微细钻削铣削关键技术及应用基础研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着科学技术的发展,微小零件和装置的需求在不断增加。零件的尺度不断减小,这给机械加工带来了新的挑战,微细切削技术也随之发展起来。微细切削中的尺寸效应、刀具强度、刃口强度以及加工质量控制等是微细切削研究的核心问题。
     本文以PCB微孔钻削和金属微细铣削为研究对象,以微细切削加工质量控制为研究目标,对微细切削过程中涉及的材料去除机理、尺寸效应、微细刀具的失效机理、微细刀具的结构设计和优化、微细切削工艺的优化等方面进行了研究,主要研究内容与创新之处总结如下:
     (1)研发三轴精密微细切削实验平台
     针对课题的研究需求独立设计研制了一台超高速三轴立式微细加工平台。该平台最高主轴转速达到300000rev/min,是目前同类实验平台中最高的。为了使高速电主轴在运行过程中的稳定性,选择了合理的电机布置方案并采用了大理石床身以提高系统刚性。该平台采用分辨率为0.1微米的光栅,重复定位误差为±1m,最大运行速度300mm/s,能够实现三轴联动。平台精度测试结果表明微细切削平台精度已经达到设计要求。
     (2)微细毛刺形成机理及抑制策略
     通过切削有限元和微细切削试验研究了微细铣削中的材料去除机理、以及毛刺形成机理。微细切削有限元仿真结果表明微细毛刺的尺寸随着刃口半径和未切切削厚度的增大而增大。摩擦系数增大对毛刺尺寸影响不大。增大切出角可以明显降低毛刺尺寸。通过PCB微孔钻削实验研究了PCB毛刺的形成机理及加工参数对PCB微细毛刺形成的影响。PCB钻削毛刺的入口毛刺和出口毛刺有所不同。在入口处主要是泊松毛刺。而出口处形成了侧翻毛刺。通过统计分析不同加工参数下的毛刺尺寸可知进给对毛刺尺寸的影响大于主轴转速的变化。
     (3)PCB微孔钻削尺度效应及钻削力分析建模
     PCB微孔钻削中的尺寸效应对钻削扭矩有明显的影响。通过计算不同进给下的切削比能发现,切削比能随着进给增大而减小。分析结果表明,每转进给量大于5微米后,钻削进入稳态过程。在钻削实验数据的基础上建立了PCB微细钻孔轴向力和扭矩的预测模型,验证实验结果表明预测模型与实验数据较为接近。针对直径0.4mm和0.6mm的微钻进行了预钻孔实验。实验结果表明横刃产生的轴向力占总轴向力的50%以上,尤其在钻削GFRP时横刃产生的轴向力占总轴向力的70%以上。
     (4)建立微细刀具刃口应力计算公式
     首先建立了D型微细铣刀的数学模型,得出了D型微铣刀的前角公式。实现了在给定刀具半径和前角的情况下的能够得到刀具结构参数。通过有限元分析方法对刀具结构进行优化。其次根据PCB微钻主刃和横刃区域受力分析建立了微钻刃口应力计算公式。在此公式基础上,以刀具材料的屈服强度为设计准则,建立微细钻头的刃口最小钝圆半径设计公式。最后提出了改进微钻刃口设计的具体方法,即依据临界切削厚度来设计刃口半径,并使微钻横刃的刃口半径大于主刃,在保证刃口强度可靠的前提下,使两个区域刃口都处在稳态剪切状态中,使刀具工作状态平稳。
     (5)基于模糊神经网络模型的刀具磨损状态的识别
     由于BP神经网络模型自身存在的收敛慢、局部最小值等缺陷,并不适应于微细刀具的实时监测。因此本研究采用模糊神经网络法建立了刀具磨损预测模型。通过对模型的训练与测试,可知模型实际输出结果与理想输出值吻合,验证了模糊神经网络应用于刀具状态监测,特别是实时在线监测的可行性。
     (6)微细加工质量控制策略的研究
     针对不同的微细加工对象,本文总结出了不同的加工质量控制方法。在抑制金属微细铣削毛刺方面,本研究提出以增大切出角的方式抑制微细铣削毛刺的形成。针对PCB板钻削,本文介绍了两种提高钻削质量方式,其一是优化刀具结构,其二是优化工艺参数。本研究通过满意度函数法,分别对刀具结构和钻削工艺参数进行了优化,得到的优化结果达到了优化目标。
The demand of micro-components and micro-machine are increasing duo to the development ofmicro-electronic and precision instruments industry. The size of micro-components is getting moreand more smaller which cause many new problems in manufacturing of micro-components. In orderto solve these problems, micro-cutting technology develops in recent years. The key point inmicro-cutting technology involves size effect, tool strength, tool radius strength and control ofmachining quality.
     The objective of this research is to study the mechanism of material removal process, sizeeffect, tool failure and optimize the tool geometry and manufacturing process in micro-drilling ofprinted circuit board and milling of alloy. The main contents and innovations are as followings:
     (1) Development of3-axis micro-cutting machine tool
     A3-axis micro-cutting machine tool was developed for the investigation of micro-cuttingtechnology. The maximum spindle speed is300000rev/min and the maximum moving speed is300mm/s. Some tests were carried out to analyze the performance of machine tool. The items oftests involve position accuracy, spindle error and natural frequency of frame. The results showedthat this machine met the requirements of micro-cutting experiments.
     (2) The mechanism and control of micro-burr formation
     The mechanism of material removal process and micro-burr formation was investigatedthrough FEM simulation and micro-cutting experiments. The results of FEM simulation showedthat the burr size increased when tool edge radius increased. The friction coefficient has no obviouseffect on burr size. The increasing of exit angle can miniaturize the burr size. The experiments ofmicro-drilling of PCB were carried out to investigate the formation of micro-drilling burr. Theexperimental results showed that the entry burrs and exit burrs have different morphologies with thegeneration of entry burrs being mainly caused by burr bending, whereas the generation of an exitburr was more complicated. The effect of feed on burr size was bigger than sindle speed.
     (3) Size effect in micro-drilling of PCB and modeling of thrust force and torque
     The size effect of micro-drilling of PCB can be expressed by variation of torque. Thecalculated specific cutting energy decreased when feed increased. The experimental results showed that the specific cutting energy become constant when feed per tooth exceed5m. The empiricalmodel of thrust force and torque were established according to the drilling experiments. The resultsof the verification test showed that the established models had good agreement with experimentaldata. The experiments of drilling pilot hole with0.4mm and0.6mm micro-drill bits were carried out.The experimental results showed that the thrust force generated by chisel edge is50%of the wholethrust force. At the stage drilling GFRP, over70%of the trust force was generated by chisel edge.
     (4) Modeling of micro-tool geometry and design of tool edge radius
     Firstly, a mathematical model of D-type micro-milling tool and the equation of calculating rakeangle were established. By these models, a D-type micro-tool can be designed by giving tool radiusand rake angle. After that, the geometric parameters of micro-tool were optimized by FEM method.Secondly, the equation of calculating stresses was established by analyzing drilling force. After that,a method of designing tool edge radius was given.
     (5) Investigation of tool wear condition monitoring based on Fuzzy neural network
     Duo to the defect of slow convergence, BP neural network method was not fit for on-line toolmonitoring. Fuzzy neural network (FNN) method was used in this research to establish a predictionmodel for tool monitoring. This model was developed by training process, the results of verificationtests showed that the predicted output results had good agreement with ideal output results. It can beconcluded that FNN method is fit for on-line tool monitoring.
     (6) The strategies of controlling micro-machining quality
     In order to improve the machining quality, this paper gave different method for respectivemicro-machining processes. To mill the titanium alloy, minimum quantity lubrication (MQL)technology was advised. The experimental results showed that MQL can decrease burr formationand tool wear. To decrease burr formation in micro-milling, increasing exit angle is feasible. Toimprove the quality of drilling PCB, the optimization of tool geometry and machining parameterswere feasible. Composite desirability method was used to optimize the tool geometry and drillingparameters.
引文
[1]张少婧,徐宗伟,房丰洲,胡小唐.基于聚焦离子束铣削技术的微刀具制备[J].天津大学学报.2010,43(5): pp.469-472.
    [2] R. Komanduri, Z.B. Hou. Thermal modeling of the metal cutting process—Part II: temperaturerise distribution due to frictional heat source at the tool–chip interface[J]. International Journal ofMechanical Sciences.2001,43(1): pp.57-88.
    [3] X. Wang, L.J. Wang, J.P. Tao. Investigation on thrust in vibration drilling of fiber-reinforcedplastics[J]. Journal of Materials Processing Technology.2004,148(2): pp.239-244.
    [4] H. Ding, S.-J. Chen, K. Cheng. Dynamic surface generation modeling of two-dimensionalvibration-assisted micro-end-milling[J]. The International Journal of Advanced ManufacturingTechnology.2010,53(9-12): pp.1075-1079.
    [5] G.-L. Chern, Y.-C. Chang. Using two-dimensional vibration cutting for micro-milling[J]. Int. J.Mach. Tools Mf.2006,46(6): pp.659-666.
    [6] R. Ibrahim, R. Bateman, K. Cheng, C. Wang, J. Au. Design and analysis of a desktopmicro-machine for vibration-assisted micromachining[J]. Proc. IMechE, Part B.2011,225(8): pp.1377-1391.
    [7] P. Li, J. Oosterling, A. Hoogstrate, H. Langen, R. Munnig Schmidt. Design of micro squareendmills for hard milling applications[J]. Int. J.Adv. Manuf. Technol.2011,57(9-12): pp.859-870.
    [8] S. De Cristofaro, N. Funaro, G.C. Feriti, M. Rostagno, M. Comoglio, A. Merlo, C. Stefanini, P.Dario. High-speed micro-milling: Novel coatings for tool wear reduction[J]. Int. J. Mach. Tools Mf.2012,63(0): pp.16-20.
    [9] I. Park, D. Dornfeld. A study of burr formation processes using the finite element method: partII-The influences of exit angle, rake angle, and backup material on burr formation processes[J].Journal of engineering materials and technology.2000,122(2): pp.229-237.
    [10]黄逊彬.开放式微细切削数控系统研究[博士学位论文].南京航空航天大学,2012.
    [11]吴继华,王文奎.微切削已加工表面残余应力预测[J].工具技术.2011,45(12): pp.
    [12] M. Weber, T. Hochrainer, P. Gumbsch, H. Autenrieth, L. Delonnoy, V. Schulze, D. L he, J.Kotschenreuther, J. Fleischer. Investigation of size-effects in machining with geometrically definedcutting edges[J]. Machining Science and Technology.2007,11(4): pp.447-473.
    [13]张卫锋,张福霞,刘俐华,王为波.基于MATLAB的微细铣削力分析[J].机床与液压.2010,38(23): pp.125-130.
    [14] X. Zheng, Z. Liu, Q. An, X. Wang, Z. Xu, M. Chen. Experimental investigation ofmicrodrilling of printed circuit board[J]. Circuit World.2013,39(2): pp.82-94.
    [15] X. Zheng, D. Dong, L. Huang, Q. An, X. Wang, M. Chen. Research on fixture hole drillingquality of printed circuit board[J]. International Journal of Precision Engineering andManufacturing.2013,14(4): pp.525-534.
    [16] G. Chen, C. Ren, P. Zhang, K. Cui, Y. Li. Measurement and finite element simulation ofmicro-cutting temperatures of tool tip and workpiece[J]. Int. J. Mach. Tools Mf.2013(75):pp.16-26.
    [17]周志雄,李伟,宋铁军,黄向明.微细切削加工用微主轴的性能要求及其研究现状[J].机械工程学报.2011,47(19): pp.149-157.
    [18] P. Sriyotha, K. Nakamoto, M. Sugai, K. Yamazaki. Development of5-Axis Linear MotorDriven Super-Precision Machine[J]. CIRP Annals-Manufacturing Technology.2006,55(1): pp.381-384.
    [19] N. Taniguchi. Current Status in and Future Trends of Ultraprecision Machining and UltrafineMaterials Processing[J]. Annals of the CIRP.1983,32(2): pp.573-582.
    [20] J. Corbett, McKeown, P.A., Peggs, G.N. Nanotechnology: International Developments andEmerging Products[J]. Annals of the CIRP.2000,49(2): pp.523-545.
    [21]白清顺,刘立飞,卢礼华,杨凯,梁迎春.微细铣削圆弧槽微结构时的微毛刺分析及预测[J].机械设计与制造.2011,11: pp.229-231.
    [22]刘志兵,王西彬.微细切削刀具及其相关技术研究进展[J].中国机械工程.2010,21(14):pp.1758-1763.
    [23] M.S. Uddin, K.H.W. Seah, M. Rahman, X.P. Li, K. Liu. Performance of single crystal diamondtools in ductile mode cutting of silicon[J]. Journal of Materials Processing Technology.2007,185(1-3): pp.24-30.
    [24]宗文俊,孙涛,李旦,董申,程凯.超精密切削单晶硅的刀具磨损机理[J].纳米技术与精密工程.2009,7(3): pp.270-274.
    [25] J. Chae, S.S. Park, T. Freiheit. Investigation of micro-cutting operations[J]. Int. J. Mach. ToolsMf.2006,46(3-4): pp.313-332.
    [26] M.P. Vogler, R.E. DeVor, S.G. Kapoor. On the Modeling and Analysis of MachiningPerformance in Micro-Endmilling, Part I: Surface Generation[J]. Journal of Manufacturing Scienceand Engineering.2004,126(4): pp.685.
    [27] K. Liu, X.P. Li, M. Rahman. Characteristics of high speed micro-cutting of tungsten carbide[J].Journal of Materials Processing Technology.2003,140(1-3): pp.352-357.
    [28]张幼祯.金属切削理论.北京:航空工业出版社,1988.
    [29] W.Y. Bao, I.N. Tansel. Modeling micro-end-milling operations. Part I: analytical cutting forcemodel[J]. Int. J. Mach. Tools Mf.2000,40(15): pp.2155-2173.
    [30] M.P. Vogler, S.G. Kapoor, R.E. DeVor. On the Modeling and Analysis of MachiningPerformance in Micro-Endmilling, Part II: Cutting Force Prediction[J]. Journal of ManufacturingScience and Engineering.2004,126(4): pp.695.
    [31] E.J.A. Armarego. AGENERIC MECHANICS OF CUTTING APPROACH TO PREDICTIVETECHNOLOGICAL PERFORMANCE MODELING OF THE WIDE SPECTRUM OFMACHINING OPERATIONS[J]. Machining Science and Technology.1998,2(2): pp.191-211.
    [32] G. Bissacco, H.N. Hansen, J. Slunsky. Modelling the cutting edge radius size effect for forceprediction in micro milling[J]. CIRP Annals-Manufacturing Technology.2008,57(1): pp.113-116.
    [33] S. Venkatachalam, S.Y. Liang. Effects of Ploughing Forces and Friction Coefficient inMicroscale Machining[J]. Journal of Manufacturing Science and Engineering.2007,129(2): pp.274.
    [34] G. Newby, S. Venkatachalam, S.Y. Liang. Empirical analysis of cutting force constants inmicro-end-milling operations[J]. Journal of Materials Processing Technology.2007,192–193(0):pp.41-47.
    [35] M. Malekian, S.S. Park, M.B.G. Jun. Modeling of dynamic micro-milling cutting forces[J]. Int.J. Mach. Tools Mf.2009,49(7–8): pp.586-598.
    [36] C. Li, X. Lai, H. Li, J. Ni. Modeling of three-dimensional cutting forces inmicro-end-milling[J]. Journal of Micromechanics and Microengineering.2007,17(4): pp.671-678.
    [37] C.-S. Chang. Prediction of the cutting temperatures of stainless steel with chamfered maincutting edge tools[J]. Journal of Materials Processing Technology.2007,190(1–3): pp.332-341.
    [38] M. Nasr, E.G. Ng, M. Elbestawi. Effects of workpiece thermal properties onmachining-induced residual stresses-Thermal softening and conductivity[J]. Proc. IMechE, Part B.2007,221(9): pp.1387-1400.
    [39] K. Liu, S.N. Melkote. Finite element analysis of the influence of tool edge radius on size effectin orthogonal micro-cutting process[J]. International Journal of Mechanical Sciences.2007,49(5):pp.650-660.
    [40] S. Subbiah, S.N. Melkote. Effect of finite edge radius on ductile fracture ahead of the cuttingtool edge in micro-cutting of Al2024-T3[J]. Materials Science and Engineering: A.2008,474(1–2):pp.283-300.
    [41] R.E.D. X. Liu, S. G. Kapoor. An Analytical Model for the Prediction of Minimum ChipThickness in Micromachining[J]. Transactions of the ASME.2006,128pp.474-481.
    [42] Z. Zhang, V.I. Babitsky. Finite element modeling of a micro-drill and experiments on highspeed ultrasonically assisted micro-drilling[J]. Journal of Sound and Vibration.2011,330(10): pp.2124-2137.
    [43]张翔.小型五轴联动机床介观尺寸铣削加工及其相关模型的研究[博士学位论文].哈尔滨工业大学,2011, pp.17-20.
    [44] W. Konig, K. Kutzner, U. Schehl. Tool monitoring of small drills with acoustic emission[J].International Journal of Machine Tools and Manufacturing.1992,32: pp.487–493.
    [45] I. Tansel, O. Rodriguez, M. Trujillo, E. Paz, W. Li. Micro-end-milling—I. Wear andbreakage[J]. Int. J. Mach. Tools Mf.1998,38(12): pp.1419-1436.
    [46] I. Tansel, A. Nedbouyan, M. Trujillo, B. Tansel. Micro-end-milling—II. Extending tool lifewith a Smart Workpiece Holder (SWH)[J]. Int. J. Mach. Tools Mf.1998,38(12): pp.1437-1448.
    [47] I. Tansel, M. Trujillo, A. Nedbouyan, C. Velez, W.-Y. Bao, T.T. Arkan, B. Tansel.Micro-end-milling—III. Wear estimation and tool breakage detection using acoustic emissionsignals[J]. Int. J. Mach. Tools Mf.1998,38(12): pp.1449-1466.
    [48] I.N. Tansel, T.T. Arkan, W.Y. Bao, N. Mahendrakar, B. Shisler, D. Smith, M. McCool. Toolwear estimation in micro-machining.: Part I: tool usage–cutting force relationship[J]. Int. J. Mach.Tools Mf.2000,40(4): pp.599-608.
    [49] I.N. Tansel, T.T. Arkan, W.Y. Bao, N. Mahendrakar, B. Shisler, D. Smith, M. McCool. Toolwear estimation in micro-machining.: Part II: neural-network-based periodic inspector fornon-metals[J]. Int. J. Mach. Tools Mf.2000,40(4): pp.609-620.
    [50] M. Malekian, S.S. Park, M.B.G. Jun. Tool wear monitoring of micro-milling operations[J].Journal of Materials Processing Technology.2009,209(10): pp.4903-4914.
    [51] K. Jemielniak, P.J. Arrazola. Application of AE and cutting force signals in tool conditionmonitoring in micro-milling[J]. CIRP Journal of Manufacturing Science and Technology.2008,1(2): pp.97-102.
    [52] X.J. Cai, Z.Q. Liu, M. Chen, Q.L. An. An experimental investigation on effects of minimumquantity lubrication oil supply rate in high-speed end milling of Ti–6Al–4V[J]. Proc. IMechE, PartB.2012,226(11): pp.1784-1792.
    [53] Z.Q. Liu, X.J. Cai, M. Chen, Q.L. An. Investigation of cutting force and temperature ofend-milling Ti-6Al-4V with different minimum quantity lubrication (MQL) parameters[J]. Proc.IMechE, Part B.2011,225(8): pp.1273-1279.
    [54] M.B.G. Jun, S.S. Joshi, R.E. DeVor, S.G. Kapoor. An Experimental Evaluation of anAtomization-Based Cutting Fluid Application System for Micromachining[J]. Journal ofManufacturing Science and Engineering.2008,130(3): pp.031118.1-031118.8.
    [55] K.-M. Li, S.-Y. Chou. Experimental evaluation of minimum quantity lubrication in nearmicro-milling[J]. Journal of Materials Processing Technology.2010,210(15): pp.2163-2170.
    [56] J.S. Nam, P.H. Lee, S.W. Lee. Experimental characterization of micro-drilling process usingnanofluid minimum quantity lubrication[J]. Int. J. Mach. Tools Mf.2011,51(7-8): pp.649-652.
    [57] B.P. Gillespie LK. The Formation and Properties of Machining Burrs[J]. Transactions ofASME Journal of Engineers for Industry.1976,98: pp.66-74.
    [58] B.P. Gillespie LK. Deburring and Edge Finishing Handbook. Society of ManufacturingEngineers,1999.
    [59] M. Luo, G. Liu, M. Chen. Mechanism of burr formation in slot milling Al-alloy[J].International Journal of Materials and Product Technology.2008,31(1): pp.63-71.
    [60] K. Lee, D.A. Dornfeld. Micro-burr formation and minimization through process control[J].Precision Engineering.2005,29(2): pp.246-252.
    [61] ISO,13715:2000,2000.
    [62] L. R. Gratbildung und Strategien zur Gratreduzierung, Dissertation[博士学位论文]. RWTHAachen,1992.
    [63] P.AJ. The Exit Failure in Interrupted Cutting[J]. CIRPAnnals.1978,27(1): pp.5-10.
    [64] Y.P.C. M. Hashimura, David Oornfeld. Analysis of Burr Formation Mechanism in OrthogonalCutting[J]. Transactions of the ASME Journal of Manufacturing Science and Engineering.1999,121(1): pp.1-7.
    [65] D.A.D. I. W. Park. A Study of Burr Formation Processes Using the Finite Element Method:Part I[J]. Journal of Engineering Materials and Technology.1999,122(2): pp.229-238.
    [66] D.A.D. I. W. Park. A Study of Burr Formation Processes Using the Finite Element Method:Part II—The Influences of Exit Angle, Rake Angle, and Backup Material on Burr FormationProcesses[J]. Journal of Engineering Materials and Technology.1999,122(2): pp.221-228.
    [67] S. Min, D.A. Dornfeld, J. Kim, B. Shyu. Finite Element Modeling of Burr Formation in MetalCutting[J]. Machining Science and Technology.2001,5(3): pp.307-322.
    [68] D.D. Min S, Kim J, Shyu B. Finite Element Modeling of Burr Formation in Metal Cutting[J].International Journal of Machining Science and Technology.2001,5(3): pp.307-322.
    [69] G.L. Chern. Analysis of Burr Formation and Breakout in Metal Cutting[博士学位论文].University of California at Berkeley,1993, pp.180.
    [70] M. M. Deburring—Part2[J]. Tooling and Production.1986,51(10): pp.47-51.
    [71] C.H. Lee SW, Choi YJ, Kim GH, Ko SL, Proceedings of the ISAAT, InternationalSymposium onAdvances inAbrasive Technology,2004, pp.477-482.
    [72] K.H. Kim, C.H. Cho, S.Y. Jeon, K. Lee, D.A. Dornfeld. Drilling and deburring in a singleprocess[J]. Proc. IMechE, Part B.2003,217(9): pp.1327-1331.
    [73] R. DG, Society of Manufacturing Engineers,1993, pp.93-131,131-121.
    [74] D.D. Lee SH. Precision Laser Deburring and Acoustic Emission Feedback[J]. Journal ofManufacturing Science and Engineering.2001,123(2): pp.356-364.
    [75] D. Dornfeld. CIRP HPC conference, Aachen,2004, pp.1-17.
    [76] D.D. Sangkee Min, Yohichi Nakao. Influence of exit surface angle on drilling burr formation[J].Journal of Manufacturing Science and Engineering.2003,125(4): pp.637-644.
    [77] U. Heisel, M. Schaal, G. Wolf, Influence of Minimum Quantity Lubrication on Burr Formationin Milling, Book Ti tle, Springer,2010, pp.139-146.
    [78] U. Heisel, M. Schaal. Burr formation in short hole drilling with minimum quantitylubrication[J]. Production Engineering.2009,3(2): pp.157-163.
    [79] L. Fu, Q. Guo. Development of an ultra-small micro drill bit for packaging substrates[J].Circuit World.2010,36(3): pp.23-27.
    [80] M. Owen, E. Roelants, J. Van Puymbroeck. Laser drilling of blind holes in FR4/glass[J].Circuit World.1997,24(1): pp.45-4949.
    [81] L. Fu, J. Qu, H. Chen. Mechanical drilling of printed circuit boards: the state-of-the-art[J].Circuit World.2007,33(4): pp.3-8.
    [82] X.D. Ma Yuping, Chen Ming,Sun Fanghong. Experiments on Machining Micro-Hole andCutting Tool Failure Mechanism[J]. Journal of Nanjing University of Aeronautics&Astronautics.2005,37: pp.8-11.
    [83] W.H. Kao. High-speed drilling performance of coated micro-drills with Zr–C:H:Nx%coatings[J]. Wear.2009,267(5-8): pp.1068-1074.
    [84]创国精密股份有限公司, http://www.tct-tool.com/date-drill-body.htm.
    [85] T. Yashiro, T. Ogawa, H. Sasahara. Temperature measurement of cutting tool and machinedsurface layer in milling of CFRP[J]. Int. J. Mach. Tools Mf.2013,70(0): pp.63-69.
    [86] L. Zheng, C. Wang, L. Yang, Y. Song, L. Fu. Characteristics of chip formation in themicro-drilling of multi-material sheets[J]. Int. J. Mach. Tools Mf.2012,52(1): pp.40-49.
    [87] H. Nakagawa, K. Ogawa, A. Kihara, T. Hirogaki. Improvement of micro-drilled hole qualityfor printed wiring boards[J]. Journal of Materials Processing Technology.2007,191(1-3): pp.293-296.
    [88] L.J. Zheng, C.Y. Wang, L.Y. Fu, L.P. Yang, Y.P. Qu, Y.X. Song. Wear mechanisms ofmicro-drills during dry high speed drilling of PCB[J]. Journal of Materials Processing Technology.2012,212(10): pp.1989-1997.
    [89] J.C. Su, C.K. Huang, Y.S. Tarng. An automated flank wear measurement of microdrills usingmachine vision[J]. Journal of Materials Processing Technology.2006,180(1-3): pp.328-335.
    [90] L. Fu, Q. Guo. On-line temperature measurement of a micro drill bit[J]. Circuit World.2012,38(2): pp.55-58.
    [91] K. Palanikumar, J. Campos Rubio, A.M. Abrao, A. Esteves Correia, J.P. Davim. Influence ofDrill Point Angle in High Speed Drilling of Glass Fiber Reinforced Plastics[J]. Journal ofComposite Materials.2008,42(24): pp.2585-2597.
    [92] K. Palanikumar, L. Karunamoorthy, N. Manoharan. Mathematical model to predict the surfaceroughness on the machining of glass fiber reinforced polymer composites[J]. Journal of ReinforcedPlastics and Composites.2006,25(4): pp.407-419.
    [93] K. Palanikumar. Cutting parameters optimization for surface roughness in machining of GFRPcomposites using Taguchi's method[J]. Journal of Reinforced Plastics and Composites.2006,25(16): pp.1739-1751.
    [94] A. Krishnamoorthy, S.R. Boopathy, K. Palanikumar. Delamination Analysis in Drilling ofCFRP Composites Using Response Surface Methodology[J]. Journal of Composite Materials.2009,43(24): pp.2885-2902.
    [95] B.K. Hinds, M. Treanor. Drilling of printed circuit boards: factors limiting the use of smallerdrill sizes[J]. Proc. IMechE, Part B.2000,214(1): pp.35-45.
    [96] Z.M.Bi. Drilling of Composite Materials. Nova Science Publishers, Inc.,2009.
    [97] M.S. Won, C.K.H. Dharan. Drilling of Aramid and Carbon Fiber Polymer Composites[J].Journal of Manufacturing Science and Engineering.2002,124(4): pp.778.
    [98] M.S. Won, C.K.H. Dharan. Chisel Edge and Pilot Hole Effects in Drilling CompositeLaminates[J]. Journal of Manufacturing Science and Engineering.2002,124(2): pp.242.
    [99] M. IRahamathullah. Thrust and torque analyses for different strategies adapted in microdrillingof glass-fibre-reinforced plastic[J]. Proc. IMechE, Part B.2011,225: pp.505-519.
    [100] I. Rahamathullah, M. Shunmugam. Analyses of forces and hole quality in micro-drilling ofcarbon fabric laminate composites[J]. Journal of Composite Materials.2012, pp.1-12.
    [101] A.M. Abr o, J.C.C. Rubio, P.E. Faria, J.P. Davim. The effect of cutting tool geometry onthrust force and delamination when drilling glass fibre reinforced plastic composite[J]. Materials&Design.2008,29(2): pp.508-513.
    [102] E. Aoyama, T. Hirogaki, T. Katayama, N. Hashimoto. Optimizing drilling conditions inprinted circuit board by considering hole quality: Optimization from viewpoint of drill-movementtime[J]. Journal of Materials Processing Technology.2004,155–156(0): pp.1544-1550.
    [103] M. Ancǎu. The processing time optimization of printed circuit board[J]. Circuit World.2009,35(3): pp.21-28.
    [104] X.M. Wang, L.C. Zhang. An experimental investigation into the orthogonal cutting ofunidirectional fibre reinforced plastics[J]. Int. J. Mach. Tools Mf.2003,43(10): pp.1015-1022.
    [105]白清顺,刘立飞,卢礼华,杨凯,梁迎春.微细铣削圆弧槽微结构时的微毛刺分析及预测[J].机械设计与制造.2011,11: pp.229-231.
    [106] S.M. Son, H.S. Lim, J.H. Ahn. Effects of the friction coefficient on the minimum cuttingthickness in micro cutting[J]. Int. J. Mach. Tools Mf.2005,45(4): pp.529-535.
    [107] U.A. Khashaba, I.A. El-Sonbaty, A.I. Selmy, A.A. Megahed. Machinability analysis indrilling woven GFR/epoxy composites: Part I–Effect of machining parameters[J]. Composites PartA: Applied Science and Manufacturing.2010,41(3): pp.391-400.
    [108] M. Ozaki. Supervisory control of drilling of composite materials[博士学位论文].2000, pp.34-49.
    [109] H. Ho-Cheng, C. Dharan. Delamination during drilling in composite laminates[J]. Machiningcomposites.1988, pp.39-47.
    [110] M.C. Shaw. Metal cutting principles.New York: Oxford University Press,2005.
    [111] N.S. Mohan, A. Ramachandra, S.M. Kulkarni. Machining of fiber-reinforced thermoplastics:Influence of feed and drill size on thrust force and torque during drilling[J]. Journal of ReinforcedPlastics and Composites.2005,24(12): pp.1247-1257.
    [112]先进的工程微几何学(EMG)刀具切削刃制备技术[J].工具展望.2012,3: pp.1-6.
    [113] G. Derringer, Suich, R. Simultaneous optimization of several response variables[J]. J. of qua.Techno.1980,12: pp.214-219.
    [114] D.W. Kim, Y.S. Lee, C.N. Chu, Y.T. Oh. Prevention of exit burr in microdrilling of metal foilsby using a cyanoacrylate adhesive[J]. The International Journal of Advanced ManufacturingTechnology.2005,27(11-12): pp.1071-1076.