鸡肌纤维特性及Myogenin基因多态性的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
肌肉的组织学特性是影响肌肉品质的组织学基础,是评定肉质的一项重要指标。大量研究发现畜禽的肌肉品质与其肌肉组织学特性有显著的相关性,特别是肌纤维密度、肌纤维直径对肌肉品质的影响非常显著,而肌纤维特性大多是数量性状,一般受微效多基因控制。在肌纤维的形成过程中,肌细胞的增殖、分化由一些正向调控因子和负向调控因子进行双向调节,肌细胞生成素基因属于正向调控因子,被认为是影响肌纤维特性的候选基因。
     本研究以地方品种固始鸡和快大型肉鸡安卡鸡按F-2设计的资源群体为实验素材,对鸡的肌肉组织学特性,及其与鸡胴体肉质性状之间的关系进行研究;同时克隆了鸡肌细胞生成素基因的第二内含子片段,并采用PCR-SSCP技术检测了肌细胞生成素基因部分编码区的突变。主要研究结果如下:
     1、对资源群体F_2代胸肌、腿肌肌纤维特性表型值进行了测定及统计分析,结果表明:F_2代群体中各性状的分离范围均较大,大部分指标的变异系数都超过10%。并且腿肌的变异系数大于胸肌,也就是说F2代各性状的表型值产生了较好的分离效果。各性状的偏度系数、峰度系数的绝对值有的大于1,有的小于1,近似服从正态分布但存在偏态,表明这些性状可能是主效基因存在的多基因控制的数量性状。
     2、通过对肌纤维特性间的相关分析发现,不同部位肌纤维横截面积、长径、短径、周长与肌纤维密度均呈极显著负相关,其中,胸肌的这些指标间的相关系数分别为-0.797、-0.756、-0.780、-0.704:腿肌的这些指标间的相关系数分别为-0.740、-0.739、-0.762、-0.712。据对肌纤维横截面积、密度与胴体肉质性状间的相关分析发现,胸肌肌纤维横截面积与所有屠体性状(除屠宰率外)呈极显著性正相关(P<0.01),与屠宰率相关不显著(P>0.05),与失水率呈显著负相关(0.01<P<0.05),与剪切力值呈显著正相关(0.01<P<0.05);腿肌肌纤维横截面积与屠体性状呈显著或极显著正相关,与失水率呈极显著负相关(P<0.01),与剪切力值呈显著正相关(0.01<P<0.05)。胸肌密度与屠体性状(除屠宰率外)呈极显著负相关(P<0.01)。与屠宰率相关不显著(P>0.05),与失水率相关不显著(P>0.05),与剪切力值呈显著负相关(0.01<P<0.05);腿肌密度与屠体性状呈负相关,与失水率相关不显著(P>0.05),与剪切力值呈显著负相关(0.01<P<0.05)。
     3、部位、交配类型(正、反交)、性别对肌纤维特性的表型值均有一定的影响。由因子互作来看,肌纤维鲜样直径受部位和性别的影响显著(P<0.05),肌纤维面积比受交配类型和性别的影响极显著(P<0.01);三因子互作对各性状没有影响。
     4、本研究采用在基因内含子两端的保守区即外显子上设计特异性引物进行PCR扩增,成功地获取鸡肌细胞生成素基因的第二内含子序列,已提交GENEBANK(序列号为EF031036)。其长为452bp,剪切方式符合常见的GT-AG的法则。
     5、采用PCR-SSCP方法检测了鸡肌细胞生成素基因部分编码区的突变,在第一外显子上发现了G102A的同义突变,并对突变产生的基因型与肌纤维特性进行关联分析,发现基因型对横截面积、长径、短径、周长的影响达到显著水平(P<0.05),而且BB基因型的各项指标显著大于AA基因型;对密度的影响达到极显著水平(P<0.01),AA基因型的肌纤维密度极显著高于BB基因型;对长短径比和鲜样直径的影响存在部位上的差别,胸肌的这两项指标在不同基因型间的差异未达到显著水平,腿肌的长短径比在三种基因型间的差异达到显著水平(P<0.05),腿肌的鲜样直径的差异则达到极显著水平(P<0.01);基因型对肌纤维面积比的影响不显著。以上结果说明肌细胞生成素基因对肌纤维的生长发育有重要的作用。
     6、不同基因型间半净膛重、全净膛重、全净膛率、12周龄体重、胸肌重、胸肌率、腿肌重、腿肌率的差异或达到显著水平或达到极显著水平;其他屠体指标和失水率、剪切力值两项肉质性状的差异均未达到显著水平。以上结果说明肌细胞生成素基因的变异在影响肌纤维特性的同时造成了肌肉屠宰指标的差异,但对肉质的影响不大。
The histology characteristics of muscle affect meat quality remarkably, which is an important index for evaluating meat quality, most studies indicated that the histology characteristics of muscle has definitely pertinence with the meat quality,especially diameter of muscle fiber and density of muscle fiber. The myofiber characters are quantity traits,which are controlled by some genes. In development of myofiber, the proliferation and differentiation of muscle cell is controlled by some native and negative regulations. Myogenin is a native regulation, it should be the candidate gene for myofiber characters.
     In this study, samples were selected from F-2 chickens derived from GUSHI chick to ANKA chick,the histology characteristics of muscle was measured with paraffin section;the second intron of myogenin was cloned,and the mutation in part coding region of myogenin was detected with PCR-SSCP. The results were as follows:
     1,The analysis of phenotypic values indicated that the measured traits on myofiber performance were segregating well in F_2 individuals. Most coefficients of variability were above 10%,and C.V. of thigh were more than C.V. of breast. About absolute value of Skewness coefficient and Kurtosis coefficient,some were more than 1, another were less than l,so the traits were demonstrated as fit as to normal distribution, but some were of skewed distribution. Thus they were quantitative characters controlled by many genes with small and large efects.
     2,Correlation Analysis among the characters of Muscle fiber indicated that There was an extremely significant negative correlation between the cross section area of muscle fiber、the length diameter、diameter of major axis and minor axis、circumference、and density of muscle fiber,Correlative coefficient is -0.797、-0.756、-0.780、-0.704 individually for breast muscle;Correlation coefficient is -0.740、-0.739、-0.762、-0.712 individually for thigh muscle. There was an extremely significant native correlation between muscle fiber cross section area and carcass characters (except Slaughter ratio) , a significant negative correlation between muscle fiber cross section area and shear force, a significant native correlation between muscle fiber cross section area and shear force in breast muscle. There was an extremely significant native or significant native correlation between muscle fiber cross section area and carcass characters,an extremely significant negative correlation between muscle fiber cross section area and the percents of water-lossing,a significant native correlation between muscle fiber cross section area and shear force in thigh muscle. There was an extremely significant native or a significant native correlation between density of muscle fiber and carcass characters in breast or thigh muscle individually;There were no significant native correlation between density of muscle fiber and shear force in both parts,There was a significant negative correlation between density of muscle fiber and shear force in both parts.
     3, Part、mating model and sex had effect on performances of the myofiber characters,about interactions among factors,diameter of fresh muscle fibre was influenced by part and sex significantly,area ratio of myofiber was influenced by mating model and sex extremely significantly;interactions among three factors had an effect on each character.
     4,The 2nd intron of chicken myogenin was cloned and found that it's splicing sites follow the consensus(5'AG/N, 3'N/GT),The sequence which has 452bp? was submitted to GENEBANK(EF031036).
     5,The mutation was found in the first exon, and have a significant association with myofiber characters. the association analysis on PCR-SSCP genetypes related with G102A polymorphism and myofiber characters shows,there was a significant association between genetype and cross section area、diameter or circumference,and BB genetype was significant more than that of AA genetype;density of muscle fiber of AA genetype was extremely significant more than that of BB genetype;the ratio of thigh muscle between major axis and minor axis has a significant difference among three genetypes. diameter of fresh muscle fibre of thigh muscle between major axis and minor axis has an extremely significant difference among three genetypes. All above demonstrated that myogenin had an important role on myofiber development.
     6,The association analysis on genetype and carcass characters or meat characters shows,there was a significant association or an extremely significant association between genetype and semi-eviscerated weight、eviscerated weight、eviscerated percentage、live weight aged 12 weeks、breast meat weight、breast meat percentage、thigh meat weight or thigh meat percentage. there was no significant association or an extremely significant association between genetype and other carcass characters、the percents of water-lossing or shear force.all above demonstrated that myogenin had effect on part carcass characters,but has no effect on meat characters.
引文
[1]沈霞芬.家畜组织学与胚胎学[M].北京:中国农业出版社,2001,68.
    [2]孙玉民,罗明主编.畜禽肉品学[M].济南:山东科学技术出版社,1993.
    [3]Brooke MH,Kaiser KK,Muscle fiber types:how many and what kind[J]? Arch Neurol,1970,23(4):369-379.
    [4]Peter JB,Barnard RJ,Edgerton VR,et al,Metabolic profiles of three fiber types of skeletal muscle in guinea pigs and rabbits[J].Biochemistry,1972,11(14):2627-2633.
    [5]Chang K C,Costaa N D,Blackleya R,et al,Relationships of myosin chain fibers types to meat quality traits in traditional and modern pigs[J].Meat Science,2003.64:93-103.
    [6]Schiaffino S and Reggiani C,Myosin isoforms in mammalian skeletal muscle[J].Journal of Applied Physiology,1994,77:493-501.
    [7]Schiaffino S and Reggiani C.Molecular diversity of myofibrillar proteins:gene regulation and functional signicance[J].Physiological Reviews,1996,76:371-423.
    [8]Weiss A and Leinwand L A.The mammaliam myosin heavy chain gene family[J].Annual reviews cell & development biology,1996,12:417-439.
    [9]Ansved T,L Larsson,Effects of Ageing on Enzyme histochemical,Morphometrical and Contractile Properites of the Soleus Muscle in the Rat[J].Neuro sci,1989,93:105-124.
    [10]Term in A,R S Staron,D Pette.Changes in Myosin Heavy Chain isoforms during Chronic Low Frequency Stimulation of Rat Fast Hindlimb Muscles:A Single Fiber Study[J].Eur.J.Biochem.1989.186:749-754.
    [11]刘艳芬,刘铀,生长猪肌纤维类型的转化规律[J].西北农业学报:1996,5(4):41-44.
    [12]魏法山,康相涛,等,固始鸡生长过程中不同类型肌纤维面积比的变化[J].西北农林科技大学学报(自然科学版):2006,34(2):7-11.
    [13]Staun H.World Review of Anim prod[J].1972,7Ⅷ:18-26.
    [14]陈宽维,等,肉鸡肌纤维与肉质关系研究[J].中国畜牧杂志:2002,38(6):6-7.
    [15]蒋福虎,等,羊肉肌纤维生长规律现察[J].山东农业大学学报:1996,16(4):386-388.
    [16]王立克,等,固始鸡肌纤维生长发育规律研究[J].安徽技术师范学院学报:2001,15(4):45-47.
    [17]宋代军,方立超,等,营养水平对肉鸡肌肉组织学的影响[J].畜牧兽医学报:2002,33(6),551-554.
    [18]谭丽勤,欧茶海,等,60~90日龄腾冲雪鸡肌纤维特性研究[J].云南农业大学学报:2002,15(4):345-348.
    [19]吴信生,陈国宏,陈宽维,等,中国部分地方鸡种肌肉组织学特点及其肉品质的比较研究[J].江苏农学院学报,1998,19(4):52-58.
    [20]王亚鸣,等,江西玉山猪肌肉组织学特性与肉质关系[J].江西农业大学学报,1994,16(3): 284-287.
    [21]沈元新,等,金华猪及其杂种肌肉组织学特性与肉质关系[J].浙江农业大学学报,1984,10(3):265-271.
    [22]李同树,等,鸡肉嫩度评定方法及其指标间的相关分析[J].畜牧兽医学报,2004,35(2),171-177.
    [23]Dildey DD,Aberle ED,Forrest JC,Alliston CW,Judge MD,Investigation of trypan blue dye for determination of circulatory capacitv of skeletal muscle[J].Anim.Sci,1970,31:681-688.
    [24]Michael A,Rudnicki,Patrick N.J,Schnegelsberg,Ronald H.Stead,et al,MyoD or Myf-5is required for the formation of Skeletal muscle[J].Cell,1993,vol.75:1351-1359.
    [25]姜运良,等,肌肉生成的分子生物学研究进展[J].农业生物技术学报,1999.7(2):201-204.
    [26]Naidu PS,Ludolph DC,To RQ,et al,Myogenin and MEF2 function synergistically to activate the MRF4 promoter during myogenesis[J].Molecular and Cellular Biology,1995,15(5):2707-2718.
    [27]王蕾,赵玉莲,安利国,等,脊椎动物骨骼肌细胞发生的分子机制[J].海洋科学,2004.28(12):54-58.
    [28]MegeneyLA,Rudnicki MA,Determination versus differentiation and the MyoD family of transcription factors[J].Biochem Cell Biol,1995,73:723-732.
    [29]Hasty P,Bradley A,Morris JH,et al,Muscle deficiency and neonatal death in mice with a targeted mutation in the myogenin gene[J].Nature,1993,364:501-506.
    [30]Weintraub H,Davis R,Tapscott S,et al,The MyoD gene family:nodal point during specification of the muscle cell lineage[J].Science,1991,231:761-766.
    [31]Neville CM,Schmidt M,Schmidt J,Response of myogenic determination factors to cessation and resumption of electrical activity in skeletal muscle:a possible role for myogenin in denervation supersensitivity[J].Cell Mol Neurobio,1992,12(6):511-527.
    [32]Tepas MFW,Soumillion A,Rettenberger G,et al,Characterization of the porcine myogenin gene locus and association between polymorphism and growth traits[J].Anim Genet,1996,27:117.
    [33]Ernst CW,Mendez EA,Robic A,et al,Myogenin(MYOG)physically maps to porcine chromosome 9q2.1-q2.6[J].Anim Sci,1998,76(1):328.
    [34]Beever J E,Fisher S R,Guerin G,et al,Mpping of eight human chromosome 1 orthologs to cattle chromosomes 3 and 16[J].Mammalian Genome,1997,8(7):533-536.
    [35]Malik.S,Huang.CF,Schmidt.J,The role of the CANNTG promoter element(E box)and the myocyte-enhancer-binding-factor-2(MEF-2)site in the transcriptional regulation of the chick myogening ene[J].Eur.J.Biochem,1995,230:88-96.
    [36]Anthony CSJ,Benfield PA,Fairman R,et al,Molecular characterization of helix-loop-helix peptides[J].Science,1992,255:979.
    [37]Tepas M F,Verburg F J,Gerrtsen C L,et al,Messenger ribonucleic acid expression of the MyoD gene family in muscle tissue at slaughter in relation to selection for porcine growth rate[J].Anim Sci,2000,78(1):69-77.
    [38]储明星,何远清,王金玉,等,绵羊肌细胞生成素基因外显子1的PCR-SSCP分析[J].农业生物技术学报,2005,13(1):77-80.
    [39]王启贵.通过侯选基因法对影响鸡肉质性状基因的研究[D].东北农业大学,2001.5
    [40]Mcpherron A C,et al,Regulation of skeletal muscle mass in mice by a new TGF-βsuperfamily member[J].Nature,1997,387:83-90.
    [41]Mcpherron A C,Lee S J,Double muscling in cattle due to mutation in the myostation gene[J].Proc Natl Acad Sci USA,1997,94(23),12457-12461.
    [42]顾志良,朱大海,等,鸡Myostatin基因单核苷酸多态性与骨骼肌和脂肪生长的关系[J].中国科学(C辑),2003,33(3):273-280.
    [43]Croall D E,DeMartino G N,Calcium-activated neutral protease(calpain)system:structure,function,and regulation[J].Physiological Reviews 1991.71:813-847.
    [44]Barnoy S,T Glaser,N S Kosomer,The role of calpaslatin(the specific Calpain inhibitor)in myoblast differentiation and fusinn[J].Biochemical Biophysical Research communication,1996,220:933-938.
    [45]Ernst Cw,Robic A,Yerle M,et al,Mapping of calpastatin and three microsatelliles to porcine chromosome 2q2.1—q2.4[J].Animal Genties,1998,29:212-215.
    [46]陈旭,张元跃,分子标记及其在标记辅助选择中的应用[J].畜牧与饲料科学,2006年第4期:29-32.
    [47]刘莉,陈国宏,李慧芳,等,微卫星DNA及其在家禽遗传育种中的应用[J].动物科学与动物医学,2000,17(6):19-21.
    [48]葛金梅,张忠英,等,SNP的研究现状及在MMPs研究中的应用[J].World Chin J Digestol 2005,15:13(17):2128-2137.
    [49]陆利华,张家洵,朱一川,变性梯度凝胶电泳装置及其在DNA突变检测中的初步应用[J].生物技术通讯,2001,12(3):208-210.
    [50]陈汉奎,冯忻,温度梯度凝胶电泳技术及应用[J].生物化学与生物物理进展,1999,26(3):297-299.
    [51]廖林川,孟海英,侯一平,等,用温度调控高效液相色谱探索基因组单核苷酸多态性的方法研究[J].中华医学遗传学杂志,2000,17(3):204-207.
    [52]严春光,陈钧辉,王新昌,基因芯片及其应用[J].中国生化药物杂志,2006,27(5):321-323.
    [53]孙凯,王秀荣,刘丽玲,等,基因芯片技术及其应用[J].东北农业大学学报,2006,37(3):409-412.
    [54]戚豫,黄丽英,DNA单链构象多态性的原理[J].北京医科大学学报,Vol.29 No.11997:81-82.
    [55]张宇红,等,PCR-SSCP分析技术的研究进展及应用前景[J].中国优生与遗传杂志,2002,10(5):126-127.
    [56]王启贵,李宁,邓学梅,连正兴,李辉,吴常信,鸡细胞外脂肪酸结合蛋白基因单核苷酸多态性与腹脂性状的相关研究[J].中国科学C辑,2001,31(1):266-270.
    [57]孟和,王桂华,王启贵,赵建国,顾志良,王宇祥,李辉,鸡PPAR基因单核苷酸多态与脂肪性状相关的研究[J].遗传学报,2002,29(2):119-123.
    [58]赵建国,李辉,孟和,顾志良,王启贵,王宇祥,解偶联蛋白基因(UCP)作为影响鸡脂肪性状候选基因的研究[J].遗传学报,2002,29(6):481-486.
    [59]顾志良,朱大海,李宁,等,鸡Myostatin基因单核苷酸多态性与骨骼肌和脂肪生长的关系[J].中国科学C辑,2003,33(3):273-280.
    [60]杨永升,邓学梅,李宁,等,MCIR是控制鸡黑色素形成的候选主效基因[J].生物化学与生物物理进展,2004,31(6):500-505.
    [61]邓学梅,李俊英,李宁,等,基于F-2群体的鸡重要生长性状遗传分析[J].遗传学报,2001,28(9):801-807.
    [62]李加琪,刘小红,等,长蓝猪QTL定位资源群建立及其遗传分析[J].遗传学报,2004,31(12):1361-1368.
    [63]刘永成,固始鸡选育研究及其开发利用[J].农业科技通讯,2000,3:19-20.
    [64]李建颖,孙东东,王永康,安卡鸡与红宝商品代肉鸡饲养对比试验[J].中国家禽,1996年第6期:15.
    [65]林万华.中国二花脸猪肌肉组织学特性和猪肌细胞生成素(MyoG)及心脏脂肪酸结合蛋白(H-FABP)基因作为肉质侯选基因的研究[D].南昌:江西农业大学硕士学位论文,2001.
    [66]周金星,毕亚玲,高登慧,肌肉组织学结构及其与肉品品质的关系[J].山地农业生物学报,2004,23(5):438-441.
    [67]黄秀清,黄建斌,翁志铿,等,5种不同类型地方鸡种肉用性能及肉质的研究[J].福建农业学报,2000,15(1):35-39.
    [68]Swatland H J,A note on the growth of connective tissues binding turkey muscle fibers together.Can.Inst.Food Sci Technol[J].1990,23:239-241.
    [69]谭丽勤,欧茶海,李润泉,等,60-90日龄腾冲雪鸡肌纤维特性研究[J].云南农业大学学报。2000,15(4):345-348.
    [70]吴信生,陈国宏,陈宽维,等,中国部分地方鸡种肌肉组织学特点及其肉品质的比较研究 [J].江苏农学院学报,1998,19(4):52-58.
    [71]岳永生,陈鑫磊,牛庆恕,马鸿胜,王振勇,四种不同类型鸡肌肉品质的比较研究[J].中国畜牧杂志,1996,32(2):30-32.
    [72]李同树,刘风民,尹逊河,等,鸡肉嫩度评定方法及其指标间的相关分析[J].畜牧兽医学报,2004,35(2),171-177.
    [73]杨笃宝,王振勇,吴玉泉,等,AA鸡肌肉组织学特性的研究[J].山东畜牧兽医,2000,(3):4-6.
    [74]Picard B,Lefaucheur L,Berri C,et al,Muscle fiber ontogenesis in farm animal species[J].Reprod Nutr,Dev,2002(42):415-431.
    [75]Remignon H,Gardahaut M F,Marche G,et al,Selection for rapid growth increases the number and the size of muscles fibres without changing their typing in chickens[J].Muscle Res Cell Motil,1995,(16):95-102.
    [76]Grondret F,Towards understanding skeletal muscle regeneration[J].Pathol Res Pract,1991,(187):1-22.
    [77]Warriss P D.Meat Science[M].CABI publishing,1999.58.
    [78]陈宽维,李慧芳,张学余,等,肉鸡肌纤维与肉质关系研究[J].中国畜牧杂志,2002.38(6):6-7.
    [79]施启顺,柳小春,吴晓林,杜洛克、长白、大约克猪生长和肉用性状的杂交参数估计[J].中国农业科学,1998,31(4):65-69.
    [80]刘冰,杨君,杨宁,不同品种鸡肌纤维的发育规律及杂种优势研究[J].畜牧兽医学报,2006,37(8):829-833.
    [81]马鸿胜,牛庆恕,杨笃宝,等,鸡肉品质及其相关因素的研究[J].山东农业大学学报,1997,28(1):13-20.
    [82]Chen H,Leibenguth F,Restriction endonuclease analysis of mitochondrial DNA of three farm animal species,cattle,sheep and goats[J].Comp Biochem Physiol,1995,Ⅲ:643-649.
    [83]AM Soumillion,et al,Gentlc variation in the porcine myogenin gene locus[J].Mammlian Genome,1997,(8):564-568.
    [84]萨姆布鲁克J,弗里奇EF,曼尼阿蒂斯T,分子克隆实验指南[M].第3版.北京:科学出版社,1998:465-469.
    [85]李宁主编.动物遗传学[M].第2版.北京:中国农业出版社,2003:18.
    [86]姜运良,李宁,吴常信,肌肉生成的分子生物学研究进展[J].农业生物技术学报,1999,7(2):201-203.
    [87]Rudnicki MA,Jaenisch R,The MyoD family of transcription factors and skeletal myogenesis[J].Bioessays,1995,17:203-209.
    [88]Megeney LA,Rudnicki MA,Determination versus differentiation and the MyoD family of transcription factors[J].Biochem Cell Biol,1995,73:723-732.
    [89]Hasty P,Bradley A,Morris JH,et al,Muscle deficiency and neonatal death in mice with a targeted mutation in the myogenin gene[J].Nature,1993,364:501-506.
    [90]Weinwaub H,Davis R,Tapscott S,et al,The MyoD gene family:nodal point during specification of the muscle cell line age[J].Science,1991,251:761-766.
    [91]Eftimie R,Brenner H R,Buonanno A,Myogenin and MyoD join a family of skeletal muscle genes regulated by electrical activity[J].Proc Natl Acad Sci USA,1991,88:1349-1353.
    [92]Pierre J,Bessereau JL,Huchet M,et al,Two adjacent MyoD binding sites regulate expression of the acetylcholine receptor alpha subunit gene[J].Nature,1990,345:353-355.
    [93]李景芬.七个猪种MyoD基因家族的三个基因外显子的SNPs分析[D],东北农业大学硕士学位论文,2003.6.
    [94]Zuzanna Nowak,Aleksandra Hermanowicz,et al,Conformation polymorphism in myogenin gene in pigs[J].Animal Science Papers and Reports.Institute of Genetics and Animal Breeding,Jastrzebiec,Poland.vol.21(2003)no.4,277-282.
    [95]Joanna Wyszyfiska-Koko,Jolanta Kuryl,A novel polymorphism in exon 1 of the porcine myogenin gene[J].Appl Genet 46(4),2005,pp.399-402.
    [96]Joanna Wyszynska-Koko,Mariusz Pierzchala,et al,Polymorphisms in coding and regulatory regions of the porcine MYF6 and MYOG genes and expression of the MYF6 gene in m.longissimus dorsi versus productive traits in pigs[J].Appl Genet 47(2),2006,pp.131-138.
    [97]邓凤.羊肌细胞生成素(MyoG)基因的克隆及其多态性的分析[D].内蒙古农业大学硕士学位论文,2006.5
    [98]Ann Soumillion,Jo H.F.Erkens,Johannes A.Lenstra,et al,Genetic variation in the porcine myogenin gene locus[J].Mature.Genome,1997,8:564-568.
    [99]Anthony CSJ,Benfield PA,Fairman R,et al.Molecular characterization of helix-loop-helix peptides[J].Science,1992,255:979.
    [100]Tepas M F W,Soumillion A,Herders F L,et al,Influences of myogenin genotypes on birth weight,growth rate,carcass weight,backfat thickness,and lean weight of pigs[J].Anim Sci,1999,77:2352-2356.
    [101]Tepas M F,Verburg F J,Gerritsen C L,et al.Messenger ribonucleic acid expression of the MyoD gene family in muscle tissue at slaughter in relation to selection for porcine growth rate[J].Anim Sci.2000,78(1):69-77.
    [102]林万华,黄路生,艾华水,等,MyoG基因型对二花脸猪早期生长性状及肌肉组织学特性的影响[J].农业生物技术学报2002,10(4):367-372.
    [103]王启贵.通过侯选基因法对影响鸡肉质性状基因的研究[D].东北农业大学硕士学位论文,2001.5
    [104]Wright WE,Sassoon D A and Lin V K.Myogenin,a factor regulating myogenesis,has a domain homologous to MyoD[J].Cell,1989,56:607-617.
    [105]Olson E N,Brennan T J,Chakraborty T,Cheng T C,Cserjesi P,Edmondson D,James G and Li L,Molecular control of myogenesis:antagnonism between growth and differentiation [J].Molecular and Cellular Biochemistry,1991,104:7-13.
    [106]Weintraub H,Davis R,Tapscott S,Thayer M,Krause M,Benezra R,Blackwell T K,Turner D,Rupp R,Hollenberg SZhuang Y and Lassar A,The MyoD gene family:Nodal point during specification of the muscle cell lineage[J].Science,1991,251(4995):761-766.
    [107]Neville C M,Schmidt M and Schmidt J,Response of myogenic determination factors to cessation and resumption of electrical activity in skeletal muscle:a possible role for myogenin in denervation super sensitivity[J].Cellular and Molecular Neurobiology,1992,12:511-527.
    [108]Naidu P S,Ludolph D C,To R Q,Hinterberger T J and Konieczny S F,Myogenin and MEF2function synergistically to activate the MRF4 promoter during myogenesis[J].Molecular and Cellular Biology,1995,15:2707-2718.
    [109]Te Pas M F W,Soumillion A,Harders F L,Verburg F J.Influences of m yogenin genotypes on birth weight,growth rate,carcass weight,backfat thickness,and lean weight of pigs[J].Anim Sci,1999,77:2352-2356.
    [110]Cieslak D,Kapelanski W,Blicharski T and Pierzchala M,Restriction fragment length polymorphisms in myogenin and myf-3 genes and their influence on lean meat content in pigs[J].Journal of Animal Breeding and Genetics,2000,117:43-55.
    [111]Dwyer C M,Fletcher J M,Sticldand N C,Muscle cellularity and postnatal growth in the pig[J].Anita Sci,1993,71(12):3339-3343.