高强低吸湿铝合金用水溶性型芯的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
汽车工业及航天航空工业的迅猛发展催生了市场对带有复杂内腔及弯曲孔道铝合金铸件的需求,致使具有高强度的树脂砂芯被大量应用于此类铸件的生产,造成了严重的环境污染;且树脂砂芯的溃散性较差、发气量偏大。水溶性型芯能够很好地解决这类问题,但其低强度和高吸湿率制约了其在生产中的应用。为此,本文在综述现有铝合金水溶性型芯优缺点的基础上,提出了制备铝合金用无机盐粘结剂耐火材料芯,系统研究了影响该水溶性型芯强度的因素和提高该型芯的强度及抗吸湿性能的方法及机理,获得了高强低吸湿的铝合金用型芯砂配方及制备工艺。
     本文的主要内容如下:
     1)研究了无机盐种类、原砂种类以及加热温度、加热时间等对型芯抗拉强度的影响;通过正交试验获得了优化的型芯砂基础配方及制芯工艺,其抗拉强度约0.5MPa。
     2)对比了不同增强物质对1型芯的增强效果,获得了高强型芯配方。实验结果表明:高岭土、晶须及硅藻土均能显著提高型芯的强度,增强后型芯的抗拉强度度超过1.5MPa,相对于基础配方型芯的抗拉强度提高了2倍;采用复合增强后,型芯的抗拉强度可达2.5MPa,相对于基础配方型芯的抗拉强度提高了4倍。
     3)分析了基础配方的粘结机理及增强配方的增强机理。在制芯过程中,包覆在砂粒表面的无机盐溶液会在砂粒表面逐渐结晶析出形成粘结桥,从而使型芯砂建立起强度;增强物质加入后改变了无机盐的结晶形态,由未增强型芯砂中的片状、块状或针状结构变为致密平滑的结构,从而使型芯砂的强度得到了大幅度的提高。
     4)确定了以吸湿率为主以表面硬度及抗拉强度为辅的评价型芯抗吸湿能力的指标,并获得了型芯在一定湿度及温度下的吸湿特性方程。
     5)探讨了沉淀法在提高型芯抗吸湿性能中的效果。其结果表明:以溶有氯化钙的酒精溶液处理型芯的抗吸湿性能得到显著提高。这是因为:一方面沉淀反应中反应产物的抗吸湿性能优于反应物的抗吸湿性能,另外一方面沉淀法处理型芯能屏蔽原有型芯砂粒表面无机盐粘结机的多孔表面。在RH=75~85%、T=20~25℃的环境下,沉淀法处理的型芯砂在4h内的强度损失率为15%,是未处理型芯砂强度损失率的30%。
     6)获得了高强低吸湿铝合金用水溶性型芯砂配方,并分析了其水溶溃散机理。实验结果表明:该高强低吸湿配方制得的型芯砂抗拉强度达2.5Mpa,发气量仅6.2mL/g,且水溶溃散性能良好,抗吸湿性能提高了一倍;尽管碳酸钾与硅砂在600~800℃下会发生烧结,但由于烧结反应发生在硅砂与碳酸钾的界面上且烧结反应进行得不充分,因此未添加增强物质的型芯因型芯的多孔结构和碳酸钾极易溶于水的特性能够快速溃散;添加增强剂的型芯由于增强剂不会与碳酸钾反应,不会产生新的烧结,因此也具有优良的水溶溃散性能。
The rapid development of automobile and aerospace industies gives birth to the demand of alluminum castings with hollow configurations or internal channels, and results in resin sand core with high tensile strength being wildly used in manufacturing these castings, which causing serious enviromental pollution. Resin sand core also has bad colapsibility and high gas evolution. These can be settled by water soluble core, but its low strength and high hydroscopicity limits its application in practice. In the present dissertation, advantages and disadvantages of present water soluble core used in alluminum casting was summarized to develop inorganic salt refractory core. Afterward, methods and mechanisms of improving the strength and the humidity resistance of water soluble core were systematically researched. And then the process and the fomula of water soluble core with high strength and low hydroscopicity were obtained.
     The main contents of this paper were as follows:
     1) Influence of inorganic salts, base sands, heating temperature and heating time on tensile strength was investigated; the process and the basic fomula with the tensile strength 0.5MPa were obtained through orthogonal test optimization.
     2) The strengthening effect of the cores using different strengthening material was compared and the formula of the core with high strength was obtained. The results showed that:kaolin, magnesium borate whisker and diatomite could prominently improve the strength of the core and the tensile strength of the core could exceed 1.5MPa, which was two times higher than that of the basic fomula; the tensile strength of the core achieved 2.5MPa using composite strengthening method, which was 4 times higher than that of the basic fomula.
     3) Bonding mechanism and strengthening mechanism were analized. During the process of the core making, inorganic salt crystallized out to form bond briges from its solution which coated on the surface of sand and then the strength established; strengthening meterals could change the crystal morphology of the inorganic salt, turned flaky, massive and acicular structure to compact and smooth structure, which obviously improved the tensile strength.
     4) Hygroscopicity was established as the main index to evaluate the humidity resistance of the cores while surface hardness and tensle strength were the supplimentary, and the moisture absorption characteristic equation of the core was obtained.
     5) Humidity resistance improved by precipitation method was investigated. The results showed that:the humidity resistance of the water soluble core treated by alcoholic solution dissolved with calcium chloride was improved prominently on the account of the porous surface coated by calcium chloride and the high humidity resistance products generated in the reaction between calcium chloride and potassium carbonate; under the condition of RH=75~85%, T=20~25℃, the strength loss of the water soluble core treated by preipitation method was 15%, which was 30% of that without any treated.
     6) The fomular of the water soluble core used in alluminum casting with high strength and low hygroscopicity was obtained and the mechanism of the colapsibility was investigated. The result showed that:the core made of the fomular with high strength and low hyproscopicity had high strength (2.5 Mpa), low gas evolution (6.2 mL/g), and good colapsibility and humidity resistance; potassium carbonate and silica sand could sinter at 600~800℃, but the sintering reaction was insufficiency and takes place at the solid-solid contact between potassium carbonate and silica, so cores without strengthening had good colapsibility on account of its porous structure and the property of potassium carbonate soluble in water easily; strengthening materials could not react with potassium carbonate, so there was no new sinter reaction in strengthening cores, which guaranteed that strengthening cores also had good colapsibilities.
引文
[1]叶荣茂,王惠光,田竞,等.有色合金薄壁精密铸件铸造工艺的发展和特点[J].特种铸造及有色合金.1995(2):33-34.
    [2]刘向东,李远才,谭昊,等.可溶性型芯技术的发展及应用[J].现代铸铁.1998(3):15-17.
    [3]谭昊.航空器主体件细长油孔铸造方法的研究[D].武汉:华中理工大学,1998.
    [4]Adams G M. Cast engine cylinder having an internal passageway and method of making same[P]. USP:4922863,1990-05-08.
    [5]高业麟.可熔金属芯的绝热涂层[J].铸造.1990(01):43,21.
    [6]李育才.铝合金细孔件铸造工艺实践[J].特种铸造及有色合金.1989(06):38-39.
    [7]武彬杰.铝合金壳体的细孔铸造工艺[J].特种铸造及有色合金.2008(3):216-218.
    [8]李华文.铝合金铸件埋铜管成形油路的技术[J].特种铸造及有色合金.2010(7):682-684.
    [9]胡彭生.型砂[M].第二版.上海:上海科技出版社,1994.
    [10]Naro R L, Nelson B R. Economics of modern coremaking processes-cold box versus hot procession techniques[J]. AFS Translation.1981:97-106.
    [11]Buemle A W, Bowman R C. Warm box/warm air application as it pertains to metalcasting sand core manufacture [J]. Modern Casting.1970(10):64-67.
    [12]Mckillip W J, Bloomquist A E. New developments in furan cold box core/mold making[C]. Sydney:1982.
    [13]Langer H J, Dunnavant W R, Kogler H. Molding process based N radical polymerization, and new binders for aluminum casting[J]. Giesserei.1982,69(6): 150-156.
    [14]Kantor S B, Menaker V P. Moulding materials for special casting methods[J]. Liteinoe Proizvodstvo.1991(9):20-21,109.
    [15]Carey P R. Sand binder systems partⅩⅡ:hot box, warm box, and core oil[J]. Foundry Management&Technology.1996,124(3):31-37.
    [16]Harrod A. Complex castings from the shell process[J]. Foundry Trade Journal. 2003,177(3606):11-12,14.
    [17]李远才,李连杰,王文清,等.铝合金铸件用易溃散覆膜砂的现状与发展[J].特种铸造及有色合金.1998(5):9-11.
    [18]Mcnerlin C J, Busby A D. Foundry odor control[J]. Transactions of the American Foundrymen's Society.1998,105(97):199-204.
    [19]Makino H, Kato Y, Zenpo T, et al. Molding simulation and experiment of new coremaking system with polysaccharide-based binder[J]. Transactions of the American Foundry Society.2005,113(5):333-340.
    [20]刘向东.航空器机匣铸件中细长油孔铸造工艺的研究[D].武汉:华中理工大学,1998.
    [21]魏方.水溶性芯模材料的制备与性能研究[D].武汉:武汉理工大学,2007.
    [22]许云祥,钱绍嵩,黄雪英,等.以电熔刚玉砂为主体材料的水溶性型芯铝合金铸造试验[J].特种铸造及有色合金.1981(03):56-62.
    [23]何小于.磷酸盐水溶型芯的研究[J].铸造技术.1997(4):10-12.
    [24]罗继相.耐高压易溶芯的研制与应用[J].铸造.2002,51(2):92-95.
    [25]孟爽芬,罗爱华.铸钢件水溶性型芯混合料的研究[J].材料科学与工艺.1987,6(2):90-96.
    [26]孟爽芬,张建平,李虹.水溶性陶瓷芯在铝合金熔模铸造中的应用[J].特种铸造及有色合金.1993(4):11-14.
    [27]万里,徐鹏程,罗吉荣.陶瓷晶须增强水溶性盐芯成形特征与使用性能[J].铸造.2008,57(3):234-238.
    [28]郭任农.可溶性盐芯的应用[J].铸造.1991(6):40-41.
    [29]Anderko K. Process of casting metals by use of water-soluble salt cores[P]. USP: 3356129,1967-12-05.
    [30]Sakoda T. Water soluble core for pressure die casting and process for making the same[P].USP:3963818,1976-06-15.
    [31]Flessner T F. Die casting using casting salt cores[P]. USP:5303761,1994-04-19.
    [32]Grozinger D. Water-soluble salt cores for die casting[P]. USP:2008/0035294A1, 2008-02-14.
    [33]Brown W N. Soluble metal casting cores comprising a water-soluble salt and a synthetic resin[P]. USP:3645491,1972-02-29.
    [34]Dewey F C. Salt casting mixtures[P]. USP:3801334,1974-04-02.
    [35]Chung G J, Prater W L. Method of forming a die-castable hollow core actuator arm with improved damping[P]. USP:6245265B1,2001-06-12.
    [36]Townsend M E, Guelda E J, La Rue D G. Casting process employing soluble cores[P]. USP:3311956,1967-04-04.
    [37]Foreman R W. Mixture and method for preparing casting cores and cores prepared thereby[P]. USP:4840219,1989-06-20.
    [38]Novozhilov F K. Properties of salt cores[J]. Russian Castings Production.1974(6): 239-240.
    [39]Woolcott A J. Method of casting pistons[P]. USP:3459253,1969-08-05.
    [40]D. Law R D. Water-soluble cores can provide oil cooling passages in diesel piston crowns[J]. The SAE Journal.1970(1):68-73.
    [41]Foreman R W, Ives M T. Pressure molding process using salt cores and composition for making cores[P]. USP:4904423,1990-02-27.
    [42]Grebe D E, Potratz M P, Hesterberg W G, et al. Composite core for casting metallic objects[P]. USP:6478073B1,2002-11-12.
    [43]Zhang S. Soluble casting core for metal matrix composite components and method of producing thereof[P]. USP:20070131374A1,2007-06-14.
    [44]万里,徐鹏程,李远才,等.高压铸造用水溶性盐芯的陶瓷晶须增强机理与影响因素[J].铸造.2008,157(6):569-572,577.
    [45]Flessner T F, Marr C S. Die casting using casting salt cores[P]. EP:0613742A1, 1994-07-09.
    [46]K. Anderko M S. The use of water soluble salt cores in the casting of light alloy pistons[J]. Translated from Fonderie.1970(290):189-192.
    [47]Reid T C. Hydraulically controlled variable pitch blade[P]. USP:3356156, 1965-10-12.
    [48]Gmbh S. Casting core made of water soluble salts[P]. DE:1302940-B,1971-10-01.
    [49]Hirokawa K. Disintegrative core for high pressure casting, method for manufacturing the same, and method for extracting the same[P]. USP:6755238, 2004-06-29.
    [50]Moshini R. Method for producing pressure die-casting or injection moulded articles using salt. cores[P], USP:6458297,2002-10-01.
    [51]Alexander K, Farr H J. Refractory mould body and method of casting using the mould body[P]. USP:4480681,1984-11-06.
    [52]Hyndman C P, Wordsworth R A. Removable cores for metal casting[P]. USP: 5273098,1993-12-28.
    [53]Kurt A, Rudolf H, Manfred S. Forming hollow cast articles[P]. USP,3407864. 1968-10-29.
    [54]Gmbh S. Casting cores-of compressed sintered water-soluble salts contg borax magnesiaand/or talcum[P]. DE:1483641,1969-02-27.
    [55]Carden R A. Soluble core method of manufacture metal cast products[P]. USP: 5803151,1998-09-08.
    [56]Carden R A. Soluble core for casting[P]. USP:5921312,1999-07-13.
    [57]Barlow J, Rogers D B. Method of squeeze forming metal articles[P]. USP: 4667727,1987-05-26.
    [58]Anderko K, Stark M. Core for use in foundries and a method of forming cavities in castings[P]. GB:1274966,1972-05-17.
    [59]Groezinger D. Water-soluble salt cores[P]. USP:2007/0036941A1,2007-02-15.
    [60]Alexander K, Farr H J. Moulding[P]. USP:4629708,1986-12-16.
    [61]Cohn E, Chiricuta I, Razvan C, et al. High-strength, water-soluble cores for complex castings in light alloys[C]. Bulgaria:1980.
    [62]Anderko K. Salt core containing synthetic resin and water-glass as binders[P]. USP:3764575,1973-10-09.
    [63]徐松兰.氯化钠-水玻璃-铝钒土砂可溶芯的研制及其使用性能[J].南昌大学学报(工科版).1997,19(1):84-87.
    [64]张振军.振荡油冷活塞生产工艺的研究[J].机械制造.2001,30(3):25-27.
    [65]Reno K P. Water soluble cores containing polyvinyl alcohol binders and related methods[P]. USP:6045745,2000-04-04.
    [66]杨亚琛,刘达利.柴油机活塞用水溶芯的研制[J].兵器材料科学与工程.1997,20(4):53-55.
    [67]李远才.铸造造型材料实用手册[M].北京:机械工业出版社,2009.
    [68]李传轼.几种人造铸造原砂的应用[J].中国铸造装备与技术.2005(3):4346.
    [69]Fassler M H, Brinker N E. Process of Casting utilizing magnesium oxide cores[P]. USP:3701379,1972-10-31.
    [70]徐智清.氧化镁陶瓷型芯[J].特种铸造及有色合金.1995(6):8-10.
    [71]Hayward P J, Silvestone C E. Water-soluble casting core[P]. GB:2074065, 1981-10-28.
    [72]小池敬一.水溶性铸型[P].JP:昭54-31972,1978-07-18.
    [73]小池敬一.水溶性黑铅铸型[P].JP:昭52-027097,1977-02-24.
    [74]小池敬一.水溶性铸型材料[P].JP:昭51-031098,1975-01-31.
    [75]黄星亮.可溶芯综述[J].特种铸造及有色合金.1982(3):5-12.
    [76]小池敬一.水溶性铸型材料[P].JP:昭50-009522,1975-01-31[1975-01-31].
    [77]小池敬一.水溶性中子の制作方法[P].JP:昭50-009525,1975-01-31.
    [78]小池敬一.水溶性中子材料[P].JP:昭51-043811,1975-03-13.
    [79]小池敬.水溶性中子材料[P].JP:昭51-043810,1975-03-13.
    [80]余柏森.铝合金高气密性回流导叶的铸造[J].航天工艺.1994(3):18-20.
    [81]小池敬一.高压铸造用水溶性铸型[P].JP:昭52-030452,1977-04-02.
    [82]李成文,叶大鸿,阎德江.刚玉-磷酸钠流态水溶芯的研制[J].沈阳工业大学学报.1993,15(2):53-56.
    [83]高景艳,何顺荣.铸铁件用刚玉基水溶性芯的研究[J].铸造.1991(6):34-36.
    [84]占部素臣,武田和羲.水溶性中子[P].JP:昭48-39696,1973-11-26.
    [85]牧口利贞,村松晃,仓部兵次郎.水溶性铸型[P].JP:昭52-027089,1976-07-17.
    [86]李金富,孟爽芬.气体硬化水溶性砂芯的性能研究[J].热加工工艺.1992(1):13-17.
    [87]Murza-Mucha P, Koszarweski Z. Polish develop core binder system for aluminum casting[J]. Modern Casting.1981,71(12):40-41.
    [88]Fischman J L, Brinsmead K H. Foundry cores[P]. GB:1102247,1968-02-07.
    [89]Moore T M. Molding core[P]. USP:5248552,1993-09-28.
    [90]Loper C R, Jr. Miskinis G V, Heiss J F. The use of salt in foundry cores[J]. AFS Transaction.1985,93:545-561.
    [91]杜志龙,邱桂斌,闵小俊.新型水溶芯的研制[J].塑料工业.2004,32(11):55-56.
    [92]魏正方,曾黎明.水溶性芯模材料的制备与性能研究[J].粘接.2007,28(5):11-13.
    [93]赵竞翔,李桐,闫兴义.不锈钢叶轮的精密铸造[J].特种铸造及有色合金. 2004(3):58-59.
    [94]Bruch L W, Glebov A, Toennies J P, et al. A helium atom scattering study of water adsorption on the NaCl(100) single crystal surface[J]. Journal of Chemical Physics. 1995,103(12):5109-5120.
    [95]Atkins P W. Physical chemistry[M].6th edition ed. New York:W.H. Freeman & Company,1997.
    [96]Schmicker D, Toennies J P, Vollmer R, et al. Monolayer structures of carbon monoxide adsorbed on sodium chloride:A helium atom diffraction study[J]. Journal of Chemical Physics.1991,95(12):9412-9415.
    [97]Verdaguer A, Sacha G M, Luna M, et al. Initial stages of water adsorption on NaCl (100) studied by scanning polarization force microscopy[J]. Journal of Chemical Physics.2005,123(12):124703-124710.
    [98]Folsch S, Stock A, Henzler M. Two-dimensional water condensation on the NaCl(100) surface[J]. Surface Science.1992,264(1-2):65-72.
    [99]Twomey S. The identification of individual hygroscopic particles in the atmosphere by a phase-transition method[J]. Journal of Applied Physics.1953,24(9): 1099-1102.
    [100]Martin S T. Phase transitions of aqueous atmospheric particles[J]. Chemical Reviews.2000,100(9):3403-3454.
    [101]Cantrell W, Mccrory C, Ewing G E. Nucleated deliquescence of salt[J]. Journal of Chemical Physics.2002,116(5):2116-2120.
    [102]Zangwill A. Physics at surface[M]. New York:Cambridge University Press,1988.
    [103]Adamson A W, Gast A P. Physical chemistry of surfaces[M].6th ed. New York: Wiley,1997.
    [104]Stockelmann E, Hentschke R. A molecular-dynamics simulation study of water on NaCl(100) using a polarizable water model[J]. Journal of Chemical Physics.1999, 110(24):12097-12107.
    [105]化学工程师手册编辑委员会.化学工程师手册[M].北京:机械工程出版社,2000.
    [106]张龙,李远才,许建华,等.水溶性型芯强度影响因素的研究[J].铸造.2010,59(9):924-928.
    [107]Ma S, Wanga H, Wang Y, et al. Bio-hydrogen production from cornstalk wastes by orthogonal design method[J]. Renewable Energy.2011,36(2):709-713.
    [108]Li J. Orthogonal factorial design of parallel flats type and its application in biomedical research[J]. Journal of Statistical Planning and Inference.1998,73(1-2): 61-75.
    [109]林生军,赵巍,李远才,等.基于正交设计的脲醛呋喃树脂合成[J].铸造.2011,60(2):184-187.
    [110]李远才.金属液态成形工艺[M].北京:化学工业出版社,2007.
    [111]Liang W, Li-Dong W, Wei-Dong F. Fractal analysis of fracture surfaces in aluminum borate whisker-reinforced aluminum alloy 6061 composite[J]. Transactions of Nonferrous Metals Society of China.2011(3):461-466.
    [112]Lee H K, Zerbetto S, Colombo P, et al. Glass-ceramics and composites containing aluminum borate whiskers[J]. Ceramics International.2010,36(5):1589-1596.
    [113]Nardia J V, B W A, Hotza D. Enhancing the properties of ceramic products through mixture design and response surface analysis[J]. Journal of the European Ceramic Society.2004,24(2):375-379.
    [114]Gupta A. Optimization of product performance of a paint formulation using a mixture experiment[J]. Journal of Applied Statistics.2001,28(2):199-213.
    [115]Zhou J, Liu X, Huang K, et al. Application of the mixture design to design the formulation of pure cultures in tibetan kefir [J]. Agricultural Sciences in China. 2007,6(11):1383-1389.
    [116]Do J, Liou B. A mixture design approach to optimizing the cathodic compositions of proton exchange membrane fuel cell[J]. Journal of Power Sources.2011,196(4): 1864-1871.
    [117]Santafe-Morosa A, Gozalvez-Zafrillaa J M, Lora-Garciaa J, et al. Mixture design applied to describe the influence of ionic composition on the removal of nitrate ions using nanofiltration[J]. Desalination.2005,185(1-3):289-296.
    [118]Fang Y L, Xu Q. Uniform design and its applications in chemistry and chemical engineering [J]. Chemometrics and Intelligent Laboratory Systems.2001,58(1): 43-57.
    [119]Zhanga L, Liang Y, Jiang J, et al. Uniform design applied to nonlinear multivariate calibration by ANN[J]. Analytica Chimica Acta.1998,370(1):65-77.
    [120]Chan W, Tsao S. Fabrication of nanofiltration membranes with tunable separation characteristics using methods of uniform design and regression analysis [J]. Chemometrics and Intelligent Laboratory Systems.2003,65(2):241-256.
    [121]Chen X G, Li X, Kong L, et al. Application of uniform design and genetic algorithm in optimization of reversed-phase chromatographic separation[J]. Chemometrics and Intelligent Laboratory Systems.2003,67(2):157-166.
    [122]Shengjun L, Wei Z, Yuancai L, et al. Optimization of tensile strength for new type acetone-urea-formaldehyde furan resin using uniform design[J]. China Foundry. 2011,8(1):30-35.
    [123]刘金香,高秀英,许海云,等.Na_2CO_3与Si0_2反应热与反应动力学[J].无机盐工业.1992(1):32-35.
    [124]魏结练.酚醛尿烷冷芯盒工艺关键应用技术的研究[D].武汉:华中科技大学,2002.
    [125]李承春.国内外热芯盒树脂砂及其制芯工艺的现状与发展前景[J].铸造.1999(9):45-48.
    [126]熊建民.壳法用抗粘连结块热塑性酚醛树脂的研究[D].武汉:华中科技大学,2009.