STAT3和VEGF的表达与人脑膜瘤和胶质瘤发生发展的相关性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究背景:
     Janus蛋白酪氨酸激酶(Janus protein tyrosine kinase, JAK)/信号转导和转录激活因子(Signal transducer and activator of transcription, STAT)信号通路代表的是从细胞外到细胞核的信号通路。通过对IFN反应的研究发现了JAKs和STATs家族以及二者的相关联性。在肿瘤细胞系和人的肿瘤组织中,JAKs(包括JAK1、JAK2、JAK3和TYK2)选择性地激活STATs蛋白(包括STAT1-4、STAT5a、STAT5b和STAT6)调节肿瘤细胞的生长分化从而参与肿瘤的形成。在STATs蛋白中,活化的STAT3在多发性骨髓瘤、淋巴瘤、白血液以及实体肿瘤中均检测到。在头颈部鳞状上皮细胞癌中发现IL-6诱导STAT3表达的信号通路。酸性黄可抑制IL-6诱导STAT3的磷酸化和细胞核转移。在结肠癌细胞中当抑制STAT3和VEGF的表达时可抑制血管的生成和肿瘤的转移。因此,STAT3可作为肿瘤治疗的目的基因。
     相关研究发现JAKs和STATs蛋白家族对脑瘤的发生发展具有重要作用。JAK/STAT的功能通过SCID小鼠动物模型得以验证。JAK1或STAT3缺陷的小鼠由于神经系统和淋巴系统发育不平衡而在胚胎期就死亡。JAK1/STAT3在细胞转化和致瘤方面具有重要作用,在胶质瘤中的表达高低与肿瘤的分化程度密切相关。
     STAT3是一重要的信号转导蛋白,在传导信号和肿瘤形成方面发挥重要作用。在恶性胶质母细胞瘤细胞系中,通过STAT3的作用,IL-6可诱导VEGF的表达。活化的STAT3在恶性胶质瘤的肿瘤组织中表达增高且与病人的存活时间相关。研究发现STAT3在肿瘤细胞的转化和增值过程中是必需的。STAT3通过调节靶基因如cyclin D1、VEGF等参与细胞生长和血管生成。
     肿瘤的发生发展是一个多因素作用、多基因参与、多阶段才最终形成的极其复杂的生物学现象。肿瘤细胞最明显的特征是细胞增殖失去控制,而在肿瘤细胞内与生长分化有关的信号转导通路发生障碍则是生长失控的重要因素。由血管诱导因子诱导的肿瘤血管生成在肿瘤的发生、发展过程中是必需的。肿瘤血管的形成受多种血管生成因子的调控,包括呈纤维细胞生长因子(FGF)、血管内皮细胞生长因子(VEGF)家族及其受体、表皮生长因子(EGF)、血小板衍生生长因子(PDGF)、转化生长因子-β(TGF-β)等。作为重要的血管生成因子,VEGF(又称VEGFa)最初是从肿瘤细胞中发现,它参与肿瘤细胞的增殖、肿瘤血管的形成以及肿瘤的转移。VEGF几乎在所有人的实体肿瘤以及肿瘤细胞株中过度表达,包括肉瘤、淋巴瘤、脑膜瘤、胶质瘤、胃癌、结肠癌、卵巢癌、肝癌、腺癌等。VEGF对实体肿瘤血管的生成、肿瘤的生长和转移具有重要的作用。动物模型研究发现,通过抑制VEGF的表达可减少肿瘤血管的形成且抑制肿瘤的生长。血管生成是脑的重要的生物学特征,详细了解神经系统肿瘤血管的形成对提高脑瘤的治疗效果有重要意义。在各种脑瘤中,VEGF被认为是重要的血管生成因子。
     新生血管生成是肿瘤最基本的特征,是肿瘤发生发展的必要条件。脑膜瘤、胶质瘤是初发性脑瘤,WHO按脑瘤的诊断标准将脑膜瘤分为Ⅰ到Ⅲ级、胶质瘤分为Ⅰ到Ⅳ级。外科手术如全部切除肿瘤组织,治愈是有可能的,但非全切或恶性程度高即分级高的肿瘤术后很容易复发,必须进行多次的放射治疗或立体定向治疗。肿瘤是依赖血管生成提供营养和氧分而生长。抑制新生毛细血管的生成可能是治疗肿瘤的有效的方法。尽管有多种分子机制参与血管的形成,但VEGF途径是很重要的,在肿瘤治疗方面可能是有效的治疗靶位。
     目的:
     VEGF最初是从肿瘤细胞中发现,它参与肿瘤细胞的增殖、肿瘤血管的形成以及肿瘤的转移。作为实体肿瘤,血管生成是脑膜瘤和胶质瘤生长的重要条件。STAT3潜在的致癌作用在肿瘤的发生、发展过程中起到重要作用。本研究探讨JAK1/STAT3调节VEGF的表达是否参与脑膜瘤和胶质瘤的致病过程。材料与方法:检测对像是40例脑膜瘤(26例男性,平均年龄49.0±13.0)和63例胶质瘤(25例男性,平均年龄47.9±14.9)以及6例正常脑组织。所有病例均未进行包括化疗和放疗等的术前治疗。肿瘤的分型参照2000年世界卫生组织规定的人脑瘤的分类标准。
     采用RT-PCR、Western blot analysis和免疫组织化学方法检测脑膜瘤和胶质瘤及正常组织中JAK1、STAT3和VEGF的表达。
     结果:
     1、在正常脑膜组织中未见JAK1、p-JAK1、STAT3、p-STAT3和VEGF的表达:而在脑膜瘤组织中高表达;RT-PCR检测JAK1和STAT3的表达与VEGF的表达密切相关(P<0.05);Western blot检测发现,JAK1与STAT3、STAT3与VEGF、p-JAK1与P-STAT3、p-JAK1与VEGF以及P-STAT3与VEGF的表达均密切相关,表达量均与组织的分化程度有关(P<0.05);免疫组化检测的阳性率与Western blot检测的阳性率一致,P-STAT3在细胞核中表达,P-STAT3阳性的样本均表达VEGF,且与肿瘤的分化程度密切相关(P<0.05)。
     2、在正常脑组织中未见JAK1、STAT3和VEGF的表达;而在胶质瘤组织中高表达,JAK1和STAT3的表达均与VEGF的表达密切相关(P<0.05);在Ⅰ级和Ⅱ级肿瘤组织中表达升高,在Ⅲ级肿瘤组织中表达量最高(P<0.05);STAT3磷酸化(P-STAT3)是进行信号传导的重要步骤,在胶质瘤组织中未检测JAK1、STAT3的磷酸化状态,但JAK1的表达与STAT3的表达密切相关且与肿瘤的分化程度密切相关(P<0.05)。因此,JAK1与STAT3在肿瘤组织中的高表达可以认为是致癌因素。
     结论:
     在脑膜瘤和胶质瘤中,VEGF的表达由JAK1/STAT3信号通路调节且与肿瘤的分化程度密切相关。STAT3在调节血管生成的事件中是一重要因素,因此在脑膜瘤、胶质瘤的发生、发展中可能发挥重要作用。
Background
     The Janus protein tyrosine kinase/Signal transducer and activator of transcription signal pathway is one of the main effectors in transducing signals from the cell surface to the nucleus. The correlation between JAKs and STATs families was found during studies on interferon (IFN) gamma-dependent gene expression. The selectively activation of the proteins signal transducers and activators of transcription (STATs) (STAT1-4, STAT5a, STAT5b, and STAT6) by Janus kinases (JAKs) (JAK1, JAK2, JAK3 and TYK2) is involved in the oncogenesis by regulating cell survival, growth and differentiation in many cancerous cell lines and human tumors. Of the seven STAT proteins, constitutive activated STAT3 has been implicated in multiple myeloma, lymphomas, leukemias, and several solid tumors. IL-6 inducible STAT3 pathway was found in head and neck squamous cell carcinoma cells. Evidences show that curcumin inhibition of IL-6 induced STAT3 phosphorylation and consequent STAT3 nuclear translocation. Colon cancer cells showed inhibited angiogenesis and metastasis with blocked STAT3 and VEGF expression. So STAT3 may be a target gene for cancer therapy.
     Evidences show that The JAK and STAT families of proteins are important effectors in brain tumors. The function of JAK/STAT signal pathway is best explained in SCID mice models. JAK1-/- and STAT3-/- mice die during embryogenesis because of impaired neurological and lymphoid development. The JAK1/STAT3 signal pathway is important in cell transformation and carcinogenesis, and their expression is associated with glioma differentiation.
     STAT3 is a key signal transduction protein that mediates signaling by cytokines and contributes to oncogenesis. Interleukin-6 induces VEGF expression in glioblastoma cell lines via STAT3. Activated STAT3 may be increased in malignant glioma patients and is associated with poor patient survival. Evidence indicates that STAT3 is necessary for tumor cell proliferation and transformation. STAT3 regulates target genes such as cyclin Dl and VEGF that are involved in cell survival and angiogenesis.
     For most solid tumors, tumor angiogenesis is required for tumor growth and development stimulated by angiogenic inducers, and regulated by many angiogenic inducers, including fibroblast growth factor (FGF), VEGF, epidermal growth factor (EGF), platelet-derived growth factor (PDGF), transforming growth factor-β(TGF-β). As a key angiogenic factor, vascular endothelial growth factor (VEGF, also called VEGFa) originally isolated from tumor cells, is involved in tumor cell proliferation, angiogenesis and metastasis. The expression of the oncogene VEGF is an important factor in tumor angiogenesis for solid tumor growth and leads to tumor proliferation and metastasis. VEGF expresses in most of solid tumors and tumor cell lines including fleshy tumor, lymphadenoma, meningioma, glioma, gastric cancer, colon carcinoma, ovarian cancer, liver cancer. Animal experiments indicate that inhibition of VEGF expression reduces tumor angiogenesis and inhibits tumor growth. Angiogenesis is a crucial characteristic of brain biology, and detailed knowledge about angiogenesis of tumors of the central nervous system is important to improve therapy of brain tumors. VEGF is considered a major regulator of angiogenesis in various brain tumors.
     Angiogenesis is a fundamental process of blood vessel growth that is a hallmark of cancer. Angiogenesis, the recruitment of new blood vessels, is an essential component of tumor progression. Meningioma and glioma are common primary brain tumors, and classifiedⅠ-Ⅲgrade andⅠ-Ⅳgrade according to the 2000 World Health Organization classification of human brain tumors. Surgical resection is curative when complete removal of benign cancers is possible, incompletely resected tumors and high-grade lesions are frequently treated with fractionated radiotherapy or stereotactic radiosurgery. Malignant brain tumors are highly vascularized and their growth is angiogenesis-dependent. As such, inhibition of the sprouting of new capillaries from pre-existing blood vessels is one of the most promising therapeutic approaches. Although several molecular mechanisms contribute to angiogenesis in tumors, VEGF pathway appears particularly important and has been a prominent therapeutic target in cancer treatment.
     Objective
     VEGF, originally isolated from tumor cells, induces tumor angiogenesis and promotes tumor cell proliferation, angiogenesis and metastasis. As a solid tumor, meningioma and glioma depend on neovascularization by angiogenesis for expansion. The oncogenic potential of STAT3 is critical in tumor occurrence and development of human cancers. Here, we studied whether VEGF expression regulated by a Janus kinase 1 (JAK1)/STAT3 signal pathway might be involved in the pathogenesis of human meningioma and glioma.
     Materials and Methods
     We obtained 40 meningioma specimens (26 from males; donor mean age 49.0±13.0 years),63 glioma specimens (from 25 males, donor mean age 47.9±14.9 years) and 6 normal brain tissues. All patients had not undergone preoperative treatments such as chemotherapy or radiotherapy. All tumors were histologically classified as malignant according to the 2000 World Health Organization classification of human brain tumors.
     Using RT-PCR, western blot analysis and immunohistochemistry, we measured JAK1, STAT3 and VEGF expression in brain tissue from patients with meningioma and glioma.
     Results
     1. Normal brain tissue did not expressed JAK1, p-JAK1, STAT3, p-STAT3 and VEGF, but highly expressed in tumor tissues; Relative expression of JAK1, STAT3 were strongly correlated with VEGF expression in meningioma by RT-PCR (P< 0.05); Correlation analysis of JAK1 versus STAT3, STAT3 versus VEGF, p-JAK1 versus p-STAT3, p-JAK1 versus VEGF and p-STAT3 versus VEGF in showed strong correlation at protein level in meningioma by western blot analysis, expression level was associated with tumor differentiation (P< 0.05); Results of frequency of positivity seen on immunohistochemistry were in agreement with those seen on western blot analysis; p-STAT3 expressed in cell nuclear, all meningioma tumors positive for p-STAT3 also showed VEGF expression VEGF expression, and correlated with meningioma differentiation (P< 0.05).
     2. Normal brain tissue did not show elevated expression of JAK1, STAT3 and VEGF at mRNA and protein level. The relative expression of JAK1 was strongly correlated with that of STAT3, and the expression of JAK1 and STAT3 was highly correlated with that of VEGF in glioma tissues (P< 0.05); The frequency and intensity of the expression was increased in grade I and grade II glioma tissues at mRNA and protein level, with the highest levels in grade III tissues (P< 0.05); Tyrosine phosphorylation is considered a switching signal to activate STATs, in glioma tissues, we did not study the tyrosine phosphorylation status of JAK1 and STAT3, but the expression of JAK.1 was stably associated with that of STAT3 in tumor tissues, and significantly correlated with differentiated status of human glioma (P< 0.05). So upregulation of JAK1 and STAT3 may be a pathological event.
     Conclusions
     VEGF is regulated by a JAK1/STAT3 signal pathway and is associated with meningioma and glioma histological differentiation. STAT3 represents a point of convergence for angiogenic events in the signal pathway and may play a central role during occurrence, development of human meningioma and glioma.
引文
1. Schindler C. Shuai K, Prezioso VR. et al. Interferon-dependent tyrosine phosphorylation of a latent cytoplasmic transcription factor. Science 1992 257: 809-813.
    2. Levy DE, Darnell JE. Stats:transcriptional control and biological impact. Nat Rev Mol Cell Biol 2002 3:651-662
    3. Valentino L. Pierre J. JAK/STAT signal transduction:regulators and implication in hematological malignancies. Biochemical Pharmacology 2006 71:713-721.
    4. Paukku K, Silvennoinen O. STATs as critical mediators of signal transduction and transcription:lessons learned from STAT5. Cytokine Growth Factor Rev 2004 15: 435-455.
    5. Gough DJ. Levy DE, Johnstone RW, et al. IFNgamma signaling-does it mean JAK-STAT? Cytokine Growth Factor Rev 2008 19:383-94.
    6. Sadowski HB. Shuai K, Darnell JE Jr. et al. A common nuclear signal transduction pathway activated by growth factor and cytokine receptors. Science 1993 261: 1739-1744.
    7. Zhong Z. Wen Z. Darnell JE Jr. STAT3:A STAT family member activated by tyrosine phosphorylation inresponse to epidermal growth factor and interleukin-6. Science 1994 264:95-98.
    8. Shuai K. Ziemiecki A, Wilks AF, et al. Polypeptide signaling to the nucleus through tyrosine phosphorylation of JAK and STAT proteins. Nature (London) 1993 366:580-583.
    9. Ihle JN. STATs:Signal transducers and activators of transcription. Cell 1996 84: 331-334.
    10. Takemoto S, Mulloy JC. Cereseto A, et al. Proliferation of adult T cell leukemia/lymphoma cells is associated with the constitutive activation of JAK/STAT proteins. Proc Natl Acad Sci U S A.199794:13897-13902.
    11. Elliott J. Johnston JA. SOCS:role in inflammation. allergy and homeostasis. Trend Immunol 2004 25:434-440.
    12. Niu G, Wright KL, Huang M, et al. Constitutive stat3 activity up-regulates VEGF expression and tumor angiogenesis. Oncogene 2002 21:2000-2008.
    13.Wei D, Le X, Zhen L, et al. STAT3 activation regulates the expression of vascular endothelial growth factor and human pancreatic cancer angiogenesis and metastasis. Oncogene 2003 22:319-329.
    14. Chen Z, Han ZC. STAT3:a critical transcription activator in angiogenesis. Med Res Rev 2008 28:185-200.
    15. Aggarwal BB, Sethi G, Ahn KS, et al. Targeting signal-transducer-and-activator-of-transcription-3 for prevention and therapy of cancer:modern target but ancient solution. Ann N Y Acad Sci 2006 1091:151-169.
    16. Mantle RE, Lach B, Delgado MR, et al. Predicting the probability of meningioma recurrence based on the quantity of peritumoral brain edema on computerized tomography scanning. J Neurosur 1999 91:375-383.
    17. Nakasu S, Nakasu Y, Nakajima M, et al. Preoperative identification of meningiomas that are highly likely to recur. J Neurosurg 1999 90:455-462.
    18. Yamasaki F, Yoshioka H, Hama S, et al. Recurrence of meningiomas. Cancer 2000 89:1102-1110.
    19. Deorah S, Lynch CF, Sibenaller ZA, et al. Trends in brain cancer incidence and survival in the United States Surveillance, Epidemiology, and End results program, 1973 to 2001. J Neurosurg Focus 2006 20:El.
    20.陈忠平。胶质瘤治疗的困惑与思考。中华神经外科杂志2008 24:310-311.
    21. Hochberg FH, Pruitt A. Assumptions in the radiotherapy of glioblastoma. Neurology 1980 30:9-907-911.
    22. Folkman J. Angiogenesis-dependent diseases. Semin Oncol 200128:536-542.
    23. Ferrara N, Gerber HP, LeCouter J. The biology of VEGF and its receptors. Nat Med 2003 9:669-676.
    24. Fischer I, Gagner JP, Law M, et al. Angiogenesis in gliomas:biology and molecular pathophysiology. Brain Path 2005 15:297-310.
    25. Tsai JC, Goidman CK, Gillespie GY, et al. Vascular endothelial growth factor in human glioma cell lines:induced secretion. J Neurosyurg 1995 82:864-873.
    26. Preusser M, Birner P, Ambros IM, et al. DEC1 expression in 1p-aberrant oligodendroglial neoplasms. Histol Histopathol 2005 20:1173-1176.
    27. Rodig SJ, Meraz MA, White JM, et al. Disruption of the JAK1 gene demonstrates obligatory and nonredundant roles of the JAKs in cytokine-induced biologic responses. Cell 1998 93:373-383.
    28. Takeda K, Noguchi K, Shi W, et al. Targeted disruption of the mouse STAT3 gene leads to early embryonic lethality. Proc Natl Acad Sci USA.199794:3801-3804.
    29. Akira S. Functional roles of STAT family proteins:lessons from knockout mice. Stem Cells 199917:138-146.
    30. Guschin D, Rogers N, Briscoe J, et al. A major role for the protein tyrosine kinase JAK1 in the JAK/STAT signal transduction pathway in response to interleukin-6. EMBO J 1995 14:1421-1429.
    31. Cattaneo E, Magrassi L, De-Fraja C, et al. Variations in the levels of the JAK/STAT and ShcA proteins in human brain tumors. Anticancer Res 1998 18: 2381-2387.
    32. Haridas V, Nishimura G, Xu ZX, et al. Avicin D:a protein reactive plant isoprenoid dephosphorylates STAT3 by regulating both kinase and phosphatase activities. PloS One 2009 4:e5578.
    33. Coppo P, Flamant S, De Mas V, et al. BCR-ABL activates STAT3 via JAK and MEK pathways in human cells. Br J Haematol 2006 134:171-179.
    34. Tian SS, Lamb P, Seidel HM, et al. Rapid activation of the STAT3 transcription factor by granulocyte colony-stimulating factor. Blood 1994 84:1760-1764.
    35. Tam L, McGlynn LM, Traynor P, et al. Expression levels of the JAK/STAT pathway in the transition from hormone-sensitive to hormone-refractory prostate cancer. Br J Cancer 2007 97:378-383.
    36. Bowman T, Garcia R, Turkson J, et al. STATs in oncogenesis. Oncogene 2000 19: 2474-2488.
    37. Rubin Grandis J, Zeng Q, Drenning SD. Epidermal growth factor receptor--mediated STAT3 signaling blocks apoptosis in head and neck cancer. Laryngoscope 2000 110:868-874.
    38. Schaefer LK, Ren Z, Fuller GN, et al. Constitutive activation of STAT3alpha in brain tumors:localization to tumor endothelial cells and activation by the endothelial tyrosine kinase receptor (VEGFR-2). Oncogene 2002 21:2058-2065.
    39. Kim ES, Hong SY, Lee HK, et al. Guggulsterone inhibits angiogenesis by blocking STAT3 and VEGF expression in colon cancer cells. Oncol Rep 2008 20: 1321-1327.
    40. De-Fraja C, Conti L, Govoni S, et al. STAT signalling in the mature and aging brain. Int J Dev Neurosci 2000 18:439-446.
    41. Gautron L, De Smedt-Peyrusse V, Laye S. Characterization of STAT3-expressing cells in the postnatal rat brain. Brain Res 2006 1098:26-32.
    42. Magrassi L, De-Fraja C, Conti L, et al. Expression of the JAK and STAT superfamilies in human meningiomas. J Neurosurg 1999 91:440-446.
    43. Lee CK, Bluyssen HA, Levy DE. Regulation of interferon-alpha responsiveness by the duration of Janus kinase activity. J Biol Chem 1997 272:218.
    44. Turkson J, Jove R. STAT proteins:novel molecular targets for cancer drug discovery. Oncogene 2000 27:6613-6626.
    45. Carlesso N, Frank DA, Griffin JD. Tyrosyl phosphorylation and DNA binding activity of signal transducers and activators of transcription (STAT) proteins in hematopoietic cell lines transformed by Bcr/Abl. J Exp Med 1996 183:811-820.
    46. BhartiAC, Donato N, Aggarwal BB. Curcumin (diferuloylmethane) inhibits constitutive and IL-6-inducible STAT3 phosphorylation in human multiple myeloma cells. J Immunol 2003 171:3863-3871.
    47. Weber-Nordt RM, Egen C, Wehinger J, et al. Constitutive activation of STAT proteins in primary lymphoid and myeloid leukemia cells and in Epstein-Barr virus (EBV)-related lymphoma cell lines. Blood 1996 88:809-816.
    48. Knoops L, Hornakova T, Royer Y, et al. JAK kinases overexpression promotes in vitro cell transformation. Oncogene 2008 27:1511-1519.
    49. Zhang Y, Turkson J, Carter-Su C, et al. Activation of STAT3 in v-Src-Transformed fibroblasts requires cooperation of JAK1 kinase activity. J Biol Chem 2000 275:24935-24944.
    50. Catlett-Falcone R, Landowski TH, Oshiro MM, et al. Constitutive activation of STAT3 signaling confers resistance to apoptosis in human U266 myeloma cells. Immunity 1999 10:105-115.
    51. Mahboubi K, Li F, Plescia J, et al. Interleukin-11 up-regulates survivin expression in endothelial cells through a signal transducer and activator of transcript-tion-3 pathway. Lab Invest 200 81:327-334.
    52. Ohta Y, Endo Y, Tanaka M, et al. Significance of vascular endothelial growth factor messenger RNA expression in primary lung cancer. Clin Cancer Res 1996 2: 1411-1416.
    53. Chen SH, Murphy DA, Lassoued W, et al. Activated STAT3 is a mediator and biomarker of VEGF endothelial activation. Cancer Biol Ther 2008 7:1994-2003.
    54. Loeffler S, Fayard B, Weis J, et al. Interleukin-6 induces transcriptional activation of vascular endothelial growth factor (VEGF) in astrocytes in vivo and regulates VEGF promoter activity in glioblastoma cells via direct interaction between STAT3 and Sp 1. Int J Cancer 2005 115:202-213.
    55. Wang H, Wang H, Zhang W, et al. Analysis of the activation status of Akt, NFkappaB, and STAT3 in human diffuse gliomas. Lab Invest 2004 84:941-951.
    1. Deorah S, Lynch CF, Sibenaller ZA, et al. Trends in brain cancer incidence and survival in the United States Surveillance, Epidemiology, and End results program, 1973 to 2001. J Neurosurg Focus 2006 20:E1.
    2.陈忠平。胶质瘤治疗的困惑与思考。中华神经外科杂志2008 24:310-311.
    3. Hochberg FH, Pruitt A. Assumptions in the radiotherapy of glioblastoma. Neurology 1980 30:9-907-911.
    4. Darnell JE Jr, Kerr IM, Stark GR. JAK-STAT pathways and transcriptional activation in response to IFNs and other extracellular signaling proteins. Science 1994 264:1415-1421.
    5. Schindler C. Cytokines and JAK-STAT signaling. Exp Cell Res 1999 253:7-14.
    6. Lutticken C, Wegenka UM, Yuan J, et al. Association of transcription factor APRF and protein kinase Jakl with the interleukin-6 signal transducer gp130. Science 1994 263:89-92.
    7. Kisseleva T, Bhattacharya S, Braunstein J, et al. Signaling through the JAK/STAT pathway, recent advances and future challenges. Gene 2002 285:1-24.
    8. Magrassi L, De-Fraja C, Conti L, et al. Expression of the JAK and STAT superfamilies in human meningiomas. J Neurosurg 1999 91:440-446.
    9 Coppo P, Flamant S, De Mas V, et al. BCR-ABL activates STAT3 via JAK and MEK pathways in human cells. Br J Haematol 2006 134:171-179.
    10. Cattaneo E, Magrassi L, De-Fraja C, et al. Variations in the levels of the JAK/STAT and ShcA proteins in human brain tumors. Anticancer Res 1998 18: 2381-2387.
    11. Loeffler S, Fayard B, Weis J, et al. Interleukin-6 induces transcriptional activation of vascular endothelial growth factor (VEGF) in astrocytes in vivo and regulates VEGF promoter activity in glioblastoma cells via direct interaction between STAT3 and Sp1. Int J Cancer 2005 115:202-13.
    12. Ferrara N, Gerber HP, LeCouter J. The biology of VEGF and its receptors. Nat Med 2003 9:669-676.
    13. Hlobilkova A, Ehrmann J, Knizetova P, et al. Analysis of VEGF, Flt-1, Flk-1, nestin and MMP-9 in relation to astrocytoma pathogenesis and progression. Neoplasma 2009 56:284-290.
    14. Mehler MF, Kessler JA. Hematolymphopoietic and inflammatory cytokines in neural development. Trends Neurosci 1997 20:357-365.
    15. Chatterjee-Kishore M, van den Akker F, Stark GR. Association of STATs with relatives and friends. Trends Cell Biol 2000 10:106-111.
    16. Bromberg J, Darnell JE, Jr. The role of STATs in transcriptional control and their impact on cellular function. Oncogene 2000 9:2468-2473.
    17. Reich NC, Liu L. Tracking STAT nuclear traffic. Nat Rev Immunol 2006 6: 602-612.
    18. Shuai K, Ziemiecki A, Wilks AF, et al. Polypeptide signaling to the nucleus through tyrosine phosphorylation of JAK and STAT proteins. Nature 1993 366: 580-583.
    19. Rodig SJ, Meraz MA, White JM, et al. Disruption of the JAK1 gene demonstrates obligatory and nonredundant roles of the JAKs in cytokine-induced biologic responses. Cell 1998 93:373-383.
    20. Takeda K, Noguchi K, Shi W, et al. Targeted disruption of the mouse STAT3 gene leads to early embryonic lethality. Proc Natl Acad Sci USA 1997 94:3801-3804.
    21. Spiekermann K, Biethahn S, Wilde S, et al. Constitutive activation of STAT transcription factors in acute myelogenous leukemia. Eur J Haematol 2001 67:63-71.
    22. Rubin Grandis J, Zeng Q, Drenning SD. Epidermal growth factor receptor-mediated STAT3 signaling blocks apoptosis in head and neck cancer. Laryngoscope 2000 110:868-874.
    23. Bowman T, Garcia R, Turkson J, et al. STATs in oncogenesis. Oncogene 2000 19: 2474-2488.
    24. Akira S. Functional roles of STAT family proteins:lessons from knockout mice. Stem Cells 1999 17:138-146.
    25. Sinibaldi D, Wharton W, Turkson J, et al. Induction of p21 WAF1/CIP1 and cyclin D1 expression by the Src oncoprotein in mouse fibroblasts:role of activated STAT3 signaling. Oncogene 2000 19:5419-27.
    26. Niu G, Wright KL, Huang M, et al. Constitutive STAT3 activity up-regulates VEGF expression and tumor angiogenesis. Oncogene 2002 21:2000-2008.
    27. Lee CK, Bluyssen HA, Levy DE. Regulation of interferon-alpha responsiveness by the duration of Janus kinase activity. J Biol Chem 1997 72:21872-21877.
    28. Zhang Y, Turkson J, Carter-Su C, et al. Activation of STAT3 in v-Src-transformed fibroblasts requires cooperation of JAK1 kinase activity. J Biol Chem 2000 275: 24935-24944.
    29. Knoops L, Hornakova T, Royer Y, et al. JAK kinases overexpression promotes in vitro cell transformation. J Cardiovasc Pharmacol 2007 50:126-141.
    30. Bromberg JF, Wrzeszczynska MH, Devgan G, et al. STAT3 as an oncogene. Cell 199998:295-303.
    31. Mahboubi K, Li F, Plescia J, et al. Interleukin-11 up-regulates survivin expression in endothelial cells through a signal transducer and activator of transcription-3 pathway. Lab Invest 2001 81:327-334.
    32. Turkson J. STAT proteins as novel targets for cancer drug discovery. Expert Opin.Ther Targets 2004 8:409-422.
    33. Ohta Y, Endo Y, Tanaka M, et al. Significance of vascular endothelial growth factor messenger RNA expression in primary lung cancer. Clin Cancer Res 1996 2: 1411-1416.
    34. Yancopoulos GD, Davis S, Gale NW, et al. Vascular-specific growth factors and blood vessel formation. Nature 2000 407:242-248.
    35. Kwak BK, Shim HJ, Park ES, et al. Hepatocellular carcinoma:correlation between vascular endothelial growth factor level and degree of enhancement by multiphase contrast-enhanced computed tomography. Invest Radiol 200136:487-492.
    36. Kim KJ, Li B, Winer J, et al. Inhibition of vascular endothelial growth factor-induced angiogenesis suppresses tumour growth in vivo. Nature 1993 362: 841-844.
    37. Lu N, Gao Y, Ling Y, et al. Wogonin suppresses tumor growth in vivo and VEGF-induced angiogenesis through inhibiting tyrosine phosphorylation of VEGFR2. Life Sci 2008 82:956-963.
    38. Nishikawa R, Cheng SY, Nagashima R, et al. Expression of vascular endothelial growth factor in human brain tumors. Acta Neuropathol 1998 96:453-462.
    1. Schindler C, Shuai K, Prezioso VR, et al. Interferon-dependent tyrosine phosphorylation of a latent cytoplasmic transcription factor. Science 1992 257: 809-813.
    2. Levy DE, Darnell JE. Stats:transcriptional control and biological impact. Nat Rev Mol Cell Biol 2002 3:651-662
    3. Valentino L. Pierre J. JAK/STAT signal transduction:regulators and implication in hematological malignancies. Biochemical Pharmacology 2006 71:713-721.
    4. Paukku K, Silvennoinen O. STATs as critical mediators of signal transduction and transcription:lessons learned from STAT5. Cytokine Growth Factor Rev 2004 15: 435-455.
    5. Gough DJ, Levy DE, Johnstone RW, et al. IFNgamma signaling-does it mean JAK-STAT? Cytokine Growth Factor Rev 2008 19:383-94.
    6. Sadowski HB, Shuai K, Darnell JE Jr, et al. A common nuclear signal transduction pathway activated by growth factor and cytokine receptors. Science 1993 261: 1739-1744.
    7. Zhong Z, Wen Z, Darnell JE Jr. STAT3:A STAT family member activated by tyrosine phosphorylation inresponse to epidermal growth factor and interleukin-6. Science 1994 264:95-98.
    8. Shuai K, Ziemiecki A, Wilks AF, et al. Polypeptide signaling to the nucleus through tyrosine phosphorylation of JAK and STAT proteins. Nature (London) 1993 366:580-583.
    9. Ihle JN. STATs:Signal transducers and activators of transcription. Cell 1996 84: 331-334.
    10. Rodig SJ, Meraz MA, White JM, et al. Disruption of the Jakl gene demonstrates obligatory and nonredundant roles of the Jaks in cytokine-induced biologic responses. Cell 1998 93:373-383.
    11. Neubauer H, Cumano A, Muller M, et al. Jak2 deficiency defines an essential developmental checkpoint in definitive hematopoiesis. Cell 1998 93:397-409.
    12. Parganas E, Wang D. Stravopodis D. et al. Jak 2 is essential for signaling through a variety of cytokine receptors. Cell 1998 93:385-395.
    13. Thomis DC, Gurniak CB, Tivol E, et al. Defects in B lymphocyte maturation and T lymphocyte activation in mice lacking JAK3. Science 1995 270:794-797.
    14. Karaghiosoff M, Neubauer H, Lassnig C, et al. Partial impairment of cytokine responses in Tyk2-deficient mice. Immunity 2000 13:549-560.
    15. Karaghiosoff M, Steinborn R, Kovarik P, et al. Central role for type I interferons and Tyk2 in lipopolysaccharide-induced endotoxin shock. Nat Immunol 2003 4: 471-477.
    16. Takemoto S. Mulloy JC, Cereseto A, et al. Proliferation of adult T cell leukemia/lymphoma cells is associated with the constitutive activation of JAK/STAT proteins. Proc Natl Acad Sci U S A.199794:13897-13902.
    17. Elliott J. Johnston JA. SOCS:role in inflammation, allergy and homeostasis. Trend Immunol 2004 25:434-440.
    18. Quelle FW. Sato N, Witthuhn BA, et al. JAK2 associateswith the beta c chain of the receptor for granulocyte-macrophage colony-stimulating factor, and its activation requires the membrane-proximal region. Mol Cell Biol 1994 14:4335-4341.
    19. Lai CF. Ripperger J. Morella KK, et al. Separate signaling mechanisms are involved in the control of STAT protein activationand gene regulation via the interleukin 6 response elementby the box 3 motif of gp1 30. J Biol Chem 1995 270: 14847-14850.
    20. Chin YE. Kitagawa M. Su WC. et al. Cell growth arrest and induction of cyclin-dependent kinase inhibitor p21 WAF1/CIP1 mediated by STAT1. Science 1996272:719-722.
    21. Kaplan MH. Daniel C, Schindler U, et al. Stat proteins control lymphocyte proliferation by regulating p27Kipl expression. Mol Cell Biol 199818:1996-2003.
    22. Kishimoto T, Akira S, Narazaki M, et al. Interleukin-6 family of cytokines and gp1 30. Blood 1995 86:1243-1254.
    23. Akira S. IL-6-regulated transcription factors. Int J Biochem Cell Biol 1997 29: 1401-1418.
    24. Yamauchi-Takihara K, Kishimoto T. A novel role for STAT3 in cardiac remodeling. Trends Cardiovasc Med 2000 10:298-303.
    25. Durbin JE, Hackenmiller R, Simon MC, et al. Targeted disruption of the mouse Statl gene results in compromised innate immunity to viral disease. Cell 1996 84: 443-450.
    26. Meraz MA, White JM, Sheehan KC, et al. Targeted disruption of the Statl gene in mice reveals unexpected physiologic specificity in the JAK/STAT signal pathway. Cell 1996 84:431-442.
    27. Park C, Li S, Cha E, et al. Immune response in Stat2 knockout mice. Immunity 200013:795-804.
    28. Takeda K, Noguchi K, Shi W, et al. Targeted disruption of the mouse Stat3 gene leads to early embryonic lethality. Proc Natl Acad Sci U S A.1997 94:3801-3804.
    29. Minami M, Inoue M, Wei S, et al. STAT3 activation is a critical step in gp130-mediated terminal differentiation and growth arrest of a myeloid cell line. Proc Natl Acad Sci U S A.1996 93:3963-3966.
    30. Kaplan MH, Sun YL, Hoey T, et al. Impaired IL-12 responses and enhanced development of Th2 cells in Stat4-deficient mice. Nature 1996 382:174-177.
    31. Thierfelder W E, Van Deursen J M, Yamamoto K, et al. Requirement of Stat4 in interleukin-12 mediated responses of natural killer and T cells. Nature 1996 382: 171-174.
    32. Liu X, Robinson GW, Wagner KU, et al. Stat5a is mandatory for adult mammary gland development and lactogenesis. Genes Dev 1997 15:179-186.
    33. Udy GB, Towers RP, Snell RG, et al. Requirement of STAT5b for sexual dimorphism of body growth rates and liver gene expression. Proc Natl Acad Sci USA. 19978:7239-7244.
    34. Kaplan MH, Schindler U, Smiley ST, et al. Stat6 is required for mediating responses to IL-4 and for development of Th2 cells. Immunity 1996 4:313-319.
    35. Bowman T, Garcia R, Turkson J, et al. STATs in oncogenesis. Oncogene 2000 19: 2474-2488.
    36. Horvath CM. STAT proteins and transcriptional responses to extracellular signals. Trends Biochem Sci 2000 25:496-502.
    37. Bowman T. Garcia R. Turkson J. et al. STATs in oncogenesis. Oncogene 2000 19: 2474-2488.
    38. Migone TS, Lin JX. Cereseto A, et al. Constitutively activated Jak-STAT pathway in T cells transformed with HTLV-I. Science 1995 269:79-81.
    39. Bromberg J. Stat proteins and oncogenesis (review). J Clin Invest 2002 109: 1139-1142.
    40. Cao X, Tay A, Guy GR, et al. (1996). Activation and association of Stat3 with Src in v-Src-transformed cell lines. Mol Cell Biol 16:1595-1603.
    41. Bromberg JF, Horvath CM. Besser D, et al. Stat3 activation is required for cellular transformation by v-src. Mol Cell Biol 1998 18:2553-2558.
    42. Bromberg JF, Wrzeszczynska MH, Devgan G, et al. Stat3 as an oncogene. Cell 199998:295-303.
    43. Wormald S, Hilton DJ. Inhibitors of cytokine signal transduction. J Biol Chem 2004279:821-824.
    44. Stoiber D, Kovarik P, Cohney S, et al. Lipopolysaccharide induces in macrophages the synthesis of the suppressor of cytokine signaling 3 and suppresses signal transduction in response to the activating factor IFN-gamma. J Immunol 1999 163:2640-2647.
    45. Stevenson N J. Haan S, McClurg AE, et al. The chemoattractants. IL-8 and formyl-methionyl-leucyl-phenylalanine. regulate granulocyte colony-stimulating factor signaling by inducing suppressor of cytokine signaling-1 expression..1 Immunol 2004 173:3243-3249.
    46. Yoshimura A, Ohkubo T. Kiguchi T, et al. A novel cytokine-inducible gene CIS encodes an SH2-containing protein that binds to tyrosine-phosphorylated interleukin 3 and erythropoietin receptors. EMBO J 1995 14:2816-2826.
    47. Seki Y. Hayashi K. Matsumoto A, et al. Expression of the suppressor of cytokine signaling-5 (SOCS5) negatively regulates 1L-4-dependent STAT6 activation and Th2 differentiation. Proc Natl Acad Sci U S A.200299:13003-13008. 48. Willems AR, Schwab M. Tyers M. A hitchhiker's guide to the cullin ubiquitin ligases:SCF and its kin. Biochim Biophys Acta 2004 1695:133-170.
    49. Ilangumaran S, Ramanathan S, Rottapel R. Regulation of the immune system by SOCS family adaptor proteins. Semin Immunol 2004 16:351-365.
    50. Yoshimura A. Regulation of cytokine signaling by the SOCS and Spred family proteins. Keio J Med 2009 58:73-83.
    51. Folkman J. Angiogenesis-dependent diseases. Semin Oncol 200128:536-542.
    52. Ferrara N, Gerber HP, LeCouter J. The biology of VEGF and its receptors. Nat Med 2003 9:669-676.
    53. Forsythe JA, Jiang BH, Iyer NV, et al. Activation of vascular endothelial growth factor gene transcription by hypoxia-inducible factor 1. Mol Cell Biol 1996 16: 4604-4613.
    54. Zachary I, Gliki G. Signaling transduction mechanisms mediating biological actions of the vascular endothelial growth factor family. Cardiovasc Res 2001 49: 568-81.
    55. Carmeliet P, Ferreira V, Breier G, et al. Abnormal blood vessel development and lethality in embryos lacking a single VEGF allele. Nat 1996 380:435-439.
    56. Ferrara N, Garver-Moore K, Chen H, et al. Heterozygous embryonic lethality induced by targeted inactivation of the VEGF gene. Nat 1996 380:439-442.
    57. Ferrara N. VEGF as therapeutic target in cancer. Oncology 2005 69:11-16.
    58. Semenza G. Signal transduction to hypoxia-inducible factor 1. Biochem Pharmacol 2002 64:993-998.
    59. Xie K, Wei D, Shi Q, et al. Constitutive and inducible expression and regulation of vascular endothelial growth factor. Cytokine Growth factor Rev 2004 15:297-324.
    60. Grandis JR, Drenning SD, Chakraborty A, et al. Requirement of Stat3 but not Statl activation for epidermal growth factor receptor-mediated cell growth in vitro. J Clin Invest 1998 102:1385-1392.
    61. Carlesso N, Frank DA, Griffin JD. Tyrosyl phosphorylation and DNA binding activity of signal transducers and activators of transcription (STAT) proteins in hematopoietic cell lines transformed by Bcr/Abl. J Exp Med 1996 183:811-820. 62. Weber-Nordt RM. Egen C, Wehinger J, et al. Constitutive activation of STAT proteins in primary lymphoid and myeloid leukemia cells and in Epstein-Barr virus (EBV)-related lymphoma cell lines. Blood 1996 88:809-816.
    63. Bharti AC, Donato N, Aggarwal BB. Curcumin (diferuloylmethane) inhibits constitutive and IL-6-inducible STAT3 phosphorylation in human multiple myeloma cells. J Immunol 2003 171:3863-3871.
    64. Wei D, Le X. Zhen L. et al. STAT3 activation regulates the expression of vascular endothelial growth factor and human pancreatic cancer angiogenesis and metastasis. Oncogene 2003 22:319-329.
    65. Chen Z, Han ZC. STAT3:a critical transcription activator in angiogenesis. Med Res Rev 2008 28:185-200.
    66. Aggarwal BB, Sethi G. Ahn KS, et al. Targeting signal-transducer-and-activator-of-transcription-3 for prevention and therapy of cancer:modern target but ancient solution. Ann N Y Acad Sci 2006 1091:151-169.
    1. Guschin D, Rogers N, Briscoe J, et al. A major role for the protein tyrosine kinase JAK1 in the JAK/STAT signal transduction pathway in response to interleukin-6. EMBOJ 1995 14:1421-1429.
    2. Cattaneo E, Magrassi L, De-Fraja C, et al. Variations in the levels of the JAK/STAT and ShcA proteins in human brain tumors. Anticancer Res 1998 18: 2381-2387.
    3. Haridas V, Nishimura G, Xu ZX, et al. Avicin D:a protein reactive plant isoprenoid dephosphorylates STAT3 by regulating both kinase and phosphatase activities. PloS 2009 One 4:e5578.
    4. Coppo P, Flamant S, De Mas V, et al. BCR-ABL activates STAT3 via JAK and MEK pathways in human cells. Br J Haematol 2006 134:171-179.
    5. Tian SS, Lamb P, Seidel HM, et al. Rapid activation of the STAT3 transcription factor by granulocyte colony-stimulating factor. Blood 1994 84:1760-1764.
    6. Tam L, McGlynn LM, Traynor P, et al. Expression levels of the JAK/STAT pathway in the transition from hormone-sensitive to hormone-refractory prostate cancer. Br J Cancer 2007 97:378-383.
    7. Bowman T, Garcia R, Turkson J, et al. STATs in oncogenesis. Oncogene 2000 19: 2474-2488.
    8. Rubin Grandis J, Zeng Q, Drenning SD. Epidermal growth factor receptor--mediated STAT3 signaling blocks apoptosis in head and neck cancer. Laryngoscope 2000 110:868-874.
    9. Ferrara N, Gerber HP, LeCouter J. The biology of VEGF and its receptors. Nat Med 2003 9:669-676.
    10. Schaefer LK, Ren Z, Fuller GN, et al. Constitutive activation of STAT3alpha in brain tumors:localization to tumor endothelial cells and activation by the endothelial tyrosine kinase receptor (VEGFR-2). Oncogene 2002 21:2058-2065.
    11. Kim ES, Hong SY, Lee HK, et al. Guggulsterone inhibits angiogenesis by blocking STAT3 and VEGF expression in colon cancer cells. Oncol Rep 2008 20: 1321-1327.
    12. Preusser M, Birner P, Ambros IM, et al. DEC1 expression in 1p-aberrant oligodendroglial neoplasms. Histol Histopathol 2005 20:1173-1176.
    13. Rodig SJ, Meraz MA, White JM, et al. Disruption of the JAK1 gene demonstrates obligatory and nonredundant roles of the JAKs in cytokine-induced biologic responses. Cell 1998 93:373-383.
    14. Takeda K, Noguchi K, Shi W, et al. Targeted disruption of the mouse STAT3 gene leads to early embryonic lethality. Proc Natl Acad Sci USA 1997 94:3801-3804.
    15. Akira S. Functional roles of STAT family proteins:lessons from knockout mice. Stem Cells 1999 17:138-146.
    16. Carlesso N, Frank DA, Griffin JD. Tyrosyl phosphorylation and DNA binding activity of signal transducers and activators of transcription (STAT) proteins in hematopoietic cell lines transformed by Bcr/Abl. J Exp Med 1996 183:811-820.
    17. BhartiAC, Donato N,Aggarwal BB. Curcumin (diferuloylmethane) inhibits constitutive and IL-6-inducible STAT3 phosphorylation in human multiple myeloma cells. J Immunol 2003 171:3863-3871.
    18. Weber-Nordt RM, Egen C, Wehinger J, et al. Constitutive activation of STAT proteins in primary lymphoid and myeloid leukemia cells and in Epstein-Barr virus (EBV)-related lymphoma cell lines. Blood 1996 88:809-816.
    19. De-Fraja C, Conti L, Govoni S, et al. STAT signalling in the mature and aging brain. Int J Dev Neurosci 2000 18:439-446.
    20. Gautron L, De Smedt-Peyrusse V, Laye S. Characterization of STAT3-expressing cells in the postnatal rat brain. Brain Res 2006 1098:26-32.
    21. Magrassi L, De-Fraja C, Conti L, et al. Expression of the JAK and STAT superfamilies in human meningiomas. J Neurosurg 1999 91:440-446.
    22. Lee CK, Bluyssen HA, Levy DE. Regulation of interferon-alpha responsiveness by the duration of Janus kinase activity. J Biol Chem 1997 272:21872-21877.
    23. Turkson J, Jove R. STAT proteins:novel molecular targets for cancer drug discovery. Oncogene 2000 27:6613-6626.
    24. Knoops L, Hornakova T, Royer Y, et al. JAK kinases overexpression promotes in vitro cell transformation. Oncogene 2008 27:1511-1519.
    25. Zhang Y, Turkson J, Carter-Su C, et al. Activation of STAT3 in v-Src-transformed fibroblasts requires cooperation of JAK1 kinase activity. J Biol Chem 2000 275:24935-24944.
    26. Catlett-Falcone R, Landowski TH, Oshiro MM, et al. Constitutive activation of STAT3 signaling confers resistance to apoptosis in human U266 myeloma cells. Immunity 1999 10:105-115.
    27. Schaefer LK, Ren Z, Fuller GN, et al. Constitutive activation of STAT3 alpha in brain tumors:localization to tumor endothelial cells and activation by the endothelial tyrosine kinase receptor (VEGFR-2). Oncogene 2002 21:2058-2065.
    28. Mahboubi K, Li F, Plescia J, et al. Interleukin-11 up-regulates survivin expression in endothelial cells through a signal transducer and activator of transcription-3 pathway. Lab Invest 200181:327-334.
    29. Folkman J. Angiogenesis-dependent diseases. Semin Oncol 200128:536-542.
    30. Ohta Y, Endo Y, Tanaka M, et al. Significance of vascular endothelial growth factor messenger RNA expression in primary lung cancer. Clin Cancer Res 1996 2: 1411-1416.
    31. Berkman RA, Merrill MJ, Reinhold WC, et al. Expression of the vascular permeability factor/vascular endothelial growth factor gene in central nervous system neoplasms. J Clin Invest 199 91:153-159.
    32. Huang H, Held-Feindt J, Buhl R, et al. Expression of VEGF and its receptors in different brain tumors. Neurol Res 2005 27:371-377.
    33. Niu G, Wright KL, Huang M, et al. Constitutive STAT3 activity up-regulates VEGF expression and tumor angiogenesis. Oncogene 2002 21:2000-2008.
    34. Wei D, Le X, Zheng L, et al. STAT3 activation regulates the expression of vascular endothelial growth factor and human pancreatic cancer angiogenesis and metastasis. Oncogene 2003 22:319-329.
    35. Chen SH, Murphy DA, Lassoued W, et al. Activated STAT3 is a mediator and biomarker of VEGF endothelial activation. Cancer Biol Ther 2008 7:1994-2003.
    36. Loeffler S, Fayard B, Weis J, et al. Interleukin-6 induces transcriptional activation of vascular endothelial growth factor (VEGF) in astrocytes in vivo and regulates VEGF promoter activity in glioblastoma cells via direct interaction between STAT3 and Spl. Int J Cancer 2005 115:202-213.
    37. Wang H, Wang H, Zhang W, et al. Analysis of the activation status of Akt, NFkappaB, and STAT3 in human diffuse gliomas. Lab Invest 2004 84:941-951.
    1. Ferrara N, Gerber HP, LeCouter J. The biology of VEGF and its receptors. Nat Med 2003 9:669-676.
    2. Lee E, Son H. Adult hippocampal neurogenesis and related neurotrophic factors. BMB Rep 2009 42:239-244.
    3. Hlobilkova A, Ehrmann J, Knizetova P, et al. Analysis of VEGF, Flt-1, Flk-1, nestin and MMP-9 in relation to astrocytoma pathogenesis and progression. Neoplasma 2009 56:284-290.
    4. Darnell JE Jr, Kerr IM, Stark GR. JAK-STAT pathways and transcriptional activation in response to IFNs and other extracellular signaling proteins. Science 1994 264:1415-1421.
    5. Schindler C. Cytokines and JAK-STAT signaling. Exp Cell Res 1999 253:7-14.
    6. Lutticken C, Wegenka UM, Yuan J, et al. Association of transcription factor APRF and protein kinase Jakl with the interleukin-6 signal transducer gp130. Science 1994 263:89-92.
    7. Kisseleva T, Bhattacharya S, Braunstein J, et al. Signaling through the JAK/STAT pathway, recent advances and future challenges. Gene 2002 285:1-24.
    8. Magrassi L, De-Fraja C, Conti L, et al. Expression of the JAK and STAT superfamilies in human meningiomas. J Neurosurg 1999 91:440-446.
    9 Coppo P, Flamant S, De Mas V, et al. BCR-ABL activates STAT3 via JAK and MEK pathways in human cells. Br J Haematol 2006 134:171-179.
    10. Cattaneo E, Magrassi L, De-Fraja C, et al. Variations in the levels of the JAK/STAT and ShcA proteins in human brain tumors. Anticancer Res 1998 18: 2381-2387.
    11. Loeffler S, Fayard B, Weis J, et al. Interleukin-6 induces transcriptional activation of vascular endothelial growth factor (VEGF) in astrocytes in vivo and regulates VEGF promoter activity in glioblastoma cells via direct interaction between STAT3 and Spl. Int J Cancer 2005 115:202-213.
    12. Humphries W, Wang Y, Qiao W, et al. yuDetecting the percent of peripheral blood mononuclear cells displaying p-STAT-3 in malignant glioma patients. J Transl Med 2009 7:92.
    13. Rubin Grandis J, Zeng Q, Drenning SD. Epidermal growth factor receptor--mediated STAT3 signaling blocks apoptosis in head and neck cancer. Laryngoscope 2000 110:868-874.
    14. Bowman T, Garcia R, Turkson J, et al. STATs in oncogenesis. Oncogene 2000 19: 2474-2488.
    15.Sinibaldi D, Wharton W, Turkson J, et al. Induction of p21 WAF1/CIP1 and cyclin D1 expression by the Src oncoprotein in mouse fibroblasts:role of activated STAT3 signaling. Oncogene 2000 19:5419-5427.
    16. Niu G, Wright KL, Huang M, it al. Constitutive STAT3 activity up-regulates VEGF expression and tumor angiogenesis. Oncogene 2002 21:2000-2008.
    17. Jain RK, Di Tomaso E, Duda DG, et al. Angiogenesis in brain tumors. Nat Rev Neurosci 2007 8:610-622.
    18. Schaefer LK, Ren Z, Fuller GN, et al. Stat3alpha can increase VEGF expression in brain tumors. Constitutive activation of Stat3alpha in brain tumors:localization to tumor endothelial cells and activation by the endothelial tyrosine kinase receptor (VEGFR-2). Oncogene 2002 21:2058-2065.
    19. Mehler MF, Kessler JA. Hematolymphopoietic and inflammatory cytokines in neural development. Trends Neurosci 1997 20:357-365.
    20. Chatterjee-Kishore M, van den Akker F, Stark GR. Association of STATs with relatives and friends. Trends Cell Biol 2000 10:106-111.
    21. Bromberg J, Darnell JE, Jr. The role of STATs in transcriptional control and their impact on cellular function. Oncogene 2000 9:2468-2473.
    22. Reich NC, Liu L. Tracking STAT nuclear traffic. Nat Rev Immunol 2006 6: 602-612.
    23. Shuai K, Ziemiecki A, Wilks AF, et al. Polypeptide signaling to the nucleus through tyrosine phosphorylation of JAK and STAT proteins. Nature 1993 366: 580-583.
    24.Rodig SJ, Meraz MA, White JM, et al. Disruption of the JAK1 gene demonstrates obligatory and nonredundant roles of the JAKs in cytokine-induced biologic responses. Cell 1998 93:373-383.
    25. Takeda K, Noguchi K, Shi W, et al. Targeted disruption of the mouse STAT3 gene leads to early embryonic lethality. Proc Natl Acad Sci USA 1997 94:3801-3804.
    26. Spiekermann K, Biethahn S, Wilde S, et al. Constitutive activation of STAT transcription factors in acute myelogenous leukemia. Eur J Haematol 200167:63-71.
    27. Akira S. Functional roles of STAT family proteins:lessons from knockout mice. Stem Cells 1999 17:138-146.
    28. Lee CK, Bluyssen HA, Levy DE. Regulation of interferon-alpha responsiveness by the duration of Janus kinase activity. J Biol Chem 1997 72:21872-21877.
    29. Zhang Y, Turkson J, Carter-Su C, et al. Activation of STAT3 in v-Src-transformed fibroblasts requires cooperation of JAK1 kinase activity. J Biol Chem 2000 275:24935-24944.
    30. Knoops L, Hornakova T, Royer Y, et al. JAK kinases overexpression promotes in vitro cell transformation. J Cardiovasc Pharmacol 2007 50:126-141.
    31. Bromberg JF, Wrzeszczynska MH, Devgan G, et al. STAT3 as an oncogene. Cell 199998:295-303.
    32. Mahboubi K, Li F, Plescia J, et al. Interleukin-11 up-regulates survivin expression in endothelial cells through a signal transducer and activator of transcription-3 pathway. Lab Invest 200181:327-334.
    33. Turkson J. STAT proteins as novel targets for cancer drug discovery. Expert.Opin.Ther.Targets 2004 8:409-422.
    34. Ohta Y, Endo Y, Tanaka M, et al. Significance of vascular endothelial growth factor messenger RNA expression in primary lung cancer. Clin Cancer Res 1996 2: 1411-1416.
    35. Yancopoulos GD, Davis S, Gale NW, et al. Vascular-specific growth factors and blood vessel formation. Nature 2000 407:242-248.
    36. Kwak BK, Shim HJ, Park ES, et al. Hepatocellular carcinoma:correlation between vascular endothelial growth factor level and degree of enhancement by multiphase contrast-enhanced computed tomography. Invest Radiol 2001 36: 487-492.
    37. Kim KJ, Li B, Winer J, et al. Inhibition of vascular endothelial growth factor-induced angiogenesis suppresses tumour growth in vivo. Nature 1993 362: 841-844.
    38. Lu N, Gao Y, Ling Y, et al. Wogonin suppresses tumor growth in vivo and VEGF-induced angiogenesis through inhibiting tyrosine phosphorylation of VEGFR2. Life Sci 2008 82:956-963.
    39. Nishikawa R, Cheng SY, Nagashima R, et al. Expression of vascular endothelial growth factor in human brain tumors. Acta Neuropathol 1998 96:453-462.