涡流式空气分级机结构及流场特性的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
涡流式空气分级机是干法分级的重要设备。采用激光多普勒测速仪(LDV),研究了涡流式空气分级机内转笼和环形区的流场特性,并用重质CaCO_3物料试验,验证了蜗壳结构改变对分级指标的影响,为进一步改进分级机结构,获得更佳的分级指标,提供了依据。
     涡流式空气分级机转笼内的流场测试表明:转笼旋转,位于叶片间的气流与转笼一起运动,受到转笼叶片与出风口负压的作用,气流切向速度分布不同于转笼刚性旋转;转笼低速旋转,随着测点半径的减小,切向速度呈减小趋势;转笼高速旋转,随着测点半径的减小,切向速度呈增大趋势。在转笼叶片间存在旋涡,其位置与转笼的转速有关;由于出风口负压及转笼旋转的影响,转笼内存在不可忽略的轴向速度,其数值的大小与进口风速、转笼转速及在转笼中的位置有关。
     旋转的转笼影响环形区流场特性,用系数F表示转笼旋转对环形区气流切向速度的影响程度,在低速时F值较大,随转速的增加而迅速减小。
     流场测试结果表明:在蜗壳内加装水平隔板,能够有效的减小环形区气流轴向速度,使流场变得稳定;在转笼叶片间加装水平隔板,可以有效地减小转笼内轴向速度的数值。通过物料试验又进一步证明:转笼低速旋转时环形区是主要的分级区,转笼高速旋转时,环形区主要起分散和辅助分级作用。
The turbo air classifier is very important dry-state classification equipment. By using Laser Doppler Velocimeter (LDV) the flow field characteristics of the annular region and the rotor in a turbo air classifier is measured. Classification experiment of raw materials is carried out to test the effect of the structure of classifier rotor and classifier volute on classification performance. This result should increase the depth of understanding of optimizing the structure of the turbo air classifier.
     Velocity measurement of air flow in the classification region of the rotor in a turbo air classifier is performed by Laser Doppler Velocimeter (LDV). The results indicated that the tangential velocity of air flow is not agreement with tangential velocity of the rotary rotor blade. In the low rotary speeds of the rotor the tangential velocity of air flow decreases with the decreasing radius of the measurement point; in the high rotary speeds of the rotor the tangential velocity of air flow increases with the decreasing radius of the measurement point. Vortex is present in the revolving flow field, and position of vortex is in relation to the rotary speeds of the rotor. The axial velocity is in evidence because of the rotation of the rotor and the present of negative pressure. The axial velocity distribution is not uniform in the classification region of rotor blades and the value is in relation to the inlet air velocity and the rotary speed of the rotor.
     The effect of rotary speed on the flow field characteristics of the annular region was studied. The influence coefficient of rotary speed on the flow field characteristics of the annular region is defined as F. F decrease with the increase of rotary speed.
     The results indicate that the axial velocity of the annular region is decreased and flow field is optimized when horizontal boards are installed in the classifier volute. Horizontal boards are installed in the blades so that the axial velocity decreases in a certain extent. Experiments of the material classification are carried out. The results show that as low rotary speeds are employed the annular region is considered as the main classification region, and in high rotary speeds the annular region works as the function of dispersion and secondary classification.
引文
[1] 方莹,刘亚云,张少明.离心转子式选粉机的分级机理[J].南京化工大学学报.2001,23(6):18-22
    [2] 蔡安江.超细粉旋风分级及其系统的研究[D].西安:西安建筑科技大学硕士学位论文,2002
    [3] 盖国胜.超细粉碎与分级技术进展[J].中国粉体技术,1999,5(2):22-26
    [4] 孙成林.我国超细粉碎与超细分级技术的现状及问题[J].硫磷设计与粉体工程,2002,(6):4-10
    [5] Roland Nied. CFS-HD: a new classifier for fine classification with high efficiency [J]. Int. J. Miner. Process, 1996(44-45): 723-731
    [6] 王京刚等.超细粉体气力分级设备的现状与发展[C].国外金属矿选矿,1997,(3):14-19
    [7] 江旭吕.高效选粉机的构造及工作原理(一)[J].中国建材装备,1996,(11):11-15
    [8] 刘家祥,何迁树,夏靖波.涡流空气分级机流场特性分析及分级过程[J].硅酸盐学报,2003,31(5):485-489
    [9] Hiroshi Morimoto, Toshihiko Shakouchi. Classification of ultra fine powder by a new pneumatic type classifier [J]. Powder Technology, 2003, (131): 71-79
    [10] Jordan J. Parham, William J. Easson. Flow visualization and velocity measurements in a vertical spindle coal mill static classifier [J]. Fuel, 2003, (82): 2115-2153
    [11] 张佑林.粉体的流体分级技术与设备[M].武汉:武汉工业大学出版社,1997
    [12] 张宇,刘家祥等.涡流空气分级机的回顾与展望[J].中国粉体技术,2003,(5):37-42
    [13] Ghosh J, Roli F, et al. J. Multiclassifier Systems: Back to the future. Lect Notes Comput 2003, 1-15
    [14] 张少明等.粉体工程[M].北京:中国建材工业出版社,1994
    [15] 张端美,郭宏武,郑青,何正凯.HES高效选粉机的研究和应用[J].水泥.1991,(10):12-17
    [16] 李征宇.TES涡流选粉机的设计理念和结构特点[J].水泥技术,2003,(6):16-20
    [17] 李朝宗.O-Sepa选粉机的结构及作业特点(一)[J].中国建材装备,1994,(2):10-13
    [18] 陆厚根,岳维亮,张德耀.O-Sepa N-500G选粉系统开发和应用[J].水泥技术,2001,(5):50-53
    [19] 三板公明.O—Sepa选粉机构造上的特征及选粉机构[J].水泥工业技术,1989,(4):42-47
    [20] 李朝宗.O-Sepa 选粉机的结构及作业特点(二)[J].中国建材装备.1994,(3):12-15
    [21] 张佑林,王暄,等.O-Sepa分级机粒径的计算与分析[J].新世纪水泥导报,1998,4(2):29-31
    [22] T. Chmielniak, et al. Method of Calculation of New Cyclone-Type Separator with Swirling Baffle and Bottom Take off Clean Gas-Part Ⅰ: Theoretical approach. J. Chen. Eng. process, 2000, 39(5): 441-448
    [23] 吴建明.国内外粉碎工程进展[J].中国粉体技术,2002,(专辑):148-155
    [24] 孙鸿亮.微分分级技术[J].中国粉体技术,2000,(专辑):140-146
    [25] 卓震,刘雪东,等.离心式超细分级机的研究[J].化学工程,1998,26(5):24-28
    [26] M Adam, S Zampini, et al. A New Generation of Classifier Wheels[J]. Aufbereitungs Technik, 2001, 42(7): 340-344
    [27] 庞德明.超细粉体分级机[P].中国专利,CN1803318.2006-7-19
    [28] 杨可,吕宪俊.超细粉体分级设备的发展概况[C].全国工艺矿物学分选工程学学术会议 论文集,1998
    [29] 郑水林.超细粉碎[M].北京:中国建材工业出版社,1999
    [30] J. J. H. Brouwers. Particle Collection Efficiency of the Rotational Particle Separator[J], Powder Technology, 1997, 92: 89-99
    [31] 王克承.超微粉体分级装置[P].中国专利,CN2140267.1993-08-18
    [32] 刘辉,钱洪波.小于1微米碳化硅超细粉的研究与开发[J].中国非金属矿工业导刊,2001,(3):18-19
    [33] Zhang Youlin, Wang Xuan, et al. The Analysis of Turbo Classifier's Two-Dimension Centrifugal Flow Field and the Computer Simulation. Proceedings of the Fifth International Conference on MCGM. Northeastern University Press, 2000: 162-166
    [34] 任亮勇,魏成刚.高速气流多级超细粉体磨[P].中国专利,00261436.7.2001-08-15
    [35] 王莉.气流粉碎分级的影响因素[J].粉体技术,1998,4(3):26-30
    [36] 曹建华.金刚石微粉高精度分级技术研究[D].太原:华北工学院硕士学位论文,2001
    [37] 伍勇,施光明等.离心涡轮式气流分级机分级区域研究[J].四川大学学报(工程科学版),2001,33(3):38-40
    [38] 满瑞林,余嘉耕等.超细粉体分级器对重质碳酸钙的分级研究[J].现代化工,1999,19(2):28-31
    [39] Roland Nied. CFS-HD: a new classifier for fine classification with high efficiency [J]. Int. J. Miner. Process, (44-45) 1996: 723-731
    [40] Roland Nied. Fine classification with vaned rotors: at the outer edge of the vanes or in the interior vane free area [J]. International Journal of Mineral Processing, 74s(2004)s137-s145
    [41] 邱涛,马世新.碳化硅微粉气流分级实践[C].99’全国粉体技术在陶瓷和磨具行业应用交流会论文集.1999:26-28
    [42] S. M. Tasirin, D. Geldart. Separation Performance of Batch Fluidized Bed Air Classification. [J]. Powder handling & Processing, 2000, 12(1): 39-46
    [43] 李洪,李双跃等.干式空气分级机分类与设计概念[J].建材发展导向,2006,(2):63-66
    [44] 王成端.超细粉涡轮分级机性能参数分析[J].四川大学学报(工程科学版),2000,32(6):46-50
    [45] Patterson P A, Munz R J. Gas and Particle Flow Patterns in Cyclones at room and exited temperatures[J]. Chem. Eng. 1996, 74(4): 213-221
    [46] 王京刚.新型转子超细粉体气力分级机的研究[D].沈阳东北大学博士学位论文,1997
    [47] 王京刚,陈炳辰.转子超细粉体气力分级机的性能研究[J].有色金属(选矿部分),1998(04):34-36
    [48] 李慧钧,屈鸿屋.空气选粉机机械式撒料盘的试验研究[J].水泥,1991,(1):6-11
    [49] Wang Qianpu, MELAAEN MORTEN CHR, DE SILVA SUNIL R. Investigation and simulation of a cross-flow air classifier [J]. Powder Technology, 2001, 120: 273-280
    [50] JEROME MOTTE, YURI MOLODTSOF. Predicting transport velocities[J]. Powder Technology, 2001, 120: 120-126
    [51] OLACZ J. Investigating flow conditions in dynamic air classification [J]. Minerals Engineering, 2002, (15): 131-138
    [52] Wang Xiaoyan, Ge Xiaoling, Zhao Xuehua, Wang Zhiwei. A model for performance of the centrifugal countercurrent air classifier [J]. Powder Technology, 1998, 98: 171-176
    [53] 郭丽杰,王京刚等.进料管通风对涡流空气分级机分级效果的影响[J].非金属矿,2006,29(1):49-51
    [54] 张宁.涡流空气分级机“鱼钩效应”和机内粉体分散的研究[D].北京:北京化工大学硕士学位论文,2003
    [55] J. Kolacz. Investigating flow conditions in dynamic air classification[J]. Minerals Engineering, 2002, (15): 131-138
    [56] M. Shapiro, V. Galperin. Air classification of solid particles: a review [J]. Chemical Engineering and Processing, 2005, (44): 279-285
    [57] 李安平.第三代选粉机的切割粒径及其应用.水泥,1994,(4):2-5
    [58] 孙国刚,任智,时铭显.涡轮式气流分级机的流场测量与分级粒径计算[J].化工冶金增刊,1999:287-293
    [59] 刘家祥,夏靖波,何廷树.涡流空气分级机分级功能区的研究[J].北京化工大学学报,2002,29(6):50-53
    [60] 刘家祥.涡流空气分级机分级特性及性能改进的研究[D].沈阳东北大学博士学位论文.1997
    [61] S. T. Johansen. S. R. de Silva. Some considerations regarding optimum flow fields for centrifugal air classification [J]. International Journal of mineral processing, 1996, (44-45): 703-721
    [62] 刘雪东,卓震等.离心式超细空气分级机研究——分级机内腔流场[J].化学工程,1999,27(6):71-73
    [63] 黎国华,聂文平.涡轮分级机内腔流场的数值仿真研究[J].武汉理工大学学报,2004,26(5):71-73
    [64] 盖国胜.超细粉碎分级技术[M].北京:中国轻工业出版社,2001
    [65] 杜妍辰,王树林.颗粒在涡轮式分级机分级轮中的运动轨迹[J].化工学报,2005,56(5):823-828
    [66] 黎国华.涡轮分级机及其系统的性能研究与分级流场的计算机仿真[D].武汉:武汉理工大学博士学位论文,2004
    [67] 陈喜山,刘林波,邵明.除尘器三维流场自动检测系统及其应用[J].工业安全与防尘,1999,(3):8-11
    [68] 宫武旗.几种特种测试技术在流体机械内流场测试中的应用[J].燃气涡轮试验与研究,2004,17(3):51-55
    [69] 宫武旗,黄淑娟,徐忠.现代流动测试技术在流体机械流动分析中的应用[J].通用机械,2003,7:12-13
    [70] 于建文,刘晓东,黄金瑞.几种先进测量技术浅析[J].锅炉制造,2002,(3):78-80
    [71] 盛森芝,徐月亭,袁辉靖.近十年来流动测量技术的新发展[J].力学与实践,2002,24(5):1-14
    [72] 朱瑞.激光多普勒流速测姑技术[J].国外电子元器件,2005,(4):73-74
    [73] 北京大学力学与工程科学系测试分析室.激光多普勒测速仪[M].北京:北京大学出版社,2004
    [74] Peter F. Vassallo, Ranganathan Kumar. Liquid and gas velocity measurements using LDV in air-water duct flow [J]. Experimental thermal and fluid science, 1998, (19): 85-92
    [75] 孙渝生,赵建新,范丽娟.激光多普勒测速技术的最新发展[J].传感器世界,1998,(8):20-26
    [76] 赵建新,孙渝生.激光多普勒测速技术的最新发展动向[J].激光技术,1993,5:168-171
    [77] 王建军,王连泽,刘成文.带有减阻杆的旋风分离器内气体流动分析[J].化工学报,2005,56(6):989-994
    [78] 胡瓅元,时铭显.蜗壳式旋风分离器全空间三维时均流场的结构[J].化工学报,2003,54(4):549-556
    [79] E. B. Li, A. K. Tieu, W. Y. D. Yuen. Measurements of velocity LDV [J]. Optics and Lasers in Engineering, 2001, (35): 41-49
    [80] L.E.特瑞恩.激光多普勒技术[M].北京:清华大学出版社,1985
    [81] 刘建忠,姚强,赵翔.应用激光多谱勒技术测量波纹钝体燃烧空气运动的试验研究[C].北京:TSI产品技术研讨会论文集.1992