外嵌板对圆柱水动力系数影响的计算分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
基于波浪与海上建筑物作用的高阶边界元方法,以及适应于高阶元计算的消除固角系数与柯西主值积分的边界积分方程,采用大连理工大学自主开发研究的用于计算波浪与海上建筑物相互作用的程序WAFDUTl.4,在势流理论下对单个圆形薄板、单个方形薄板、多个方形薄板,以及带有外嵌板的圆柱体的激振力、水动力系数进行了计算分析。
     根据基本控制方程和边界条件,利用满足自由水面波浪条件的格林函数得出边界积分方程,采用高阶元离散求解。对于薄板问题中源点与场点距离很近的情况,采用适用于准奇异积分的自适应高斯积分法进行处理。
     文章首先对单个圆形薄板及方形薄板在不同频率、淹没深度、水深下的激振力及水动力系数作了数值计算。以此为基础,接着对Spar平台多个薄板组的水动力系数做了分析,并与Prislin等人的实验结果进行对比,得出无论是多个板还是单个板,实验中的粘性附加质量是势流理论下附加质量的1.1倍左右。最后,本文研究了带有外嵌板的圆柱在波浪作用下的激振力及水动力系数,发现外嵌板的存在增大了垂荡方向的附加质量,减小了圆柱的垂荡运动,为提出新型海工结构物的可行性奠定了基础。
Based on the potential flow theory, WAFDUT1.4, a program developed by Dalian University of Technology, was used to study the exciting force and hydrodynamic coefficients of a single circular and square plate, multiple square plates and a cylinder with nested plates.
     The program is based on a higher-order boundary element method (BEM), and a self-adaptive Gaussian integration method was adopted for the evaluation of nearly singular integrals in elements.
     The numerical experiment was carried out and the exciting force and hydrodynamic coefficients of a single circular plate, a single square plate, multiple square plates of the Spar platform and a cylinder with nested heave-plates in different cases were analyzed. For the multiple square plates, the comparisons between numerical results and experimental results of Prislin etc al show that added mass of heave plates in real fluid is about1.1times of that in potential assumption. For the cylinder with nested heave-plates, those heave-plates increase the total vertical added mass and thus decrease the heave motion. This can be a good reference for some new offshore structures in the future.
引文
[1]董秋艳.深海采油平台波浪荷载及响应[M].天津:天津大学出版社,2005
    [2]Garret C J R. Wave forces on a circular dock. J. Fluid Mech [J].1971.46:129-139.
    [3]Yeung R W. Added mass and damping of a vertical cylinder in finite-depth waters. Applied Ocean Research [J].1981.3(3):119-133.
    [4]Hess J L, Smith A M 0. Calculation of non-lifting potential flow about arbitrary three-dimensional bodies. Ship Res[J].1964.8(2):22-44.
    [5]Garrison C J. Hydrodynamic loading on large offshore strutures:three-dimensional source distribution method[J]. Numerical Methods in Offshore Engineering. 1978.48 (3):11-18.
    [6]Liu P L F, Abbaspour M. Wave scattering by a rigid thin barrier [J]. Wtrwy Port, Coastal and Ocean Eng. ASCE.,1982.108:479-491.
    [7]Korsmeyer F T, Lee C H, Newman J N, et al. The analysis of wave effects on tesion-leg platform[C]. Offshore Mech.& Arctic Eng.1988.
    [8]Liu Y H, Kim C H, Kim M H. The computation of mean dirft forces and wave run-up by higher-order boundary element method[C]. Proc. of the first Inte. Offshore and Polar Eng. Conf.1991.
    [9]Teng B, Eatock Taylor R. New higher-order boundary element methods for wave diffraction/radiation [J]. Applied Ocean Research,1995.17(2):71-77.
    [10]Kashiwagi M. A B-spline galerkin scheme for computing wave forces on a floating very large elastic plate[C]. The 7th Inte. Offshore and Polar Eng. Conf.1977.
    [11]Maniar H D. A three dimensional higher order panel method based on B-splines[C]. Massachusetts Institute of Technology:Department of Ocean Engineering.1995.
    [12]Teng B, Bai W., Xiang Y. A B-spline based BEM and its application in predicting wave forces on 3D bodies. China Ocean Engineering,1999.13(3):257-264.
    [13]张帆,杨建民,李润培.SPAR平台的发展趋势及其关键技术[J].中国海洋平台,2005,20(2):6-11
    [14]Wang J, Luo Y H, Lu R. Truss Spar structural design for west Africa environment: proceedings of 21st Conference on Offshore Mechanics and Arctic Engineering, Oslo, Norway[C]. OMAE,2002
    [15]Finn L D, Maher J V, Gupta H. The cell spar and vortex induced vibrations[C]. OTC 15244,2003
    [16]Holmes S, Bhat S, Beynet P, et al. Heave plate design with computational fluid dynamics[J]. Journal of Offshore Mechanics and Artic Engineering,2001,123(1): 22-28
    [17]Rho J B, Choi H S, Lee W S, et al. Heave and pitch motions of a spar platform with damping plate. Proceedings of the 12th International Offshore and Polar Engineering[C]. Kitakyushu, Japan:ISOPE,2003:198-201
    [18]Fischer F J, Goalkrishnan R. Some observations on the heave behavior of Spar platform[J]. Journal of Offshore Mechanics and Arctic Engineering,1998,120: 221-225.
    [19]纪亨腾,黄国梁,范菊.垂荡阻尼板的强迫振动试验[J].上海交通大学学报,2003,37(7):977-980.
    [20]Prislin I, Blevins R D, Halkyard J E. Viscous Damping and Added Mass of Solid Square Plates[A].OMAE98, Proceeding of OMAE 1998[C]. Portugal:ASME,1998.
    [21]李玉成,滕斌.波浪对海上建筑物的作用.第2版[M].北京:海洋出版社,2002
    [22]HUAN G Q, CRUSE T A. Some notes on singular integral techniques in boundary element analysis[J]. J Numer Meth Eng,1993,36:2643-2659.
    [23]胡圣荣,陈国华.三维非规则非均匀边界元网格的简便的高精度算法[J].固体力学学报,1996,17(4):343-347
    [24]LI H B, HAN G M, MAN G H A. A new method of revaluating singular integrals in stress analysis of solids by the direct boundary element method [J]. J Numer Meth Eng,1985,21:2071-2098.
    [25]孙亮,滕斌,宁德志.处理准奇异积分的自适应高斯积分法[J].大连理工大学学报,2007,47(1):106-112.
    [26]滕斌,勾莹,刘昌凤WAFDUT1.4程序使用说明,大连理工大学海岸和近海工程国家重点实验室研究报告,2008,HD727
    [27]李彬彬,欧进萍Truss Spar平台垂荡响应频域分析[J].海洋工程,2009,27(1):8-16.
    [28]高鹏,柳存根Spar平台垂荡板设计中的关键问题[J].中国海洋平台,2007,22(2):9-13
    [29]滕斌,郑苗子,姜胜超等Spar平台垂荡板水动力系数的计算与分析[J].海洋工程,2010,28(3):1-8.
    [30]Cai S Q, Long X M, Dong D P, et al. Background current affects the internal wave structure of the northern South China Sea[J]. Journal of Offshore Mechanics and Arctic Engineering,2004,126(1):90-95.
    [31]Troesh A W, PerlinM, He H. Hydrodynamics of thin plate[R]. Joint Industry Repert, 2000.
    [32]方欣华,杜涛.海洋内波基础和中国海内波[M].中国海洋大学出版社,2005.