完整的衣皮保护,容易侵染致癌症毒素——花生黄曲霉毒菌。因此,研制高效低损的花生脱壳机成为花生脱壳机研制的重点。
     本研究内容隶属于国家自然科学基金资助项目“花生脱壳与机械损伤机理及低损脱壳机技术研究”的部分内容。论文主要研究内容与结论如下:
     (1)通过对国内外花生脱壳技术与脱壳装置的分析,首次提出了通过花生生物物理特性研究,利用花生疲劳脱壳试验原理,最后确定了立锥式脱壳机。
     (2)在对花生生物物理特性分析研究的基础上,统计分析了花生荚果及花生米的几何特征、尺寸分布、粒重和花生壳厚规律,并对各种基本物理参数与含水率之间的相关性进行了分析。结论为:随着含水率的增加,花生米三轴尺寸、三轴算术平均径、几何平均径均增大,且三轴算术平均径、几何平均径与含水率之间存在较好的线性相关;花生米在五种不同的含水率下,球度变化很小;任何含水率下,四粒红花生荚果粒重的平均值都大于花育23,而花育23花生米粒重的平均值大于四粒红。
     (3)利用三因素随机区组试验,以花生荚果的破壳力和花生米的破米力为试验指标,选取花生品种、放置方式、含水率三个因素,分别在LDS拉压试验机、冲击试验机上对花生荚果及花生米进行了压缩试验、冲击试验。试验结果表明:含水率、品种、放置方式对试验指标均有很大影响,含水率与试验指标的数学模型为正相关线性模型。以破壳能量及破米能量为试验指标,在疲劳试验台上对花生进行了疲劳试验。试验结果表明:含水率、品种对指标的影响也极显著。三种试验的综合比较分析表明:疲劳试验中花生米的破米能量与花生壳的破壳能量差值率最大。因此,采用疲劳脱壳原理可使花生脱壳的破损率降低。
     (4)通过对五水半含水率的两个品种的花生进行力学特性试验,找到了花生荚果的破裂特征及规律。研究结果表明:含水率对花生荚果破壳力、破壳变形量、破壳破坏能均有影响,不同品种、不同受压部位、不同加载速率的花生破壳力不同。对五水平含水率的两个品种的花生米进行力学特性试验,找到了花生米的破碎特征及规律。研究结果表明:含水率对花生米破米力、破碎变形量、破米破坏能均有影响,不同品种、不同受压部位、不同加载速率的花生米破米力不同。
     (5)对脱壳后的花生米进行损伤分类,对花生米的碎裂过程进行分析,对不同损伤程度的花生米进行发芽实验,找寻不同损伤程度花生米的发芽及生长情况。
     (6)利用疲劳脱壳原理,设计研制了立锥式花生脱壳机的结构与脱壳原理,并对立锥式花生脱壳机与卧式双滚筒花生脱壳机进行了受力分析比较,得出了立锥式花生脱壳机原理的可行性。
     (7)通过对新研制的立锥式花生脱壳机与卧式双滚筒花生脱壳机的花生脱壳受力分析,得出卧式花生脱壳机主要靠打板打击脱壳,这是造成花生米损伤的主要原因;立锥式花生脱壳机脱壳时对花生荚果的作用力由起初的打击作用占主导转变为挤搓作用占主导,利用疲劳脱壳原理,降低了花生米的损伤率。
     (8)为了研究该花生脱壳机,通过花生脱壳性能试验与结果分析,建立了立锥式花生脱壳机性能参数——滚筒倾角、脱壳间隙、滚筒转速与脱壳性能指标之间的回归数学模型,并对各性能参数之间的交互作用以及各参数对脱壳指标的影响程度进行了深入的分析。
     (9)通过对立锥式花生脱壳机的主要性能参数——滚筒倾角、花生品种、滚筒转速、脱壳间隙进行正交试验,得出了立锥式花生脱壳机各性能参数与试验指标的关系,并得出了影响试验指标各参数显著性水平及主次顺序,最终得出了该装置的最优参数组合。
     本文的研究结果显示:立锥式花生脱壳机优于卧式双滚筒花生脱壳机。本文对花生脱壳机的设计具有实际的指导意义。同时,也为今后花生脱壳机械的设计和研制提供了进一步的科学指导与理论依据。
In our country peanut is an important oil and cash crops,and it is the second place after soybean in the world oil production and international trade.China's peanut acreage was 500 million hectares,which is more than 20% in the world's peanut acreage;peanut's average annual output is 14.385 million tons,which is more than 42% in the world's peanut production;annual export peanuts(kernels)、peanut products are about 70 million tons,which is 47% in the world trade and is the frist in the world.
     Whether domestic or foreign, consumption or processing, or even planting, peanuts must be shelled.In other words,the processing capacity of peanut shelling is the peanut total.Shelling peanut and damaging peanut kernels is a complex process, which is restricted by many factors, such as physics characteristics, mechanical characteristics, variety, the degree and way of compressive stress.
     The traditional way to shell peanuts is by hand, although the way shelling peanuts by hand is in low efficiency, but this method can keep peanuts off damage, by the way this way can't work as large area to growing peanuts. The efficiency of peanuts huller is ten to fifteen times than that way. However peanuts huller can't keep peanuts off damage as that hand do, it damages peanuts on a high efficiency and the damaged peanuts is almost plump seed. Broken peanuts makes low price and harmful effect. Without the protect of shuck, it is easy to infect cancer toxins——peanuts'aflatoxin. the potential harm is made by broken peanuts. So the focal point is to invent a peanuts huller that can shell efficiently and damage peanuts few.
     Textual research content belongs to content of item "Research on Shelling-Damage Mechanism and Low-loss Shelling Technology of Peanut" (code:50775151) which is granted by national natural science fund.The major contents and conclusions of the paper are as follow:
     (1) Analyzing the peanut shelling theory and the shelling device's technology, in order to offer a theory evidence for manufacturing a new peanut shelling machine. First proposed by biophysical characteristics and the fatigue shelling principle of peanut. Finally determined the vertical cone sheller design.
     (2)Based on the analysis of biological characteristics of peanut, geometrical character, dimensional distributing, kilo-grain-weight and shell thickness were measured, and the relationship between some basic physical parameter and moisture content were analyzed, results indicated that triaxial size, arithmetic mean diameter, and geometric mean diameter were all increased with the increase of moisture content, and arithmetic mean diameter, geometric mean diameter and moisture content all have influence; the sphericity has little changed with different moisture content; the peanuts'average weight of Silihong is the larger than Huayu23', but the peanuts kernels'average weight of Huayu23 is the larger than Silihong'
     (3) Mechanical properties of peanut was analyzed with three factors random class treat experiment which chose variety, placed manner, moisture content as experimental factors, and the largest breaking force for peanut and peanut'seed as experimental index, and result indicated that variety、placed manner, moisture content all have influence. the breaking force will increase with the increase of moisture content; the shelling energy and the seed's breaking energy was the fatigue experiment was measured, and results indicated that variety、moisture content all have influence. Compare of all experiments showed that:the margin rate of peanut's breaking force and seed's breaking force is the greatest. Therefore the fatigue way is a better choice.
     (4)Mechanical properties of two varieties peanut under five different moisture content was done, for seeking the damage characteristics and the law of peanut. Results showed that moisture content has influence with breaking power, breaking deformation, and breaking energy, the breaking power were different under different varieties of peanut, different load-speeds and different compression positions; mechanical properties of two varieties peanut kernels under five different moisture content was done, for seeking the damage characteristics and the law of peanut kernels. Results showed that moisture content has influence with breaking power, breaking deformation, and breaking energy, the breaking power were different under different varieties of peanut kernels, different load-speeds and different compression positions;
     (5)After shelling the peanuts were selected according to the damage.The peanuts fragmentation process was analysed.The germination test of different degrees damage peanuts was did to find the germination and growth situation of different degrees damage peanuts.
     (6)Using fatigue shelling principle, design and development the total structure and shelling principle of vertical roller cone peanut sheller. And compared stress analysis of the vertical tapered roller peanut sheller and the horizontal peanut sheller. Obtained the feasibility of peanut shelling principle of the vertical roller cone.
     (7)On the peanuts shelling stress analysis of double-roller pneumatic circulating peanut sheller and a newly developed vertical tapered roller peanut sheller, the result showed that the horizontal peanut sheller working by beating a plate was the reason for the peanut damage; When the vertical peanut sheller was working, the force on peanuts was changed from the hiting into the squeezing rub, the injury rate of peanuts was reduced by the fatigue shelling principle,
     (8) In order to further study the peanut sheller, through the peanuts performance tests and results analysis, the regression model of the performance parameters of the vertical tapered roller peanut sheller-roller obliquity, shells gap, roller's speed, and shelling performance index was established. The interaction of the performance parameters and various parameters on the influence of shelling indicators were in-depth analysised.
     (9) Through the main performance parameters of the vertical tapered roller peanut sheller-roller obliquity, peanut species, roller's speed, shells gap were experimented the orthogonal test, and the result obtained the relationship between the performance parameters and the test index of the vertical tapered roller peanut sheller and the significance level and primary and secondary order of the affecting test index parameters were obtained. Finally get The optimum parameter combination of the device
     This paper study showed that the developed vertical tapered roller peanut sheller was better than the double-roller pneumatic circulating peanut sheller. This paper has actual guiding significance for designing the peanut sheller, and further scientific guidance and theoretical basis were afford for researching the peanuts machinery.
引文
1 谢焕雄,彭宝良,张会娟,等.我国花生脱壳技术与设备概况及发展[J].江苏农业科学,2010(6):581~582.
    2 徐绍娟,汪饮,王映龙.2007.人力花生脱壳机的设计[J].安徽农业科学,35(36):12134~12136.
    3 何春薇,钱仔健,顾雄磊,等.全自动青毛豆剥壳机的研制[J].农机化研究,2010(2):117-119.
    4 李建东,尚书旗,张锡斋,等.滚筒栅条式花生脱壳装置的试验研究[J].农业技术与装备,2007(6):24-25.
    5 石怀荣,芮延年.新型锥体式花生碎壳机构的设计[J].农机化研究,2011(1):111~114.
    6 赵祖祥,周旭峰.挤压式花生剥壳机[J].农业机械,2007(6):23~23.
    7 孙永泰.花生脱壳机的工作原理与正确使用方法[J].农技服务,2006(10):44~45.
    8 马全福.花生机械化剥壳技术[J].河北农业科技,2008(17):43~43.
    9 马祥琴.花生脱壳机维护与存放常识[J].南方农机,2008(4):29~30.
    10李建东,梁宝忠,郝新明,李洋,尚书旗,等.钢齿双辊筒式花生脱壳装置的试验研究[J].农业技术与备,2008(6):33~35.
    11杜文华.带壳物料脱壳技术研究初探[J].太原师范学院学报,2003(1):58~61.
    12周瑞宝.中国花生生产加工产业现状及发展建议[J].中国油脂,2005(2):5-9.
    13林怀蔚,蒋天弟,王新章.户用多功能农机具的研制[J].农机化研究,2008(6):103~105.
    14蒋天弟,张庐陵,郑建鸿.多功能人力机具驱动机构曲柄最佳值的选取[J].农机化研究,2005(4):75~77.
    15蒋天弟,颜玄洲,陈平录.脚踏式脱粒机驱动机构的优化设计[J].农业机械学报,2006(3):169~170.
    16杨然兵,徐玉凤,尚书旗,等.2009.花生机械收获中根、茎、果节点的力学试验与分析[J].农业工程学报,25(9):127~132.
    17杨然兵,尚书旗.2010.花生果实撞击试验及分析[J].农机化研究,32(9):176~178.
    18马涛,毕建杰,王琦.山东省花生生产发展趋势与对策[J].安徽农学通报,2007(16):118~119.
    19孙同珍,尚书旗.4HQL-2型全喂入花生联合收获机摘果及清选部件的研制[J].农机化研究,2009(6):125~130.
    20刘曙光,尚书旗.4H-2型花生收获机主要参数田间试验研究[J].农机化研究,2006(12):171~173.
    21 胡志超,王海鸥,彭宝良.国内外花生收获机械化现状与发展[J].中国农机化,2006(5):40~43.
    22尚书旗,刘曙光,梁洁,等.2007.4H-2型花生收获机挖掘部件载荷试验与分析[J].农业工程学报,23(1):116-119.
    23陈艳君.我国2010年花生、花生油市场回顾暨2011年展望[J].粮食与油脂,2011(2):36~38.
    24陈艳君.2007年花生及花生油市场分析[J].粮食与油脂,2008(3):34~35.
    25 吴宝顺.我国花生产后加工工艺及设备发展研究[J].农业科技与装备,2010(6):47~50.
    26胡文广,张成松,许婷婷.2003.加快我国花生生产加工标准体系建设提高花生及其制品的质量[J].花生学报,32(增刊):34-41.
    27杨方飞,阎楚良.2008.谷物在纵向轴流滚筒脱粒空间中的运动状态分析[J].农业机械学报,39(11):48~50.
    28胡志超,王海鸥,王建楠,等.4HLB-2型半喂入花生联合收获机试验[J]农业机械学报,2010,(04): 79-84.
    29陈书法,李耀明,孙星钊.花生联合收获机挖掘装置的设计研究[J].中国农机化,2005,(01):47~49.
    30胡志超,王海鸥,胡良龙.我国花生生产机械化技术[J].农机化研究,2010,(04):240-243.
    31 杨然兵,尚书旗.花生联合收获机柔性夹持装置设计与试验[J].农业机械学报,2010,(8):67-71.
    32 王伯凯,吴努,胡志超,等.国内外花生收获机械发展历程与发展思路[J].中国农机化,2011,(04):6-9.
    33顾峰玮,胡志超,彭宝良,等.国内花生种植概况与生产机械化发展对策[J].中国农机化,2010,(03):8-10.
    34耿端阳.卧式双滚筒花生摘果装置的设计[J].农机化研究,2008(1):98-101.
    35尚书旗,李国莹,杨然兵,等.2009.4HQL-2型全喂入花生联合收获机的研制[J].农业工程学报,25(06):125~130.
    36李建东,尚书旗,李西振,等.2006.我国花生脱壳机械研究应用现状及进展[J].花生学报.35(4):3~27.
    37李建东.2007.花生脱壳装置的试验研究[D].青岛:莱阳农学院机电工程学院.
    38包秀辉,喻杰,高连兴.2008.花生米静压破损试验研究[J].沈阳农业大学学报,39(4):506~508.
    39包秀辉.2007.花生脱壳力学特性及双辊式脱壳机方案研究[D].沈阳:沈阳农业大学.
    40那雪姣.2010.花生脱壳损伤特征规律及立式薄层脱壳装置研究[D].沈阳:沈阳农业大学.
    41那雪姣,刘明国,高连兴.等.2010.机械脱壳时花生仁损伤特征及规律[J].农业工程学报,26(5):117~121.
    42李国强.2007.半喂入式花生摘果机的研制[D].北京:中国农业大学.
    43唐志红,梁桂芝,蒋复.2001.花生高产栽培技术[M].北京:金盾出版社.
    44程献丽,高连兴,刘明国,等.2009.花生冲击力学特性试验[J].沈阳农业大学学报,40(1):111-113.
    45程献丽.2009.花生机械特性研究与新型脱壳装置的设计[D].沈阳.沈阳农业大学.
    46周瑞宝.2005.中国花生生产、加工产业现状及发展建议[J].中国油脂,30(2):5~9.
    47邵长亮,王铭伦.2003.关于花生产业化发展的几点思考[J].花生学报,32:73~76.
    48刘明国,杜鑫.高连兴.等.花生脱壳机械化对辽宁花生产业的影响[J].农机化研究,2010,10:222~225.
    49刘明国,杜鑫,高连兴.等.2010.花生疲劳脱壳试验研究[J].沈阳农业大学学报,41(3):317~320.
    50姜慧芳,任小平,王圣玉,等.2006.花生黄曲霉侵染抗性、持久性及种皮完整性对产毒的影响[J].作物学报,32(16);851~855.
    51刘红力,张永丽,高连兴,等.2006.花生脱壳力学特性试验[J].沈阳农业大学学报,37(6):900~902.
    52刘红力.2007.花生脱壳特性与损伤机理研究[D].沈阳:沈阳农业大学工程学院.
    53王耀波,张艺兵,张鹏,等.2003.入世后中国花生产业发展前景及促进出口的对策[J].花生学报,32(3):24~29.
    54王延耀,张岩等.1998.气爆式花生脱壳性能的试验研究[J].农业工程学报,14(1):222~227.
    55尚书旗,刘曙光,等.2005.花生生产机械的研究现状与进展分析[J].农业机械学报,36(3):144-147.
    56尚书旗,王方艳,刘曙光,等.2004.花生收获机械的研究现状与发展趋势[J].农业工程学报,20(1):20~25.
    57李德谦,柳凤敏.2006.略论辽宁花生生产及发展[J].辽宁农业职业技术学院学报,8(4):35~36.
    58 王巍,于洪波,杨会全,等.2005.辽宁花生生产的过去与未来[J].花生学报,34(2):23~26.
    59王灵军,全燕鸣,邓文君.2003.银杏脱壳的有限元受力分析[J].农业工程学报,19(4):58-61.
    60张效鹏,张嘉玉.1990.花生脱壳机的不同部件对脱壳性能的影响[J].莱阳农学院学报,7(1):70~73.
    61万书波.1998.我国花生生产现状与应策[J].两高一优农业及农业产业业化论文集.
    62万书波.1996.重视与加强我国的花生生产[J].科技导读.
    63王移收.2006.我国花生产品加工业现状、问题及发展趋势[J].中国油料作物学报,28(4):498~502.
    64杨雪银等.2006.板栗破壳力学特性的影响因素研究.郑州轻工业学院学报,21(3):61-64.
    65杨志良等.1991.松籽几何、力学特性及崩壳方式的研究.东北重型机械学院学报,13(1):24-29.
    66刘木华,吴彦红等.1999.莲子物理机械特性试验研究.江西农业大学学报,21(3):425~428.
    67卢立新,王志伟.2005.基于准静态压缩的果实黏弹塑性模型.农业工程学报,21(12):30-33.
    68陆秋君等.2001.黄花梨的动态特性试验研究.浙江大学学报.27(3):330-334.
    69栾玉振.1991.松籽壳体的几何特性和压缩破坏的试验研究.试验技术与试验机,38(4):13-15.
    70栾玉振等.1994.松籽壳体工程特性参数的测试与静力有限元计算.农业机械学报,25(2):50-55.
    71马小愚,雷得天.1999.东北地区大豆与小麦籽粒的力学—流变学性质研究.农业工程学报,15(3):70-75.
    72马小愚,雷得天.1988.大豆籽粒力学性质的试验研究.农业机械学报,(3):69-75.
    73蒋奕心,蒋磊.2000.卧式同步锥辊破碎机中物料的受力与运动分析[J].洛阳工学院学报,21(3):21~24.
    74董如何,肖必华,方永水.2004.正交试验设计的理论分析方法与应用[J].安徽建筑工业学院学报,12(6):103~106.
    75李晓霞,郭玉明.2007.带壳物料脱壳方法及脱壳装备现状与分析[J].农产品加工学刊,4(4):84~86.
    76喻杰,包秀辉.2009.常用花生脱壳机的分析研究[J].农业科技与装备.1:114~118.
    77张智猛,胡文广,许婷婷,等.2005.中国花生生产的发展与优势分析[J].花生学报,34(3):6~10.
    78胡志超,陈有庆,王海鸥,等.2008.振动筛式花生收获机的设计与试验[J].农业工程学报,24(10):114-117.
    79李心平,高连兴,马福丽,等.2007.玉米种子冲击损伤的试验研究[J].沈阳农业大学学报,38(1):89~93.
    80李心平,高连兴.2005.玉米种子脱离特性的试验研究[J].农机化研究,142(2):156~158.
    81李心平,马福丽,高连兴.2009.玉米种子的跌落式冲击试验[J]农业工程学报,25(1):113~116.
    82袁巧霞.2001.我国坚果脱壳机现状及亟待解决的技术问题[J].机械化研究,(3):9~10.
    83原重献,程延林.1991.花生剥壳机剥壳部件试验研究[J].农牧与食品机械,(3):19~21.
    84占佳风,邓秋华.2003.大豆脱皮方法的比较.中国油脂,28(2):12-13.
    85张永丽,高连兴,2007.玉米种子煎切破碎的试验研究[J],农机化研究,145(5):136~138.
    86张嘉玉,王延耀,连政国,等.1996.橡胶滚筒橡胶直板脱壳装置[J].农业机械学报,27(2):66~69.
    87张嘉玉,张兰枝,王延耀,等.1994.花生气爆脱壳试验的初步研究[J].莱阳农学院学报,11(2):158~160.
    88张建成.1999.加入世界贸易组织对花生产业的影响及对策[J].花生科技,(增刊):33~36.
    89周旭,李心平,高连兴.2005.两种脱粒滚筒的玉米籽粒损伤试验研究[J].沈阳农业大学学报,36(6):756~758.
    90周雪松,赵谋明.2004.我国花生食品产业现状与发展趋势[J].食品与发酵工业,30(6):84~89.
    91周祖鄂,郭其寨.1995.杏核物理特性的试验研究[J].北京农业工程大学学报,15(1):31~34.
    92朱立学.等.2000.小粒径油料种子去壳方法比较研究[J].粮食加工与食品机械.(5):18~21.
    93朱立学,等.2002.小粒径种子碾搓法破壳装置结构参数与破壳效果相关性的研允[J].粮食与饲料工业,(4):12~14.
    94李加恩.2004.如休正确使用花生脱壳机[J].农村实用技术,(05):54.
    95谢方平,罗锡文,苏爱华.2005.刚性弓齿与杆齿及柔性齿的脱粒对比试验[J].湖南农业大学学报,31(6):648~650.
    96李漫江等.2004.脱粒机械与脱粒装置[J].机械化研究,(2):124~125.
    97李小星,王伟.1998.苹果压缩特性的研究[J].西北农业大学学报,26(2):107~110.
    98李小昱等.1997.苹果蠕变特性与静载损伤机理的研究[J].西北农业大学学报,25(6):64-68.
    99李耀明,徐立章,邓玲黎等.2005.复脱分离装置的理论分析及试验[J].农业机械学报,36(11)55-59.
    100下盛玉,2007.花生生产全程机械化技术应用[J].农机科技推广,3:36.
    101杨玉栋,杨瑞武,等.2007.花生脱壳机[J]湖南农机,12(28).
    102吴多峰,许峰,袁长胜.2006.板齿式与钉齿式玉米脱粒机的性能比较[J].农机化研究,138(10):78-80.
    103贾灿纯,李业波.1996.缓苏过程中玉米颗粒内部水分分布的数学模拟[J].农业工程学报,12(1):147-151.
    104张认成,桑正中.2000.轴流脱粒空间谷物运动仿真研究[J].农业机械学报,31(1):55~58.
    105闸建文,陈永艳.2004.基于外部特征的玉米品种计算机识别系统[J].农业机械学报,35(6):115~118.
    106权龙哲,马小愚.2006.基于小波分析的玉米籽粒图像正形研究[J].农机化研究,(2):154~156.
    107张认成,桑正中.2000.轴流脱粒滚筒模糊控制仿真[J].农业机械学报,32(2):45~48.
    108闸建文,孙玉峰.2003.利用扫描仪获取种子图像的研究[J].农机化研究,(2):93-95.
    109师清翔,刘师多.1996.水稻的控速喂入柔性脱粒试验研究[J].农业机械学报,27(1):41~46.
    110连政国,曹崇文.1998.离心式玉米破碎敏感性测试仪设计和性能测试[J].农业机械学报,28(2):76-79.
    111杨大平,刘保花.2003.带振动筛板脱粒机的研究[J].湖南农业大学学报,20(2):183-164.
    112张认成,桑正中.2000.轴流脱粒空间谷物动力学仿真[J].农机化研究,(4):36-40.
    113谢方平.2004.水稻半喂入柔性脱粒机理研究[D].华南农业大学.
    114尹文庆.1999.摘脱装置工作过程与谷物脱粒特性的研究[D].南京农业大学.
    115王荣,魏德强.2006.葡萄果实在压缩载荷作用下的力学模型[J].农业工程学报,22(10):26-30.
    116万霖,衣淑娟,马永财.2005.纵置单轴流滚筒脱粒与分离装置功耗性能试验研究[J].黑龙江八一农垦大学学报,17(2):56-58.
    117朱文学,曹崇文.1996.自然晾晒玉米显微结构分析[J].中国农业大学学报,1(1):49-54.
    118何晓鹏.2006.大工喂入式鲜食甜玉米籽粒切脱机的研制[J].农业工程学报,22(4):99-102.
    119季世军,张会臣,刘莎.2003.玉米籽粒装卸过程中破碎粉化行为研究[J].大连海事大学学报,29(3):39-42.
    120袁月明,栾玉振.1996.玉米籽粒力学性质的试验研究[J].吉林农业大学学报,18(4):75-78.
    121袁月明,李云飞,栾玉振.1994.玉米籽粒的几何特征和抗破裂性的试验研究[J].试验技术与试验机,34(5):30~34.
    122胡鸿烈,送卫堂,曹爱军.1995.夏玉米直接脱粒收获技术的试验研究[J].北京农业大学学报,21(4):458~451.
    123李明,汤楚宙,谢方平.2005.毛桃苗力学特性试验研究[J].农业工程学报,21(3):29-33.
    124王俊.1994.桃子冲击力学特性及其与桃子硬度的数学模型[J].农业机械学报,25(4):58-62.
    125季世军,刘莎,张会臣.2004.玉米籽粒港口运输过程中破碎粉化成因分析[J].大连海事大学学报,30(2):93~95.
    126孙君茂.2008.花生产业的发展机遇与实现途径[J].中国食物与营养,(12):21-22.
    127郑传祥.2003.莲子脱壳机设计与试验[J].农业机械学报,34(5):106-108.
    128周雪松,赵谋明.2004.我国花生食品产业现状与发展趋势[J].食品与发酵工业,30(6):84-89.
    129封海胜,万书波.1999.花生栽培新技术100问[M].中国农业出版社.
    130董昭和,耿文清.2000.花生、大豆、油菜、芝麻施肥技术[M].北京:金盾出版社.
    1314H~2型花生收获机鉴定材料[J].2002.莱阳农学院机电研究所.12.
    132王忠泽.2003.青岛市花生机械化现状与发展对策[J].花生学报,32(增刊):518~520.
    133孙进.2005.谷物脱粒损伤机理的研究现状及分析[J].农业装备技术,831(4):25-26.
    134赵作善.1992.试验设计讲义[M].北京:北京农业工程大学教学教研室.
    135袁志发,周静芋主编.2000.试验设计与分析[M].高等教育出版社.
    136茆诗松.1978.回归分析及其试验设计[M].上海教育出版社.
    137蔡兴旺.1998.旋转回归设计在农机试验中的应用[J].农业工程学报,14(2):54-58.
    138何月娥.1986.农机试验设计[M].北京:机械工业出版社.
    139黄玉碧,明道绪,荣廷昭.三因素随机区组试验结果的二次回归分析法[J].四川农业大学学报,1997,15(4):424-430.
    140 E.Guzel.2005.Research on the fatigue behavior for peanut shelling. Journal of Food Engineering(67):373-378.
    141 Schoorl D,Holt JE.1980.Bruise resistance measurements in apples. Journal of Texture Studies,11(4):389-394.
    142 C B Richey.1961.Agricultural Engineer'Handbook[M].New York,21-34.
    143 Liang Tung,Chou Jason,Ronald Knapp.1998.Notching and Freezing effect on macadamia nut kernel Recovery[J]. Journal of Agricultural Engineering Research,41(10):43-52.
    144 Park Kim Choo.1986.Effect of Heat~moisture Treatment on Physicochemical Properties of Chest nuts tarch Korean Journalof Food Science and Technology,18,(6):437-442.
    145 Floyd E.Dowell.1992.Automatic control of a peanut grade sample inspection system Food control,3(2):105-109.
    146Holt JE,Schoorl D Lucas C.1981.Prediction of bruising in impacted multilayered apple pack. Transactions of the ASAE,24(1):242-247.
    147 A.Shahin,B.P.Verma,E.W. Fuzzy Logical Model for Predicting Peanut Maturetym. Tollner Voll. 43(2):483-490.
    148 Ralph Hughes~John Deere.1997. Peanut Combines.Machingery Feature:1-6.
    149Nakanishi,T.1987. The history and present advances. Peanut Breeding:467-477.
    150 Ali R.Mahmoud and W.F.Buchele.1975.Corn Ear Orientation Effects on Mechanical Damage and Forces on Concave.TRANSACTION of the ASAE,18(3):55-59.
    151L.A.Balastreire, F.L.Herum, K.K.stevens.1982.Fracture of Corn Endosperm in Bending (part 1. Fracture Parameters).TRANSACTIONS of the ASAE,22(4):1057-1062.
    152Luiz.A.Balastreire, F.L.Herum, J.L.Blaisdell.1982.Fracture of Corn Endosperm in Bending (part 2.Fracture Analysis by Fractography and Optical Microscopy).TRANSACTIONS of the ASAE, 22(4):1062-1065.
    153Lenker.D.H.PA.Adrian and D.E.Wilkins.1976.Development of a mechanical cauliflower selector. Transactions of the ASAE,19(2):202-205.
    154Mofazzal H.Chowdhury and Wesley F.Buchele.1975.Effects of Operating Parameters of the Rubber Roller Sheller.TRANSACTIONS of the ASAE,20(3):97-103.
    155Hamid F.Al~Jalil, Stephen J.Marley and Mofazzal H.Chowdhury.1980.Laboratory Studies of a Low~Damage Corn~Shelling Machine.TRANSACTION of the ASAE,23(2):278-283.
    156 Ronald W.Brass, Stephen J.Marley.1973.Roller Sheller:Low Damage Corn Shelling Cylinder.TRANSACTION of the ASAE,16(2):64-66.
    157 B.prokhazka.akoletkiv.1998.Study The Broken Maize Grain on Tangential Thersher.TRANSACTION of the ASAE,20(5):117-119.
    158 T. H.Burkhardt, B.A.Stout.1974.Laboratory Investigations of corn Shelling Utilizing High~Velocity Impact Loading.TRANSACTION of the ASAE,17(3):11-14.
    159 Ali R.Mahmoud, W.F.Buchele.1975.Distribution of shelled Corn Throughput and Mechanical Damage Cylinder.TRANSACTION of the ASAE,18(3):448-452.
    160 S.Gunasekaran, S.S.Deshpnde, M.R.Paulsen.1985.Sise characterization of Stress Cracks in Corn Kernels.TRANSACTION of the ASAE,28(5):1668-1672.
    161 S.S.Singh, M.F.Finner.1983.A centrifugal Impacter for Damage Susceptibility Evaluation of shelled Corn.TRANSACTION of the ASAE,26(6):1858-1863.
    162 J.Liu, M. R.Paulsen.2000.Corn Whiteness Measurement and Classification Using Machine Vision.TRANSACTION of the ASAE,43 (3):757-763.
    163 K.Muthukumarappan, S.Gunasekaran.1994.Moisture Diffusivity of Corn Kernel Components During Adsorption (part 3:Soft and Hard Endosperms).TRANSACTION of the ASAE,37(4):1275-1280.
    164 K.Muthukumarappan, S.Gunasekaran.1996.Finite Element Simulation of Corn Moisture Adsorption.TRANSACTION of the ASAE,39(8):2217-2222.