应用时域格林函数方法模拟有限水深中波浪对结构物的作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文采用时域内满足自由水面条件格林函数方法,对无限和有限水深上波浪与三维任意形状的物体相互作用所产生的绕射和辐射问题进行了理论研究和数值计算。
     本文首先以三维Laplace方程作为基本控制方程,对势函数和格林函数的一阶时间导数应用第二格林定理,建立了时域内有限水深上的积分方程。并利用各种边界和初始条件,进行了一系列的数学推导,使这个积分方程仅建立在物体表面上,大大减少了计算量,降低了对计算机内存的要求。物体在波浪中运动的时候,物体的运动决定了他所受流体力的大小;反过来,受力又影响了物体的运动。因此,物体的积分方程和运动方程的是互相耦合的,需要同时进行求解。本文中采用高阶边界元方法对积分方程进行了求解,运动方程采用四阶Runge-Kutta方法求解。
     由于在时域积分方程中含有势函数与格林函数的卷积的时间积分过程。而格林函数的解析表达式是一个从0到∞的积分过程,且呈缓慢衰减的振荡形式,每次计算格林函数都十分耗时。在对积分方程的求解过程中,需要上亿次的调用格林函数,当需要模拟的计算时间较长时,这个计算的计算量和存储量都非常庞大。因此,精确而又快速的求取时域格林函数及其对时间和空间的导数是应用满足时域自由水面条件格林函数方法求解水动力学问题的关键。本文分析了无限和有限深水域中时域格林函数及其对时间和空间导数的特性,分离出快速的振荡元素,针对参数的变化范围推导出了格林函数的级数式、积分式和渐进式用于计算提高计算效率。根据等高线的变化情况,将自变量化分为不同范围并使用Chebyshev多维近似多项式方法来进行分区拟合,建立系数表用于插值,避免了缓慢的直接数值积分计算。为了进一步加快计算速度,又将Chebyshev多项式系数转化为普通多项式系数的形式。最后将格林函数值及其导数值与由此计算出来的近似多项式值进行了比较,研究发现当取合适的截断项时,既大大加快了计算速度同时也可获得所需要的精度。
     本文计算了各种形状三维物体在无限水深和有限水深情况下所受到的绕射和辐射波浪力,并与解析解以及频域理论进行了对比,结果符合良好,验证了本文所提出理论的正确性。
A three-dimensional time-domain approach is used to study the wave loads and motion of bodies. In this approach, the exact body boundary condition is satisfied on the wetted body surface while the free-surface boundary conditions are linearized. The problem is solved by using a transient free-surface Green function source distribution. The velocity potential is obtained numerically from a discretized boundary integral equation on the body surface, using a high-order boundary element method.The method is based on using the transient free-surface Green function. Accurate and fast computation of the Green function and its derivations is a hard job. This study is concerned with the Green function and its derivations. Asymptotic expansions and convergent ascending-series expansions for the Green function and its derivations are obtained to replace the numerical evaluation of the relevant integrals. Analysis is required to develop suitable forms for representing singular features when both the source and field points lie on the free surface. A computational approach based on the use of multidimensional Chebyshev polynomial approximations, which greatly decreases the computing cost in numerical evaluation of the Green function, is used. To accelerate the computation further, Chebyshev polynomials can be converted into simpler equivalent ordinary polynomials. In the whole domain the Green function is rapidly oscillatory and includes singularity. It is not very effective to approximate the Green function in the whole domain directly. The approach used in the paper is to divide the physical domain into several zones, and use different approximations in each zone. The flexibility in truncation can be exploited to preserve the form of the polynomial approximations in different sub domain. The polynomial approximation is compared with the directly computing approach. It is found that the algorithm of Chebyshev polynomial approximation with not too many terms can achieve a desired accuracy.Extensive results are presented which validate and demonstrate the efficacy of the method. These results include linear motion and forces without forward speed. Results of diffraction and radiation of a hemi-sphere, a sphere, a cylinder, a box and a taper are presented. The present computations agree with analysis solutions and frequency domain results very well.
引文
[1] Thome R C. Multiple Expansions in the Theory of Surface Waves. Proceedings of the Cambridge Philosophical Society. 1953, 49: 709-716.
    [2] Black J L, Mei C C, Bray M C G. Radiation and Scattering of Water Waves by Rigid Bodies. Journal of Fluid Mechanics. 1971,46: 151-164.
    [3] Havelock T H. The Pressure of Water Waves upon a Fixed Obstacle. In: Proceedings of the Royal Society of London. 1940, Series A, 963, 175: 409-421.
    [4] Maccamy R C R, Fuchs R A. Wave Forces on Pile: A Diffraction Theory. Tech. Mem., 69, US Army Coastal Engineering Research Center, 1954.
    [5] Garrett C J R. Wave Forces on a Circular dock, Journal of Fluid Mechanics. 1971,46 (1): 129-139.
    [6] Yeung R W. Added Mass and Damping of A Vertical Cylinder in Finite-Depth Waters. Applied Ocean Research, 1981, 3 (3): 119-133.
    [7] Malenica S, Clark P J, Molin B. Wave and Current Forces on a Vertical Cylinder Free to Surge and Sway. Applied Ocean Research. 1995,17: 79-90.
    [8] Hulme A. The Wave Forces Acting on a Floating Hemisphere Undergoing Forced Periodic Oscillation. Journal of Fluid Mechanics. 1982,121: 443-463.
    [9] Wang S. Motion of a Spherical Submarine in Waves. Ocean Engineering, 1986, 13: 249-271.
    [10] Wu G. X, Eatock Taylor R. The Exciting Force on a Submerged Spheroid in Regular Waves. Journal of Fluid Mechanics. 1987,182: 411-426.
    [11] Wu G X, Eatock Taylor R. On Radiation and Diffraction of Surface Waves by Submerged Spheroids. Journal Ship Research, 1989, 33: 84-92.
    [12] Linton C M. Radiation and Diffraction of Water Waves by a Submerged Sphere in Finite Depth. Ocean Engineering. 1991,18 (1/2): 61-74.
    [13] Wu G X, Witz J A, Ma Q, Brown D T. Analysis of Wave Induced Forces Acting on a Submerged Sphere in Finite Water Depth. Applied Ocean Research, 1994, 16: 353-361.
    [14] Rahman M. Simulation of Diffraction of Ocean Waves by a Submerged Sphere in Finite Depth. Applied Ocean Research. 2001, 23: 305-318.
    
    [15] Lopes D B S, Sarmento A J N A. Hydrodynamics Coefficients of a Submerged Pulsating Sphere in Finite Depth. Ocean Engineering. 2002, 29:1391-1398.
    [16] Spring B H, Monkneyer P L. Interaction of Plane Waves with Vertical Cylinders. Proc 14th Int. Con. on Coastal Engineering. Copenhagen, 1974: 1828-1845.
    [17] Linton C M, Evans D V. The Interaction of Waves with Arrays of Vertical Circular Cylinders. Journal of Fluid Mechanics. 1990, 215:549-569.
    [18] Yeung R W. Numerical Methods in Free Surface Flows. Ann. Rev. Fluid Mech. 1982, 4: 395-442.
    [19] Mei C C. Numerical Methods in Water Wave Diffraction and Radiation. Ann. Rev. Fluid Mech., 10, 1978: 393-416.
    [20] Mei C C. The Applied Dynamics of Ocean Surface Wave. John Wiley and Sons, Inc., New York, 1983.
    [21] Harlow F H, Welch J E. The MAC Method, a Computing Technique for Solving Viscous, Incompressible, Transient Fluid Problems Involving Free Surface. Los Almos Scientific Lab, Rep. LA-3452, 1965.
    [22] Wang Y X, Su T C. Computation of Wave Breaking On Sloping Beach by VOF Method. In: Proceedings of the Third International Offshore and Polar Engineering Conference. Singapore, 1993: 6-11.
    [23] 邹志利,邱大洪,王永学.VOF法模拟波浪槽中二维非线性波.水动力研究与进展,1996.Ser.A,11(1):93-103.
    [24] Brebbia C A, Telles J C F, Wrobel L C. Boundary Element Techniques. Berlin: Springer-Verlag, 1984.
    [25] Hess J L, Smith A M O. Calculation of Nonlifting Potential Flow about Arbitrary Three-Dimensional Bodies. Journal Ship Research, 1964 (8): 22-24.
    [26] Garrison C J. Hydrodynamic Loading of Large Offshore Structures: Three-Dimensional Source Distribution Methods. Numerical Methods in Offshore Engineering. Chichester: A Wiley-Interscience Publication, 1978:87-140.
    [27] Chau F P. The Second Order Velocity Potential for Diffraction of Waves by Fixed Offshore Structure. Report OEG/89/1, University College London, 1989.
    
    [28] Liu Y H, Kim C H, Kim M H. The Computation of Mean Drift Forces and Wave Run-Up by Higher-Order Boundary Element Method. Proceedings of the First International Offshore and Polar Engineering Conference, Edinburgh, United Kingdom, 1991.
    [29] Eatock Taylor R, Chau F P. Wave Diffraction Theory——Some Developments in Linear and Nonlinear Theory. Journal of offshore mechanics and Arctic engineering. 1992, 114: 185-194.
    [30] Teng B, Eatock Taylor R. New Higher-Order Boundary Element Methods for Wave Diffraction/Radiation. Applied Ocean Research. 1995, 17:71-78.
    [31] Teng B, Kato S. A Method for Second-Order Diffraction Potential from an Axisymmetric Body. Ocean Engineering. 1999, 26:1359-1388.
    [32] Kashiwagi M. A B- Spline Galerkin Scheme for Computing Wave Forces on a Floating Very Large Elastic Plate. 7th International Offshore and Polar Engineering Conference, Honolulu. 1977: 229-236.
    [33] Maniar H D. A B-Spline Based Higher Order Method in 3D. The 10th International Workshop on Water Waves and Floating Bodies. Oxford, 1995:153-158.
    [34] Teng B, Bai W, Xiang, Y. A B-spline Based BEM and Its Application in Predicting Wave Forces on 3D Bodies. China Ocean Engineering, 1999, 13 (3): 257-264.
    [35] Korsmeyer F T, Lee C H, Newman, J N, Sclavounos, P D. The Analysis of Wave Effects on Tension-Leg Platforms. Proceeding Conference on Offshore Mechanics and Arctic Engineering, ASME, 2, Houston. Texas, 1988.
    [36] Molin B. Second Order Diffraction Loads up Three Dimensional Bodies. Applied Ocean Research. 1979, 1: 197-202.
    [37] Lighthill. Waves and Hydrodynamics Loading. In Proceedings 2na International Conference Behavior of Offshore Structures. 1979, 1: 1-40.
    [38] Eatock Taylor R, Hung S M. Second Order Diffraction Forces on a Vertical Cylinder in Regular Waves. Applied Ocean Research. 1987, 1: 19-30.
    [39] 缪国平,刘应中.大直径圆柱上的二阶波浪力.中国造船.1987,98:12-24.
    [40] Eatock Taylor R, Hung S M, Chau F P. On the Distribution of Second Order Pressure on a Vertical Circular Cylinder. Applied Ocean Research. 1989, 11 (4): 183-193.
    [41] Newman J N. Second-Harmonic Wave Diffraction at Large Depths. Journal of Fluid Mechanics. 1990, 213: 59-70.
    
    [42] Wu G X, Eatock Taylor R. The Second Order Diffraction Force on a Horizontal Cylinder in Finite Water Depth. Applied Ocean Research. 1990, 12 (3): 106-111.
    [43] 邹志利,戴遗山.回转体二阶绕射压力和绕射力.中国造船.1992,116:1-18.
    [44] Huang J B, Eatock Taylor R. Semi-Analytical Solution for Second-Order Wave Diffraction by a Truncated Circular Cylinder in Monochromatic Waves. Journal of Fluid. Mechanics. 1996, 319: 171-196.
    [45] Kim M H, Yue D K P. The Complete Second-Order Diffraction Solution for an Axisymmetric Body——Part1 Monochromatic Incident Waves. Journal of Fluid Mechanics. 1989, 200: 235-264.
    [46] Kim M H, Yue D K P. The Complete Second-Order Diffraction Solution for an Axisymmetric Body——Part2 Dichromatic Incident Waves and Body Motions. Journal of Fluid Mechanics. 1990, 211: 557-593.
    [47] 滕斌,李玉成,董国海.双色入射波下二阶波浪力响应函数.海洋学报,1996,21(2):115-123.
    [48] Malenica S, Molin B. Third-Harmonic Wave Diffraction by a Vertical Cylinder. Journal of Fluid Mechanics. 1995, 302: 203-229.
    [49] Teng B, Kato S. Third Order Wave Force on Axisymmetric Bodies. Ocean Engineering, 2002, 29: 815-843.
    [50] Finkelstein A. The Initial Value Problem for Transient Water Waves. Communications on Pure and Applied Mathematics, 1957, 10:511-522.
    [51] Cummins W E. The Impulsive Response and Ship Motions. Schiffstechnik, 1962, 9: 124-135.
    [52] Stoker J J. Water Waves, Pure and Applied Mathematics. New York: Interscience Publishers, Inc., 1958.
    [53] Ogilvie T F. Recent Progress toward the Understanding and Prediction of Ship Motion. Proceeding of the 5th Symposium of Naval Hydrodynamics, Sponsored by Office of Naval Research and Skipsmodelltanken, Bregen, Norway, 1964.
    [54] Kotik J, Lurye J. Some Topics in the Theory of Coupled Ship Motions. In Proceedings, 5th Symposium on Naval Hydrodynamics, Office of Naval Research, Washington, D.C., 1964.
    
    [55] Wehausen J V. Initial Value Problem for the Motion in an Undulating Sea of a Body with Fixed Equilibrium Position. The Journal of Engineering Mathematics. 1967,1 (1): 1-19.
    [56] Van Oortmerssen G. The Motion of a Moored Ship in Waves, NSMB Publication No.510, Netherlands Ship Model Basin, Wageningen, the Netherlands, 1979.
    [57] Chapman R B. Large Amplitude Transient Motion of Two-Dimensional Floating Bodies. Journal of Ship Research. 1979, 29 (1): 20-31.
    [58] Chapman R B. Time-Domain Method for Computing Forces and Moment Acting on Three-Dimensional Surface-Piercing Hull with Forward Speed. The 3rd International Conference on Numerical Ship Hydrodynamics, Paris, 1981.
    [59] Ohmatsu S. On a Wave Making Theory of Cylinders at the Early Stage of Oscillation. Journal of the Society of Naval Architects of Japan. 1973, 134: 75-84.
    [60] Zhang L, Dai Y S, Time-Domain Solutions for Hydrodynamics Forces and Moments Acting on a 3-D Moving Body in Waves. Journal of Hydrodynamics, 1993B, 5 (2): 110-113
    [61] Adachi H, Ohmatsu S. On the Influence of Irregular Frequencies in the Integral Equation Solutions of the Time-Dependent Free Surface Problems. The Journal of Engineering Mathematics. 1979: 97-119.
    [62] Yeung R W. The Transient Heaving Motion of Floating Cylinders, Journal of Engineering Mathematics. 1982, 116: 97-119.
    [63] Newman J N. Transient Asymmetric Motion of a Floating Cylinder. Journal of Fluid Mechanics. 1985,157: 17-33.
    [64] Korsmeyer F T. The First and Second Order Transient Free Surface Wave Radiation Problems: (PhD Thesis). USA: Department of Ocean Engineering, Massachusetts Institute of Technology, 1988.
    [65] Liapis S J. Time-Domain Analysis of Ship Motions. Report No.302, Department of Naval Architecture and Marine Engineering, University of Michigan, Ann Arbor, Michhigan, 1986.
    [66] Beck R F, Liapis S L. Transient Motions of Floating Bodies at Zero Forward Speed. Journal of Ship Research, 1987, 31 (3): 164-176.
    [67] Liapis S, Beck R F. Seakeeping Computation Using Time-Domain Analysis. The 4th International Conference on Numerical Ship Hydrodynamics, 1985.
    
    [68] King B .K. Time-Domain Analysis of Wave Exciting Forces on Ships and Bodies. Report No.306, Department of Naval Architecture and Marine Engineering, University of Michigan, Ann Arbor, Michigan, 1988.
    [69] King B W, Beck R F, Magee A R. Seakeeping Calculations with Forward Speed Using Time-Domain Analysis. Proceeding of 17th Symposium on Naval Hydrodynamics, the Hague, the Netherlands, 1988.
    [70] Zhu D X, Katory M. A Time-Domain Prediction Method of Ship Motions, Ocean Engineering, 1997,25 (9): 781-791.
    [71] Beck R F, Magee A R. Time-Domain Analysis for Predicting Ship Motions. Proceedings Symposium on the Dynamics of University. Elsevier Publishers, Amsterdam, the Netherlands, 1990.
    [72] Lin W M, Yue D K P. Numerical Solutions for Large-Amplitude Ship Motions in the Time Domain. Proceeding 18th Symposium on Naval Hydrodynamics. The University of Michigan, USA. Ann Arbor, MIT. 1990.
    [73] Fonseca N, Soares C. Time-Domain Analysis of Large-Amplitude Vertical Ship Motions and Wave Loads, Journal of Ship Research, 1998,42 (2): 139-153.
    [74] Longuet-Higgins M S, Cokelet C D. The Deformation of Steep Surface Waves on Water: I. A Numerical Method of Computation. Proc. R. Soc, London, 1976, A350: 1-26.
    [75] Beck R F. Time-Domain Computations for Floating Bodies. Applied Ocean Research, 1994 (16): 267-282.
    [76] Cointe R. Numerical Simulation of A Wave Channel. Eng. Analysis with Boundary Elements, 1990, 7 (4); 167-177.
    [77] Dommermuth D G, Yue D K P. Numerical Simulations of Nonlinear Axisymmetric Flows with a Free Surface. Journal of Fluid Mechanics. 1987,178: 195-219.
    [78] Grilli S T, Skourup J, Svendsen I A. An Efficient Boundary Element for Nonlinear Water Waves. Eng. Analysis with Boundary Elements, 1989, 6 (2), 97-107.
    [79] Isaacson M. Nonlinear-Wave Effects on Fixed and Floating Bodies. Journal of Fluid Mechanics. 1992,120: 267-281.
    [80] Tanizawa K. A Nonlinear Simulation Method of 3-D Body Motions in Waves. Jour. Society of Naval Arch. Japan, 1995,178,179-191.
    
    [81] Yeung R W, Vaidhyanathan M. Non-Linear Interaction of Water Waves with Submerged Obstacles. Inte. Jour. Num. Methods in Fluid. 1992, 14:1111-1130.
    [82] Kim C H, Clement A H, Tanizawa K. Recent Research and Development of Mumerical Wave Tanks - A Review. Int. Jour. Offshore and Polar Eng., 1999, 9 (4): 241-256.
    [83] Yeung R W. A Singularity Distribution Method for Free Surface Flow Problems with an Oscillating Body. Report No.NA 73-6, College of Engineering, University of California, Berkeley, 1973.
    [84] Anderson P, He W Z, On the Calculation of Two-Dimensional Added Mass and Damping Coefficients by Simple Green's Function Technique. Ocean Engineering, 1985, 12 (5): 425-451.
    [85] 贺五洲,戴遗山.简单Green函数法求解三维水动力系数.中国造船,1986,(2).
    [86] Isaacson M, Cheung K F. Second Order Wave Diffraction around Two-Dimensional Bodies by Time-Domain Method. Applied Ocean Research, 1991, 13 (4): 175-186.
    [87] Isaacson M, Ng J Y T. Second-Order Wave Radiation of Three-Dimensional Bodies by Time-Domain Method, International Journal Offshore of Polar Engineering. 1993, 4: 264-272.
    [88] 王赤忠,叶恒魁,石仲堃.用时域法求解三维二阶非线性水波.海洋工程,1999,17(1):8-16.
    [89] 王赤忠,叶恒魁,石仲堃.三维二阶水波绕射问题的有限元时域计算.海洋工程.2000,18(4):13-19.
    [90] Bai W, Teng B. Second-Order Wave Diffraction around 3-D Boies by a Time-Domain Method. China Ocean Engineering. 2001, 15 (1): 73-85.
    [91] 戴遗山.舰船在波浪中运动的频域与时域势流理论.国防工业出版社,北京,1998.
    [92] 刘应中,缪国平.船舶在波浪上的运动理论.上海交通大学出版社,1987.
    [93] Wehausen J V, Laitone E V. Surface Waves, in Handbuch der Physik, Ⅸ, Berlin, Springer-Verlag. 1960, 9: 446-778.
    [94] Havelock T H. The Damping of the Heaving and Pitching Motion of a Ship. Philosophical Magazine. 1942, 33: 666-673.
    
    [95] John F. On the Motion of Floating Bodies I, II. Comm, Pure Appl. Math., 1949, 2: 13-57; 1950,3:45-101.
    [96] Haskind M D. The Hydrodynamics Theory of Ship Oscillations in Rolling and Pitching, Prikladaya Matematikai Mekhanika. 1946, 10(1): 33-36. (English Translation, Technical Research Bulletin, 1-12: 3-43, Transactions of the Society .Naval Architects and Marine Engineers, 1953, 78: 250-287, New York.)
    [97] Haskind M D. The Oscillation of a Ship in Still Water, Izv. Akad. Nauk SSSR. Otd. Tekh. Nauk 1, 1946: 23-34. (English Translation, Technical Research Bulletin, 1953, 1-12: 45-60, Soc.Nav. Archit. Mar. Eng., New York.)
    [98] Faltinsen O M, Michelsen F C. Motions of Large Structure in Waves at Zero Froude Number. The dynamics of Marine Vehicles and Structures in Waves, The Institute of Mechanical Engineers, 1975: 91-106.
    [99] Chang M S, Pien P C. Velocity Potentials of Submerged Bodies near a Free Surface -Application to Wave-Excited Forces and Motions. 11th SMNH, 1976.
    [100] Chang M S. Computations of Three-Dimensional Ship Motions with Forward Speed. Proceedings International Conference Numerical Ship Hydrodynamics, University California, Berkeley, 1978.
    [101] Inglis R B, Price W G. The Influence of Speed Dependent Boundary Conditions in Three-Dimensional Ship Motion Problem. International Shipbuilding Progress. 1981, 28: 22-29.
    [102] Inglis R.B, Price W G. A Three Dimensional Ship Motion Theory — Computation between Theoretical Predictions and Experimental Data of the Hydrodynamic Coefficients with Forward Speed, Trans. Roy. Inst. Nav. Arch. 1981,124: 141-158.
    [103] Liu Y H, Kim C H, Kim M H. Comparison of Higher-Order Boundary Element and Constant Panel Methods for Hydrodynamic Loadings. International Journal Offshore and Polar Engineering. 1991,1: 8-18.
    [104] Eatock Taylor R, Chau F P. Wave Diffraction Some Developments in Linear and Non-Linear Theory. Proceedings of OMAE, 1991.
    [105] Newman J N. The Approximation of Free-Surface Green Functions, In: Wave Asymptotic, Proceeding of the Fritz Ursell Retirement Meeting, Cambridge University Press, London, 1990: 107-135.
    
    [106] Li H B, Han G M, Mang H A. A New Method for Evaluating Singular Integrals in Stress Analysis of Solids by the Direct Boundary Element Method. International Journal of Numerical Methods in Engineering. 1985, 21: 2071-2075.
    [107] 张亮,李云波,黄德波.水线积分项对运动浮体波浪绕射力的影响.哈尔滨工程大学学报.1998,19(2):1-7.
    [108] Zhang L, Eatock Taylor R. A Numerical Investigation of the Water-Line Integral Effect on Wave Diffraction by Translating Bodies. International Shipbuilding Progress. 1999, 46 (446): 151-163.
    [109] Breit S R. The Potential of a Rankine Source between Parallel Planes and in a Rectangular Cylinder. Journal of Engineering Mathematics. 1991, 25:151-163.
    [110] Linton C M. A New Representation for the Free-Surface Channel Green's Function, Applied Ocean Research. 1999, 21: 17-25.
    [111] Linton C M, Mciver P. Green's Functions for Water Waves in Porous Structure. Applied Ocean Research. 2000, 22: 1-12.
    [112] Newman J N. Double-Precision Evaluation of the Oscillatory Source Potentials. Journal of Ship Research. 1984, 28 (3): 151-154.
    [113] Newman J N. Algorithms for the Free-Surface Green Function. Journal of Engineering Mathematics. 1985, 19: 57-68.
    [114] 王如森.三维自由面Green函数及其导数(频域-无限水深)的数值逼近.水动力学研究与进展.1992A,7(3):277-286.
    [115] Noblesse F. The Green Function in the Theory of Radiation and Diffraction of Regular Water Waves by a Body. Journal of Engineering Mathematics. 1982, 16 (2): 137-169.
    [116] 宋竞正,段文洋,邹元杰,秦洪德.高斯求积在三维分布源中的应用.哈尔滨工程大学学报.2002,21(1):15-19.
    [117] Barr J J M, Price W G. Evaluation of the Wavelike Disturbance in the Kelvin Wave Source Potential. Journal of Ship Research. 1988, 32 (1): 44-53.
    [118] Newman J N. Evaluation of the Wave-Resistance Green Function: Part1—The Double Integral. Journal of Ship Research. 1987, 31 (2): 79-90.
    [119] Newman J N. Evaluation of the Wave-Resistance Green Function: Part2—The Single Integral on the Centerplane. Journal of Ship Research. 1987, 31 (3): 145-150.
    
    [120] Hearn G. E. Alternative Methods of Evaluating Green's Function in Three-Dimensional Ship-Wave Problems. Journal of Ship Research. 1977, 21: 89-93.
    [121] Noblesse F. Alternative Integral Representations for the Green Function of the Theory of Ship Wave Resistance. Journal of Engineering Mathematics. 1981, 15(4): 241-265.
    [122] Noblesse F. The Fundamental Solution in the Theory of Steady Motion of a Ship. Journal of Ship Research. 1977, 21 (2): 82-88.
    [123] 王言英,朱仁传,苗杰.波浪中航行浮体设计荷载与运动计算.大连理工大学学报.1998,38(4):457-462.
    [124] 王言英,钱昆,朱仁传.辐射问题格林函数的基本解.大连理工大学学报.2000,40(3):338-340.
    [125] 卢晓平,叶恒奎,张维康,石仲坤.Haskind源格林函数德奇异性研究与数值积分方法.水动力学研究与进展.1999A,14(4):444-452.
    [126] 詹成胜,邹早建,郑伟涛.船舶运动格林函数远场部分的数值分析.武汉理工大学学报.2002,26(4).
    [127] 陶建华,吴岩.三维分布源法计算大尺度物体波浪力中奇异积分的处理.水动力学研究与进展.1987,2(4):16-22.
    [128] Malick B, Michel G. A Fast Method of Evaluation for the Translating and Pulsating Green's Function. Ship Technology Research. 1995, 42: 68-80.
    [129] 段文洋,戴遗山.二维时域格林函数的数值计算.水动力学研究与进展.1996,11(3):330-335.
    [130] 叶恒奎.三维时域波动函数的一种数值处理方法.华中理工大学学报.1994,22(4):58-63.
    [131] 黄德波.时域Green函数及其导数的数值计算.中国造船.1992,4:16-25.
    [132] Clement A H. An Ordinary Differential Equation for the Green Function of Time-Domain Free-Surface Hydrodynamics. Journal of Engineering Mathematics. 1998, 33: 201-218.
    [133] Clement A H. Using Differential Properties of the Green Function. In Seakeeping Computational Codes. Seventh International Conference on Numerical Ship Hydrodynamics, Nantes, 1999.
    
    [134] Bever W B.标准数学手册.北京:化学工业出版社,1988.
    [135] Kochin N E. On the Theory Cauchy- Poisson Waves. Trudy Mat. Inst. Im. Steklov. 1935, 9: 167-188.
    [136] Abramowitz M, Stegun I A. Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. NewYork: Dover Publications, 1964.
    [137] Gradshteyn I A, Ryzhik I M. Tables of Integrals, Series, and Products, New York: Academic Press, 1965.
    [138] Magee A R, Beck R F. Vertorized Computation of the Time-Domain Green Function. Proceedings 4th International Workshop on Water Waves and Floating Bodies, Oystese, Norway, 1989.
    [139] William H P. Numerical Recipes: The Art of Scientific Computing. Cambridge University Press, 1986
    [140] Newman J N, Lee C H. Sensitivity of Wave Loads to the Discretization of Bodies. Proceedings of Behavior of Offshore Structure, London, 1992.