碳纳米管在DNA可视化和药物催化分析中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
碳纳米管自从1991年被发现以来,由于其具有独特的结构、电子、机械及化学特性在复合材料、修饰电极、传感器和生物等方面得到了广泛的应用。本文利用多壁碳纳米管具有很强的光散射信号和对氧化还原反应有催化作用,提出了以碳纳米管为基础的DNA和有机小分子药物分析方法,并利用多壁碳纳米管的催化作用合成金纳米花。内容包括以下三个方面:
     (1)将DNA探针分别修饰在磁小珠(MPs)和多壁碳纳米管(MWNTs)表面上,修饰后的多壁碳纳米管能够分散在水溶液中,当用紫外可见光激发时具有很强的光散射信号。如果此时靶物DNA存在,通过形成三明治结构可以将探针修饰的多壁碳纳米管和磁小珠连接起来,在一外磁场作用下就可以很容易将MP-MWNTs从溶液中分离出来,导致上清液光散射强度降低。因此,通过检测以DNA修饰的MWNTs作为识别单元的光散射信号,实现了DNA杂交分析和PCR产物分析。实验表明此传感器至少能重复使用17次,稳定6个月。
     (2)在pH 2.36的酸性条件下,多壁碳纳米管能催化氯金酸氧化还原性药物盐酸四环素生成金纳米微粒。金纳米微粒具有强烈的表面等离子共振吸收和光散射,且光散射信号变化比吸收信号变化灵敏。通过检测反应生成的金纳米微粒的等离子体共振光散射信号,本文建立了一种快速、简便的检测盐酸四环素含量的方法。生成的金纳米微粒的等离子共振光散射信号与盐酸四环素的浓度呈良好的线性关系,线性范围为4~26μmol/L,相关系数(r)为0.9955,检出限(3σ)为6.0 nmol/L。将该方法用于盐酸四环素片剂分析,平均加标回收率为101.9%;用于尿液分析,加标回收率为98.3-102.0%。
     (3)多壁碳纳米管可以催化氯金酸氧化多巴胺。通过调节多巴胺的浓度可以得到大粒径的金纳米微粒或者金纳米花。虽然生成的金纳米颗粒和金纳米花有相同的散射光谱,但是它们的特征吸收峰位置不同。多巴胺浓度较低时生成粒径不均匀的金纳米微粒,吸收峰在560nm;多巴胺浓度较高时便会生成金纳米花,吸收峰在470nm。
Owing to the unique structure, electronics, machanical and chemical properties, carbon nanotubes (CNTs) have been wildly used in the fields of composite materials, modification of electrodes, sensors and biology since their discovery in 1991. This article puts forward new analytical methods for DNA hybridization and organic small molecules based on the multi-wall carbon nanotubes (MWNTs) which have very strong light scattering signals and have the catalysis to the redox reaction. The main content is as follows:
     (1) A visual sensor for DNA hybridization with DNA probe-modified MPs and MWNTs respectively. DNA probe-modified MWNTs could be dispersed in aqueous medium and have strong light scattering signals under the excitation of a light beam in the UV-Vis region. DNA probe-modified MWNTs could connect with DNA probe-modified MPs together in the presence of perfectly complementary target DNA and form a sandwich structure. In a magnetic field, the formed MP-MWNT species can easily be removed from the solution, resulting in a decrease of light scattering signals. Thus, by measuring the light scattering signals with DNA-modified MWNTs as recognition elements, this sensor could be used in DNA hybridization and PCR products analysis. And this sensor could be reused at least 17 times and was stable for more than 6 months.
     (2) It was found that MWNTs could catalyze the redox reaction between hydrochlorauric acid (HAuCl_4) and reductive drugs such as tetracycline hydrochloride (TC), producing gold nanoparticles (Au NPs). Au NPs have the intense plasmon absorption and light scattering signals, and the light scattering signals are more sensitive than the absorption signals. By measuring the plasmon resonance light scattering (PRLS) signals of the resulted Au NPs, tetracycline hydrochloride can be detected simply and rapidly with a linear range of 4~26μmol/L, a correlated coefficient (r) of 0.9955, and a limit of detection (3a) of 6.0 nmol/L. This method has been successfully applied to the detection of tetracycline hydrochloride tablets in clinic with the recovery of 101.9% and that of fresh urine samples with the recovery of 98.3—102.0%.
     (3) MWNTs could catalyze the redox reaction between hydrochlorauric acid and dopamine. By controlling the concentration of dopamine, we can synthesize gold nanoparticles or gold nanoflowers of large size. The gold nanoflowers have the same light scattering spectrum as gold nanoparticles, but their characteristic absorbtion peak is different. Gold nanoparticles could be synthesized when dopamine concentration is lower with a new absorption peak nearby 560 nm, on the other hand, gold nanoflowers could be synthexized when dopamine concentration increased to 5.0×10~(-4) mol/L, and a new absorption peak could be presented nearby 470 nm.
引文
[1]Iijima,S.Helical microtubules of graphitic carbon.Nature 1991,354,56-58.
    [2]Iijima,S.;Ichihashi,T.Single-shell carbon nanotubes of I-nm diameter.Nature 1993,363,603-605.
    [3]Vaicarcel,M.;Cardenas,S.;Simonet,B.M.Role of carbon nanotubes in analytical science.Anal Chem.2007,79,4788-4797.
    [4]Zheng,M.;Diner,B.A.Solution redox chemistry of carbon nanotubes,J.Am.Chem.Soc.2004,126,15490-15494.
    [5]Wong,E.W.;Sheehan,P.E.;Lieber,C.M.Nanobeam mechanics:elasticity,strength,and toughness of nanorods and nanotubes.Science 1997,277,1971-1975.
    [6]Treacy,M.M.J.;Ebbesen,T.W.;Gibson,J.M..Exceptionally high Young's modulus observed for individual carbon notubes.Nature 1996,381,678-680.
    [7]Lan,A.;Mukasyan,A.Hydrogen storage capacity characterization of carbon nanotubes by a microgravimetrical approach,J.Phys.Chem.B.2005,109,16011-16016.
    [8]Cheng,H.;Pez,G.P.;Cooper,A.C.Mechanism of hydrogen sorption in single-walled carbon nanotubes,J.Am.Chem.Soc.2001,123,5845-5846.
    [9]Zhou,Li.;Sun,Y.;Yang,Z.;Zhou,Y.Hydrogen and methane sorption in dry and water-loaded multiwall carbon nanotubes,d.Colloid Interface Sci.2005,289,347-351.
    [10]杨洪润,刘吉平.碳纳米管吸附储氢.炭素 2004,1,17-21.
    [11]Hilding,J.;Grulke,E.A.;Sinnott,S.B.;Qian,D.;Andrews,R.;Jagtoyen,M.Sorption of butane on carbon multiwall nanotubes at room temperature.Langmuir 2001,17,7540-7544.
    [12]Firlej,L.;Kuehta,B.Helium adsorption in single wall carbon nanotubes-grand canonical monte carlo study.Colloids Surf.,A.2004,241,149-154.
    [13]Wu,Y.;Wei,F.;Luo,G;Ning,G.;Yang,M.Methane storage in multi-walled carbon nanotubes at the quantity of 80 g.Mater.Res.Bull.2008,43,1431-1439.
    [14]Zhang,X.;Wang,W.Methane adsorption in single-walled carbon nanotubes arrays by molecular simulation and density functional theory.Fluid Phase Equilib.2002,194-197,289-295.
    [15]Tanaka,H.;El-Merraoui,M.;Steele,W.A.;Kaneko,K.Methane adsorption on single-walled carbon nanotube:a density functional theory model.Chem.Phys.Lett.2002,352,334-341.
    [16]Reyes-Reyes,M.;Grobert,N.;Kamalakaran,R.;Seeger,T.;Golberg,D.;RUhle,M.;Bando,Y.;Terrones,H.;Terrones,M.Efficient encapsulation of gaseous nitrogen inside carbon nanotubes with bamboo-like structure using aerosol thermolysis.Chem.Phys.Lett.2004,396,167-173.
    [17]焦新亭,李晓东,刘国文,陈全虎.碳纳米管对亚甲基蓝的吸附性能研究.安全与环境学报2007,7,44-47
    [18]孙明礼,成荣明,徐学诚,陈奕卫,李伟.碳纳米管对酚类物质的吸附研究.东北师大学报自然科学版 2004,36,71-75.
    [19]孙明礼,成荣明,徐学诚,陈奕卫,李茂刚.苯酚及取代酚在碳纳米管上的吸附研究.化学研究与应用,2006,18,13-16.
    [20]孙明礼,孔旭新,于华荣,陈榕珍,徐学诚,成荣明.碳纳米管对苯酚和α-萘酚的吸附研究.化学世界2005,10,580-582.
    [21]耿成怀,成荣明,徐学诚,陈奕卫.苯胺在碳纳米管上的吸附特征.化学研究与应用2004,16.680-681.
    [22]耿成怀,成荣明,徐学诚,陈奕卫.碳纳米管对苯胺的吸附行为.应用化学2004,21,737-739.
    [23]耿成怀,成荣明,徐学诚,陈奕卫.碳纳米管对对硝基苯胺和N,N-二甲基苯胺的吸附.华东师范大学学报(自然科学皈)2005,5-6.138-142.
    [24]曾卫环,王红娟,彭峰.碳纳米管对铅离子的吸附性能研究.广东化工2005,1,9-11.
    [25]殷海青.浅析碳纳米管对重金属离子的吸附.研究与开发2005,5,44-46.
    [26]裘凯栋,黎维彬.水溶液中六价铬在碳纳米管上的吸附.物理化学学报 2006,22,1542-1546.
    [27]Cai,C.;Chen,J.Direct electron transfer of glucose oxidase promoted by carbon nanotubes.Anal Biochem.2004,332,75-83.
    [28]Liu,A.-R.;Qian,D.-J.;Wakayama,T;Nakamura,C.;Miyake,J.Monolayers,Langmuir-Blodgett films of carbon nanotubes-cytochrome c conjugates and electrochemistry.Colloids Surf.,A.2006,284-285,485-489.
    [29]Asuri,P.;Karajanagi,S.S.;Dordiek,J.S.;Kane,R.S.Directed Assembly of Carbon Nanotubes at Liquid-Liquid Interfaces:Nanoseale Conveyors for Interfacial Biocatalysis.J.Am.Chen.Soc.2006,128,1046-1047.
    [30]Kam,N.W.S.;Dai,H.Carbon Nanotubes as Intracellular Protein Transporters:Generality and Biological Functionality.J.Am.Chem.Soc.2005,127,6021-6026.
    [31]Chen,R.J.;Choi,H.C.;Bangsaruntip,S.;Yenilmez,E.;Tang,X.;Wang,Q.;Chang,Y.-L.;Dai,H.An Investigation of the Mechanisms of Electronic Sensing of Protein Adsorption on Carbon Nanotube Devices.J.Am.Chem.Soc.2004,126,1563-1568.
    [32]Gooding,J.J.;Wibowo,R.;Liu,J.;Yang,W.;Losic,D.;Orbons,S.;Mearns,F.J.;Shapter,J.G.;Hibbert,D.B.Protein Electrochemistry Using Aligned Carbon Nanotube Arrays.J.Am. Chem. Soc. 2003,125, 9006-9007.
    [33] Zhang, M.; Smith, A. Gorski, W. Carbon Nanotube-Chitosan System for Electrochemical Sensing Based on Dehydrogenase Enzymes. Anal. Chem. 2004, 76, 5045-5050.
    [34] Zhang, M; Mullens, C; Gorski, W. Insulin Oxidation and Determination at Carbon Electrodes. Anal. Chem. 2005, 77,6396-6401.
    [35] Zhang, M.; Gorski, W. Electrochemical Sensing Platform Based on the Carbon Nanotubes/Redox Mediators-Biopolymer System. J. Am. Chem. Soc. 2005,127, 2058-2059.
    [36] Zhang, M; Gorski, W. Electrochemical Sensing Based on Redox Mediation at Carbon Nanotubes. Anal. Chem. 2005, 77, 3960-3965.
    [37] Star, A.; Steuerman, D. W.; Heath, J. R.; Stoddart, J. F. Starched Carbon Nanotubes. Angew. Chem. Int. Ed. 2002, 41, 2508-2512.
    [38] Kim, O. -K.; Je, J.; Baldwin, J. W.; Kooi, S.; Pehrsson, P. E.; Buckley, L. J. Solubilization of Single-Wall Carbon Nanotubes by Supramolecular Encapsulation of Helical Amylose. J. Am. Chem. Soc. 2003,125,4426-4427.
    [39] Xie, Y. H.; Soh, A. K. Investigation of non-covalent association of single-walled carbon nanotube with amylose by molecular dynamics simulation. Mater. Lett. 2005, 59, 971-975.
    [40] Zhang, X.; Wang, X.; Lu, Q.; Fu, C. Influence of carbon nanotube scaffolds on human cervical carcinoma HeLa cell viability and focal adhesion kinase expression. Carbon, 2008, 46, 453 - 460.
    [41] Zheng, M.; Jagota, A.; Semke, E. D.; Diner, B. A.; Mclean, R. S.; Lustig, S. R.; Richardson, R. E.; Tassi, N. G. DNA-assisted dispersion and separation of carbon nanotubes. Nat. Mater. 2003, 2, 338-342.
    [42] Zheng, M.; Jagota, A.; Strano, M. S.; Santos, A. P.; Barone, P.; Chou, S. G.; Diner, B. A.; Dresselhaus, M. S.; Mclean, R. S.; Onoa, G. B.; Samsonidze, G. G.; Semke, E. D.; Usrey, M.; Walls, D. J. Structure-Based Carbon Nanotube Sorting by Sequence-Dependent DNA Assembly. Science, 2003, 302, 1545-1548.
    [43] Hu, C; Zhang, Y.; Bao, G.; Zhang, Y.; Liu, M.; Wang, Z. L. DNA Functionalized Single-Walled Carbon Nanotubes for Electrochemical Detection. J. Phys. Chem. B. 2005, 109, 20072-20076.
    [44] He, P.; Bayachou, M. Layer-by-Layer Fabrication and Characterization of DNA-Wrapped Single-Walled Carbon Nanotube Particles. Langmuir 2005,21,6086-6092
    [45] O'Connell, M. J.; Boul, P.; Ericson, L. M.; Huffman, C; Wang, Y.; Haroz, E.; Kuper, C; Tour, J.; Ausman, K. D.; Smalley, R. E. Reversible water-solubilization of single-walled carbon nanotubes by polymer wrapping. Chem. Phys. Lett. 2001,342,265-271.
    [46]Wang,J.;Musameh,M.;Lin,Y.Solubilization of Carbon Nanotubes by Nation toward the Preparation of Amperometric Biosensors.J.Am.Chem.Soc.2003,125,2408-2409.
    [47]Yang,D.-Q.;Rochette,J.-F.;Sacher,E.Spectroscopic Evidence for π-π Interaction between Poly(diallyl dimethylammonium)Chloride and Multiwalled Carbon Nanotubes.J.Phys.Chem.B 2005,109,4481-4484.
    [48]Chert,J.;Liu,H.;Weimer,W.A.;Halls,M.D.;Waldeck,D.H.;Walker,G.C.Noncovalent Engineering of Carbon Nanotube Surfaces by Rigid,Functional Conjugated Polymers.J.Am.Chem.Soc.2002,124,9034-9035.
    [49]Jiang,L.;Gao,L.;Sun,J.Production of aqueous colloidal dispersions of carbon nanotubes.J Colloid Interface Sci.2003,260,89-94.
    [50]Zhang,X.;Zhang,J.;Wang,R.;Liu,Z.Cationic surfactant directed polyaniline/CNT nanocables:synthesis,characterization,and enhanced electrical properties.Carbon 2004,42,1455-1461.
    [51]Cai,C.;Chen,J.Direct electron transfer and bioelectroeatalysis of hemoglobin at a carbon nanotube electrode.Anal.Biochem.2004,325,285-292.
    [52]Zhang,M.;Su,L.;Mao,L.Surfactant functionalization of carbon nanotubes(CNTs)for layer-by-layer assembling of CNT multi-layer films and fabrication of gold nanoparticle/CNT nanohybrid.Carbon 2006,44,276-283.
    [53]Ning,J.;Zhang,J.;Pan,Y.;Guo,J.Surfactants assisted processing of carbon nanotube-reinforeed SiO2 matrix composites.Ceram.Int.2004,30,63-67.
    [54]Kim,H.-S.;Park,W.-I.;Kang,M.;Jin,H.-J.Multiple light scattering measurement and stability analysis of aqueous carbon nanotube dispersions.J.Phys.Chem.Solids doi:10.1016/j.jpes.2007.10.062.
    [55]Moore,V.C.;Strano,M.S.;Haroz,E.H.;Hauge,R.H.;Smalley,R.E.Individually Suspended Single-Walled Carbon Nanotubes in Various Surfactants.Nano.Lett.2003,3,1379-1382.
    [56]Wang,D.;Ji,W.-X.;Li,Z.-C.;Chen,L.A Biomimetic "Polysoap" for Single-Walled Carbon Nanotube Dispersion.J.Am.Chem.Soc.2006,128,6556-6557.
    [57]Sun,Y.;Wilson,S.R.;Schuster,D.I.High Dissolution and Strong Light Emission of Carbon Nanotubes in Aromatic Amine Solvents.J.Am.Chem.Soc.2001,123,5348-5349.
    [58]Zorbas,V.;Smith,A.L.;Xie,H.;Ortiz-Acevedo,A.;Dalton,A.B.;Dieckmann,G.R.;Draper,R.K.;Baughman,R.H.;Musselman,I.H.Importance of Aromatic Content for Peptide/Single-Walled Carbon Nanotube Interactions.J.Am.Chem.Soc.2005,127,12323-12328.
    [59]Rajendra,J.;Baxendale,M.;Rap,L.G.D.;Rodger,A.Flow Linear Dichroism to Probe Binding of Aromatic Molecules and DNA to Single-Walled Carbon Nanotubes.J.Am.Chem.Soc.2004,126,11182-11188.
    [60]Fernando,K.A.S.;Lin,Y.;Wang,W.;Kumar,S.;Zhou,B.;Xie,S.-Y.;Cureton L.T.;Sun,Y.-P.Diminished Band-Gap Transitions of Single-Walled Carbon Nanotubes in Complexation with Aromatic Molecules.J.Am.Chem.Soc.2004,126,10234-10235.
    [61]Ehli,C.;Rahman,G.M.A.;Jux,N.;Balbinot,D.;Guldi,D.M.;Paolucci,F.;Marcaccio,M.;Paolucci,D.;Melle-Franco,M;Zerbetto,F.;Campidelli,S.;Prato,M.Interactions in Single Wall Carbon Nanotubes/Pyrene/Porphyrin Nanohybrids.J.Am.Chem.Soc.2006,128,11222-11231.
    [62]Xing,Y.;Li,L.;Chusuei,C.C.;Hull,R.V.Sonochemical Oxidation of Muitiwalled Carbon Nanotubes.Langmuir 2005,21,4185-4190.
    [63]Liu,J.;Rinzler,A.G.;Dai,H.;Hafner,J.H.;Bradley,R.K.;Boul,P.J.;Lu A.;Iverson T.;Shelimov,K.;Huffman,C.B.;Rodriguez-Macias,F.;Shon,Y.-S.;Lee,T.R.;Colbert D.I T.;Smalley,R.E.Fullerene Pipes.Science 1998,280,1253-1256.
    [64]Okpalugo,T.I.T.;Papakonstantinou,P.;Murphy,H.;McLaughlin,J.;Brown,N.M.D.;High resolution XPS characterization of chemical functionalized MWCNTs and SWCNTs.Carbon,2005,43,153-161.
    [65]Wang,X.;Liu,H.;Jin,Y.;Chen,C.Polymer-Functionalized Multiwalled Carbon Nanotubes as Lithium Intercalation Hosts.J.Phys.Chem.B 2006,110,10236-10240.
    [66]Yim,T.-J.;Liu,J.;Lu,Y.;Kane,R.S.;Dordick,J.S.Highly Active and Stable DNAzyme-Carbon Nanotube Hybrids.J.Am.Chem.Soc.2005,127,12200-12201.
    [67]Li,S.;He,P.;Dong,J.;Guo,Z.;Dai,L.DNA-Directed Self-Assembling of Carbon Nanotubes.J.Am.Chem.Soc.2005,127,14-15.
    [68]Zhang,Y.;Li,J.;Shen,Y.;Wang,M.;Li,J.Poly-L-lysine Functionalization of Single-Walled Carbon Nanotubes.J.Phys.Chem.B 2004,108,15343-1534.
    [69]Georgakilas,V.;Kordatos,K.;Prato,M.;Guldi,D.M.;Holzinger,M.;Hirsch,A.Organic Functionalization of Carbon Nanotubes.J.Am.Chem.Soc.2002,124,760-761.
    [70]Guldi,D.M.;Marcaccio,M.;Paolucci,D.;Paolucci,F.;Tagmatarchis,N.;Tasis,D.;Vazquez,E.Prato M.;Single-Wall Carbon Nanotube-Ferrocene Nanohybrids:Observing Intramolecular Electron Transfer in Functionalized SWNTs.Angew.Chem.Int.Ed.2003,42,4206-4209.
    [71]Georgakilas,V.;Tagmatarchis,N.;Pantarotto,D.;Bianco,Al.;Briandb,J.-P.;Prato,M.Amino acid functionalisation of water soluble carbon nanotubes.Chem.Commun.2002,3050-3051.
    [72]Pantarotto,D.;Partidos,C.D.;Graft,R.;Hoebeke,J.;Briand,J.-P.;Prato,M.;Bianco,A.Synthesis,Structural Characterization,and Immunological Properties of Carbon Nanotubes Functionalized with Peptides.J.Am.Chem.Soc.2003,125,6160-6164.
    [73]Singh,R.;Pantarotto,D.;McCarthy,D.;Chaloin,O.;Hoebeke,J.;Partidos,C.D.;Briand,J.-P.;Prato,M.;Bianco,A.;Kostarelos,K.Binding and Condensation of Plasmid DNA onto Functionalized Carbon Nanotubes:Toward the Construction of Nanotube-Based Gene Delivery Vectors.J.Am.Chem.Soc.2005,127,4388-4396.
    [74]Bianco,A.;Hoebeke,J.;Godefroy,S.;Chaloin,O.;Pantarotto,D.;Briand,J.-P.;Muller,S.;Prato,M.;Partidos,C.D.Cationic Carbon Nanotubes Bind to CpG Oligodeoxynucleotides and Enhance Their Immunostimulatory Properties.J.Am.Chem.Soc.2005,127,58-59.
    [75]Bahr,J.L.;Yang,J.;Kosynkin,D.V.;Bronikowski,M.J.;Smaliey,R.E.;Tour,J.M.;Functionalization of Carbon Nanotubes by Electrochemical Reduction of Aryl Diazonium Salts:A Bucky Paper Electrode.J.Am.Chem.Soc.2001,123,6536-6542.
    [76]Dyke,C.A.;Tour,J.M.Unbuodiod and Highly Functionalized Carbon Nanotubes from Aqueous Reactions.Nano.Lett.2003,3,1215-1218.
    [77]Price,B.K;Hudson,J.L.;Tour,J.M.Green Chemical Functionalization of Single-Walled Carbon Nanotubes in Ionic Liquids.J.Am.Chem.Soc.2005,127,14867-14870.
    [78]Zhao,B.;Hu,H.;Yu,A.;Perea,D.;Haddon,R.C.Synthesis and Characterization of Water Soluble Single-Walled Carbon Nanotube Graft Copolymers.J.Am.Chem.Soc.2005,127,8197-8203.
    [79]Gao,C.;Jin,Y.Z.;Kong,H.;Whitby,R.L.D.;Acquah,S.F.A.;Chen,G.Y.;Qian,H.;Hartschuh,A;Silva,S.R.P.;Henley,S.;Fearon,P.;Kroto,H.W.;Walton,D.R.M.Polyurea-Functionalized Multiwalled Carbon Nanotubes:Synthesis,Morphology,and Raman Spectroscopy.J.Phys.Chem.B 2005,109,11925-11932.
    [80]Kim,B.;Sigmund,W.M.Functionalized Multiwall Carbon Nanotube/Goid Nanoparticle Composites.Langmuir 2004,20,8239-8242.
    [81]Ou,Y.-Y.;Huang,M.H.High-Density Assembly of Gold Nanoparticles on Multiwalled Carbon Nanotubes Using 1-Pyrenemethylamine as Interlinker.J.Phys.Chem.B 2006,110,2031-2036.
    [82]Shim,M.;Javey,A.;Shi Kam,N.W.;Dai,H.Polymer functionalization for air-stable n-type carbon nanotube field-effect transistors.J.Am.Chem.Soc.2001,123,11512-11513.
    [83]Sun,J.;Gao,L.Development of a dispersin process for carbon nanotubes in ceramic matrix by heterocoagulation.Carbon 2003,41,1063-1068.
    [84]Sun,X.;Dong,S.;Wang,E.High-yield synthesis of large single-crystalline gold nanoplates through a polyamine process.Langmuir 2005,21,4710-4712.
    [85]Hu,X.;Wang,T.;Qu,X.;Dong,S.In Situ Synthesis and Characterization of Multiwalled Carbon Nanotube/Au Nanoparticle Composite Materials.J.Phys.Chem.B 2006,110,853-857.
    [86]Hu,X.;Wang,T.;Wang,L.;Guo,S.;Dong,S.A General Route to Prepare One-and Three-Dimensional Carbon Nanotube/Metal Nanoparticle Composite Nanostructures.Langmuir 2007,23,6352-6357.
    [87]Correa-Duarte,M.A.;Sobal,N.;Liz-Marzan,L.M.;Giersig,M.Linear assemblies of silica-coated gold nanopartieles using carbon nanotubes as templates.AdK Mater.2004,16,2179-2184.
    [88]Correa-Duarte,M.A.;Grzeiczak,M.;Salgueirino-Maceira,V.;Giersig,M.;Liz-Marzan,L.M.;Farle,M.;Sierazdki,K.;Diaz,R.Alignment of Carbon Nanotubes under Low Magnetic Fields through Attachment of Magnetic Nanoparticles.J.Phys.Chem.B 2005,109,19060-19063.
    [89]Korneva,G.;Ye,H.;Gogotsi,Y.;Halverson,D.;Friedman,G.;Bradley,J.-C.;Kornev,K.G.Carbon Nanotubes Loaded with Magnetic Particles.Nano Lett.2005,5,87-884.
    [1]Qi,P.;Vermesh,O.;Greeu,M.;Javey,A.;Wang,Q.;Dai,H.Toward large arrays of multiplex functionalized carbon nanotube sensors for highly sensitive and selective molecular detection.Nano Lett.2003,3,347-351.
    [2]Li,J.;Liu,Q.;Liu,Y.;Liu,S.;Yao,S.DNA biosensor based on chitosan film doped with carbon nanotubos.Anal.Biochem.2005,346,107-114.
    [3]Zhang,Y.;Li,J.;Shen,Y.;Wang,M.;Li,J.Poly-L-lysine functionalization of single-walled carbon nanotubes,J.Phys.Chem.B.2004,108,15343-15346.
    [4]Wu,W.;Wieckowski,S.;Pastorin,G.;Benincasa,M.;Klumpp,C.;Briand,J.-P.;Gennaro,R.;Prato,M.;Bianco,A.Targeted delivery of amphotericin B to cells by using functionlized carbon nanotubes.Angew.Chem.Int.Ed.2005,44,6358-6362.
    [5]Zheng,M.;Diner,B.A.Solution redox chemistry of carbon nanotubes,J.Am.Chem.Soc.2004,126,15490-15494.
    [6]Erdem,A.;Papakonstantinou,P.;Murphy,H.Direct DNA hybridization at disposable graphite electrodes modified with carbon nanotubes.Anal.Chem.2006,78,6656-6659.
    [7]Kam,N.W.S.;O'connell,M.;Wisdom,J.A.;Dai,H.Carbon nanotubes as multifunctional biological transporters and near-infrared agents for selective cancer cell destruction.PNAS.2005,102,11600-11605.
    [8]Cherukuri,P.;Bachilo,S.M.;Litovsky,S.H.;Weisman,R.B.Near-infrared fluorescence microscopy of single-walled carbon nanotubes in phagocytic cells. J. Am. Chem. Soc. 2004,126, 15638-15639.
    [9] Jiang, C.; Zhao, J.; Therese, H. A.; Friedrich, M.; Mews, A. Raman imaging and spectroscopy of heterogeneous individual carbon nanotubes. J. Phys. Chem. B. 2003,107, 8742-8745.
    [10] Wang, J.; Xu, D.; Polsky, R. Magnetically-induced solid-state electrochemical detection of DNA hybridization. J. Am. Chem. Soc. 2002,124,4208-4209.
    [11] Wang, J.; Xu, D.; K, A. -N.; Polsky, R. Metal nanoparticle-based electrochemical stripping potentiometric detection of DNA hybricization. Anal. Chem. 2001, 73, 5576-5581.
    [12] Zhu, X.; Han, K.; Li, G. Magnetic nanoparticles applied in electrochemical detection of controllable DNA hybridization. Anal. Chem. 2006, 78, 2447-2449.
    [13] Wang, J.; Liu, G.; Jan, M. R. Ultrasensitive electrical biosensing of proteins and DNA: carbon-nanotube derived amplification of the recognition and transduction events. J. Am. Chem. Soc. 2004,726,3010-3011.
    [14] Fan, A.; Lau, C.; Lu, J. Magnetic bead-based chemiluminescent metal immunoassay with a colloidal gold label. Anal. Chem. 2005, 77,3238-3242.
    [15] Zhou, Y.; Zhang, Y. Lau, C; Lu, J. Sequential determination of two proteins by temperature-triggered homogeneous chemiluminescent immunoassay. Anal. Chem. 2006, 78, 5920-5924.
    [16] Xu, C; Xu, K.; Gu, H.; Zhong, X.; Guo, Z.; Zheng, R.; Zhang, X.; Xu, B. Nitrilotriacetic acid-modified magnetic nanoparticles as a general agent to bind histidine-tagged proteins. J. Am. Chem. Soc. 2004,126, 3392-3393.
    [17] Dyal, A.; Loos, K.; Noto, M.; Chang, S. W.; Spagnoli, C; Shafi, K. V. P. M.; Ulman, A.; Cowman, M.; Gross, R. A. Activith of Candida rugosa lipase immobilized on γ-Fe_2O_3 magnetic nanoparticles. J. Am. Chem. Soc. 2003,125, 1684-1685.
    [18] Wang, D.; He, J.; Rosenzweig, N.; Rosenzweig, Z. Superparamagnetic Fe_2O_3 baseds-CsSe/ZnS quantum dots core-shell nanocomposite particles for cell separation. Nano Lett. 2004, 4, 409-413.
    [19] Son, S. J.; Reichel, J.; He, B.; Schuchman, M.; Lee, S. B. Magnetic nanotubes for magnetic-field-assisted bioseparation, biointeraction, and drug delivery. J. Am. Chem. Soc. 2005,727,7316-7317.
    [20] Zhang, H.; Meyerhoff, M. E. Gold-coated magnetic particle for solid-phase immunoassays: enhancing immobilized antibody binding efficiency and analytical performance. Anal. Chem. 2006,75,609-616.
    [21] Kouassi, G. K.; Irudayaraj, Joseph. Magnetic and gold-coated magnetic nanoparticles as a DNA sensor.Anal Chem.2006,78,3234-3241.
    [22]Konerack& M.;Kopcansky,P.;Antalik,M.;Timko,M.;Ramchand,C.N.;Lobo,D.;Mehta,R.V.;Upadhyay,R.V.Immobilization of proteins and enzymes to fine magnetic particles.J.Magn.Magn.Mater.1999,201,427-430.
    [23]Ho,K.-C.;Tsai,P.-J.;Lin,Y.-S.;Chen,Y.-C.Using biofunctionalized nanoparticles to probe pathogenic bacteria.Anal Chem.2004,76,7162-7168.
    [24]Bruce,I.J.;Sen,T.Surface modification of magnetic nanoparticles with alkoxysilanes and their application in magnetic bioseparations.Langmuir 2005,21,7029-7035.
    [25]Liu,J.;Rinzler,A.G.;Dai,H.;Hafner,J.H.;Bradley,R.k.;Boul,P.J.;Lu,A.;Iverson,T.;Shelimov,K.;Huffman,C.B.;Rodriguez-Macias,F.;Shon,Y.-S.;Lee,T.R.;Colbert,D.T.;Smalley,R.E.Fullerene pipes.Science 1995,280,1253-1256.
    [26]He,P.;Bayachou,M.Layer-by-layer fabrication and characterization of DNA-wrapped single-walled carbon nanotube particles.Langmuir 2005,21,6086-6092.
    [27]Wang,X.;Liu,H.;Jin,Y.;Chen,C.Polymer-functionalized multiwalled carbon nanotubes as lithium intercalation hosts.J.Phys.Chem.B.2006,110,10236-10240.
    [28]Okpalugo,T.I.T.;Papakonstantinou,P.;Murphy,H.;Mclaughlin,J.;Brown,N.M.D.High resolution XPS characterization of chemical functionalized MWCNTs and SWCNTs.Carbon 2005,43,153-161.
    [29]Lu,Y.;Yang,X.;Ma,Y.;Du,F.;Liu,Z.;Chen,Y.Self-assembled branched nanostructures of single-walled carbon nanotubes with DNA as linker.Chem.Phys.Lett.2006,419,390-393.
    [30]Yim,T.-J.;Liu,J.;Lu,Yi.;Kane,R.S.;Dordick,J.S.Highly active and stable DNAzyme-carbon nanotube hybrids.J.Am.Chem.Soc.2005,127,12200-12201.
    [31]Pasternack,R.F.;Bustamante,C.;Collings,P.J.;Giannetto,A.;Gibbs,E.J.Porphyrin assemblies on DNA studied by a resonance light-seatedng technique.J.Am.Chem.Soc.1993,115,5393-5399.
    [32]Paula,J.C.;Robblee,J.H.;Pasternack,R.F.Aggregation of chlorophyll a probed resonance light scattering spectroscopy.Biophys J,1995,68,335-341.
    [33]Pasternack,R.F.;Schaefer,K.F.;Hambright,P.Resonance light-scattering studies of porphyrin diacid aggregates:Inorg.Chem.1994,433,2062-2065.
    [34]Pasternack,R.F.;Collings,P.J.Resonance light scattering:a new technique for tudying chromophore aggregation.Science,1995,269,935-939.
    [35]Huang,C.Z.;Li,K,A.;Tong,S.Y.Determination of nuclei acids by a resonance light-sacttering technique with α,β,γ,δ-tetrakes[4-(trimethylammoniumyl)phenyl]porphine.Anal.Chem.1996,68,2259-2263.
    [36]Huang,C.Z.;Li,K,A.;Tong,S.Y.Determination of nanograms of nucleic acids by their enhancement effect on the resonance light scattering of the cobait(Ⅱ)/4-[(5-chloro-2-pyridyi)azo]-1,3-diaminobenzene complex.Anal Chem.1997,69,514-520.
    [37]Feng,P.;Shu,W.Q.;Huang,C.Z.;Li,Y.F.Total internal reflected resonance light scattering determination of chlortetracycline in body fluid with the complex cation of chlortetracycline-europium-tdoctyl phosphine oxide at the water/tetrachloromethane interface.Anal Chem,2001,73,4307-4312.
    [38]Wu,L.P.;Li,Y.F.;Huang,C.Z.;Zhang,Q.Visual detection of sudan dyes based on the plasmon resonance litght scattering signals of silver nanoparticles.Anal Chem.2006,78,5570-5577.
    [39]Wang,J.;Liu,G.;Merkoci,A.Electrochemical coding technology for simultaneous detection of multiple DNA targets.J.Am.Chem.Soc.2003,125,3214-3215.
    [40]Taft,B.J.;Lazareck,A.D.;Withey,G.D.;Yin,A.;Xu,J.M.;Kelley,S.O.Site-specific assembly of DNA and appended cargo on arrayed carbon nanotubes.J.Am.Chem.Soc.2004,126,12750-12751.
    [41]Zheng,M.;Jagota,A.;Semke,E.D.;Diner,B.A.;Mclean,R.S.;Lustig,S.R.;Richardson,R.E.;Tassi,N.G.DNA-assisted dispersion and separation of carbon nanotubes.Nat.Mater.2003,2,338-342.
    [42]Chen,R.J.;Zhang,Y.Controlled precipitation of solubilized carbon nanotubes by delaminaton of DNA J.Phys.Chem.B 2006,110,54-57.
    [1]蔡称心,陈静.碳纳米管促进氧化还原蛋白质和酶的直接电子转移.电化学2004,10,159-167.
    [2]王亮,吕元琦,袁倬斌.左旋多巴在单层碳纳米管修饰电极上的电化学行为.分析实验室2004,21,13-15.
    [3]Zhang,M.;Mullens,C.;Gorski,W.Coimmobilization of Dehydrogenases and Their Cofactors in Electrochemical Biosensors.Anal.Chem.2007,79,2446-2450.
    [4]Wang,J.;Liu,G.;Jan,M.R.Ultrasensitive Electrical Biosensing of Proteins and DNA:Carbon-Nanotube Derived Amplification of the Recognition and Transduction Events.J.Am.Chem.Soc.2004,126,3010-3011.
    [5]Wu,W.;Wieckowski,S.;Pastodn,G.;Benincasa,M.;Klumpp,C.;Briand,J.-P.;Gennaro,R.;Prato,M.;Bianco,A.Targeted Delivery of Amphotedcin B to Cells by Using Functionalized Carbon Nanotubes.Angew.Chem.Int.Ed.2005,44,6358-6362.
    [6] Wang, Z. H.; Liang, Q. L.; Wang, Y. M.; Luo, G. A. Carbon nanotube-intercalated graphite electrodes for simultaneous determination of dopamine and serotonin in the presence of ascorbic acid. J. Electroanal. Chem. 2003,540, 129-134.
    [7] Arribas, A. S.; Bermejo, E.; Chicharro, M.; Zapardiel, A.; Luque, G. L.; Ferreyra, N. F.; Rivas, G. A.; Analytical applications of glassy carbon electrodes modified with multi-wall carbon nanotubes dispersed in polyethylenimine as detectors in flow systems. Anal. Chim. Acta. 2007, 596, 183-194.
    [8] Lin, Y.; Lu, F.; Tu, Y.; Ren, Z. Glucose Biosensors Based on Carbon Nanotube Nanoelectrode Ensembles. Nano. Lett. 2004,4, 191-195.
    [9] Zhang, M.; Mullens, C.; Gorski, W. Insulin Oxidation and Determination at Carbon Electrodes. Anal. Chem. 2005, 77,6396-6401.
    [10] Zhang, M.; Gorski, W. Electrochemical Sensing Based on Redox Mediation at Carbon Nanotubes. Anal. Chem. 2005, 77, 3960-3965.
    [11] Zhang, M.; Gorski, W. Electrochemical Sensing Platform Based on the Carbon Nanotubes/Redox Mediators-Biopolymer System. J. Am. Chem. Soc. 2005,127, 2058-2059.
    [12] Yu, X.; Munge, B.; Patel, V.; Jensen, G.; Bhirde, A.; Gong, J. D.; Kim, S. N.; Gillespie, J.; Gutkind, J. S.; Papadimitrakopoulos, F.; Rusling, J. F. Carbon Nanotube Amplification Strategies for Highly Sensitive Immunodetection of Cancer Biomarkers. J. Am. Chem. Soc. 2006,128,11199-11205.
    [13] Zheng, M.; Rostovtsev, V. V. Photoinduced Charge Transfer Mediated by DNA-Wrapped Carbon Nanotubes. J. Am. Chem. Soc. 2006,128,7702-7703.
    [14] Ming, Z.; Bruce, A. Diner. Solution redox chemistry of carbon nanotubes. J. Am. Chem. Soc. 2004,126, 15490-15494.
    [15] Du, B. A.; Li, Z. P.; Liu, C. H. One-Step Homogeneous Detection of DNA Hybridization with Gold Nanoparticle Probes by Using a Linear Light-Scattering Technique. Angew. Chem. Int. Ed. 2006, 45, 1-5.
    [16] Li, H.; Rothberg, L. Colorimetric detection of DNA sequences based on electrostatic interactions with unmodified gold nanoparticles. PNAS, 2004,101, 14036-14039.
    [17] Thanh, N. T. K.; Rosenzweig, Z. Development of an Aggregation-Based Immunoassay for Anti-Protein A Using Gold Nanoparticles. Anal. Chem. 2002, 74, 1624-1628.
    [18] Ao L, Gao F, Pan B, He R, Cui D. Fluoroimmunoassay for Antigen Based on Fluorescence Quenching Signal of Gold Nanoparticles. Anal. Ch., 2006, 78,1104-1106.
    [19] Shen, X. W.; Huang, C. Z.; Li, Y. F. Localized surface plasmon resonance sensing detection of glucose in the serum samples of diabetes sufferers based on the redox reaction of chlorauric acid.Talanta 2007,72,1432-1437.
    [20]Baron,R.;Zayats,M.;Willner,I.Dopamine-,L-DOPA-,Adrenaline-,and Noradrenaline-Induced Growth of Au Nanoparticles:Assays for the Detection of Neurotransmitters and of Tyrosinase Activity.Anal.Chem.2005,77,1566-1571.
    [21]Asian,K.;Holley,P.;Davies,L.;Lakowicz,J.R.;Geddes,C.D.Angular-Ratiometric Plasmon-Resonance Based Light Scattering for Bioaffinity Sensing.J.Am.Chem.Soc.2005,127,12005-12121.
    [22]Wu,L.P.;Li,Y.F.;Huang,C.Z.;Zhang,Q.Visual Detection of Sudan Dyes Based on the Plasmon Resonance Light Scattering Signals of Silver Nanoparticles.Anal.Chem.2006,78,5570-5577.
    [23]Liu,Z.D.;Huang,C.Z.;Li,Y.F.;Long,Y.F.Enhanced plasmon resonance light scattering signals of colloidal gold restulted from its interactions with organic small molecules using captopril as an example.Anal.Chim.Acta,2006,577,244-249.
    [24]杨挺,王立君,赵健,皇甫伟国.高效液相色谱法测定水产品中四环素类抗生素残留.化学分析计量 2007.16.35-36.
    [25]钱英.薄层色谱发测家禽肌肉组织中的四环素和土霉素.职业与健康 2000,16,37.
    [26]刘艳华,张纯萍,门立强,刘智宏,王树槐.液相色谱—串联质谱法测定鸡肌肉组织中的四环素类药物残留.色谱 2006,24,171-173.
    [27]邢晓平.鸡蛋中残留四环素类抗生素的快速测定研究.盐城工学院学报(自然科学版)2006,19,16-19.
    [1]Lee,P.C.;Meisel,D.Adsorption and Surface-Enhanced Raman of Dyes on Silver and Gold Sols.J.Phys.Chem.1982,86,3391-3395.
    [2]Zhou,Y.;Wang,C.Y.;Zhu,Y.R.;Chert,Z.Y.A Novel Ultraviolet Irradiation Technique for Shape-Controlled Synthesis of Gold Nanoparticles at Room Temperature.Chem.Mater.1999,11,2310-2312.
    [3]Xie,J.;Lee,J.Y.;Wang,D.I.C.;Ting,Y.P.Identification of Active Biomolecules in the High-Yield Synthesis of Single-Crystalline Gold Nanoplates in Algal Solutions.Small 2007,3,672-682.
    [4]Shankar,S.S.;Rai,A.;Ankamwar,B.;Singh,A.;Ahmd,A.;Sastry,M.Biological synthesis of triangular gold nanoprisms.Nat.mat.2004,3,482-488.
    [5]Kim,F.;Song,J.H.;Yang,P.Photochemical Synthesis of Gold Nanorods.J.Am.Chem.Soc.2002,124,14316-14317.
    [6]Esumi,K.;Matsuhisa,K.;Torigoe,K.Preparation of rodlike gold particles by UV irradiation using cationic micelles as a template.Langmuir 1995,11,3285-3287.
    [7]Yu,Y.-Y.;Chang,S.-S.;Lee,C.-L.;Wang,C.R.C.Gold Nanorods:Electrochemical Synthesis and Optical Properties.Gold nanorods:electrochemical synthesis and optical properties.J.Phys.Chem.B 1997,101,6661-6664.
    [8]Van der Zande,B.M.I.;Bohmer,M.R.;Fokkink,L.G.J.;Schonenberger,C.Aqueous gold sols of rod-shaped particles.J.Phys.Chem.B 1997,101,852-854.
    [9]Chang,S.S.;Shih,C.W.;Chert,C.D.;Lai,W.C.;Wang,C.R.C.The shape transition of gold nanorods.Langmuir 1999,15,701-709.
    [10]Kim,F.;Song,J.H.;Yang,P.Photochemical Synthesis of Gold Nanorods.J.Am.Chem.Soc.2002,124,14316-14317.
    [11]Sun Y.G.;Xia Y.Large-scale synthesis of unform silver nanowires through a sofe,self-seeding,polyol process.AdV.Mater.2002,14,833-837.
    [12]Dou,R.;Derby,B.The strength of gold nanowire forests.Scripta mater.2008,doi:10.1016/j.scriptamat.2008.02046.
    [13]刘虹雯,侯士敏,张耿民,申自勇,刘惟敏,吴锦雷,薛增泉.电化学沉积金纳米线结构及其电学特性.物理化学学报 2002,18,359-363.
    [14]Yang,M.;Qu,F.;Li,Y.;He,Y.;Shen,G.;Yu,R.Direct electrochemistry of hemoglobin in gold nanowire array.Biosens.Bioelectron.2007,23,414-420.
    [15]Lu,W.;Shi,W.;Wang,W.;Jiang,L.One-step synthesis of gold nanowire network capped by diacetylene molecules under ultrasonic irradiation.Colloids Surf.,A 2008,317,239-246.
    [16]Xu,C.;Zhang,L.;Zhang,H.;Li,H.Well-dispersed gold nanowire suspension for assembly application.Appl.Surf.Sci.2005,252,1182-1186.
    [17]冯永成,董守安,唐春.一维金纳米线的自组装研究.贵金属 2007,28,1-5.
    [18]Sun,J.;Guan,M.;Shang,T.;Gao,C.;Xu,Z.;Zhu,J.Selective Synthesis of Gold Cuboid and Decahedral Nanopartieles Regulated and Controlled by Cu~(2+)Ions.Cryst.Growth Des.2008,10.1021/cg070635a.
    [19]Yao,H.;Minami,T.;Hori,A.;Koma,M.;Kimura,K.Five fold Symmetry in Superlattices of Monolayer-Protected Gold Nanoparticles.J.Phys.Chem.B 2006,110,14040-14045.
    [20]Wang,T.;Hu,X.;Dong,S.Surfactantless Synthesis of Multiple Shapes of Gold Nanostructures and Their Shape-Dependent SERS Spectroscopy.J.Phys.Chem.B 2006,110,16930-16936.
    [21]Jena,B.K.;Raj,C.R.Activity towards the oxidation of methanol and the reduction of oxygen.Langmuir 2007,23,4064-4070.