中华真地鳖(Eupolyphaga sinensis)抗肿瘤蛋白分离纯化及其体外抗转移活性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
中华真地鳖(Eupolyphaga sinensis Walker),俗称土鳖、土元等,属于蜚蠊目(Blattodea),鳖蠊科(Corydiidae),地鳖亚科(Polyphaginae),真地鳖属(Eupolyphaga)昆虫,目前已实现大规模人工养殖。中华真地鳖作为一种传统中药,在我国具有悠久的药用历史。现代研究表明,中华真地鳖具有溶解血栓、抗凝血、抗肿瘤、促进骨折愈合、调节血脂等十分广泛的药理作用。对于中华真地鳖的研究,国外学者很少涉及,其研究近乎空白。近年来,国内学者研究表明中华真地鳖蛋白提取物能够抑制血管生成和肿瘤生长。可见,蛋白组分被认为是中华真地鳖的抗肿瘤有效组分。但是,到目前为止,尚未见中华真地鳖抗肿瘤蛋白成分的报导。
     我们利用现代生化分离技术,从中华真地鳖新鲜雌虫体中分离纯化得到一分子质量约为72kDa的抗肿瘤蛋白,命名为EPS72。该蛋白对人肝癌细胞株Bel-7402、肺癌细胞株A549等多种人癌细胞株表现出较强的增殖抑制作用。以A549细胞作为体外肿瘤模型,研究了EPS72对细胞形态、增殖、凋亡、粘附、伸展、迁移以及侵袭的影响,发现EPS72具有体外抗肿瘤转移活性,并初步探讨了EPS72体外抗肿瘤转移可能的分子机制。期望为EPS72进一步开发利用提供一定的线索,同时为抗肿瘤蛋白类药物的研究提供一些新的思路。本课题的主要研究内容及结果有以下几个方面:
     1中华真地鳖抗肿瘤蛋白的提取、纯化及鉴定
     首先采用硫酸铵分级沉淀(50%-80%饱和度)、超滤(截留分子质量为10kDa)和冷冻干燥技术获得蛋白粗提物(组分Ⅰ)。由组分Ⅰ得到抗肿瘤活性蛋白的纯化方案由捕获、中度纯化和精制三个步骤组成:(1)捕获:分别采用CM-Sepharose FF阳离子交换色谱和DEAE-Sepharose FF阴离子交换色谱对抗肿瘤有效活性组分进行捕获;(2)中度纯化:分别采用Q-Sepharose HP阴离子交换色谱和Butyl Sepharose HP疏水色谱进行中度纯化;(3)精制:采用Superdex75凝胶过滤色谱进行精制。整个纯化过程中采用280nm检测蛋白质洗脱情况,分别收集各洗脱峰,采用MTT法追踪抗肿瘤活性组分,最后得到的活性组分进行冷冻干燥即为纯化所得抗肿瘤蛋白(组分Ⅵ)。每1kg新鲜活虫材料大约可得到电泳纯的抗肿瘤蛋白56mg,蛋白得率0.0056%。
     活性组分Ⅵ在SDS-PAGE上显示为单一条带,表观分子质量约为72kDa,表明其达到了电泳纯;MALDI-TOF质谱结果表明其分子质量为71.737kDa,与SDS-PAGE结果基本吻合,说明纯化得到的抗肿瘤蛋白为单链蛋白,分子量约为72kDa,故命名为EPS72。
     2EPS72体外抗肿瘤活性研究
     MTT存活分析表明EPS72对肝癌Bel-7402细胞、肺癌A549细胞等多种人癌细胞株表现出较强的增殖抑制作用。接着以A549细胞作为体外肿瘤模型,研究了EPS72对细胞形态、凋亡、粘附、伸展、迁移以及侵袭的影响。相差显微镜下细胞形态学研究、台盼蓝染色计数、AO/EB染色以及JC-1检测细胞膜电位(△Ψm)结果表明,EPS72作用早期可诱导已贴壁生长的肿瘤细胞脱粘附,但是刚脱粘附细胞为胞膜完整的活细胞,撤药后能正常生长,而脱粘附细胞持续受药物作用后则会进一步诱导细胞凋亡性死亡。可见,EPS72诱导肿瘤细胞脱粘附的作用是直接的,而诱导细胞凋亡的作用是间接的。细胞粘附实验进一步表明,EPS72能够显著抑制肿瘤细胞向细胞外基质(ECM)蛋白成分纤粘连蛋白(fibronectin,FN)和Ⅳ型胶原蛋白(collagen Ⅳ,Col Ⅳ)的粘附,但对细胞向非ECM成分多聚赖氨酸(poly-L-lysine, PL)的粘附却没有影响。癌细胞体外伸展实验结果表明,EPS72能够抑制肿瘤细胞在ECM表面上伸展。创伤愈合实验表明EPS72能够阻止肿瘤细胞向创伤面迁移。Transwell实验进一步证明EPS72能够影响肿瘤细胞向Matrigel的侵袭能力。可见,EPS72通过影响肿瘤细胞的粘附、伸展、转移、侵袭及增殖、存活能力发挥体外抗肿瘤作用,EPS72具有体外抗肿瘤转移活性。
     3EPS72体外抗肿瘤作用的分子机制
     为了进一步探讨EPS72体外抗肿瘤转移的分子机制,利用荧光显微镜采用免疫荧光法研究了EPS72对细胞肌动蛋白骨架成分F-actin的影响;采用流式细胞仪和Western blotting技术研究了EPS72作用后肿瘤细胞β1-整合素和整合素关联蛋白激酶(ILK)表达情况。结果表明,EPS72作用后F-actin的聚合受到抑制,肿瘤细胞p1-整合素和ILK的表达受到抑制,推测EPS72可能通过直接靶向肿瘤细胞表面的β1-整合素,进而影响整合素—细胞骨架信号通路发挥体外抗肿瘤转移作用。
     本研究取得的成果和结论主要有:
     (1)采用现代生化分离技术,首次从中华真地鳖新鲜雌虫体中分离纯化得到一种分子量约为72kDa的抗肿瘤蛋白,命名为EPS72。该分离纯化工艺条件温和,操作简单,并易于规模化放大生产。
     (2)体外研究表明,EPS72对人肝癌Bel-7402细胞、肺癌A549细胞等人癌细胞株表现出较强的胞毒活性,而对非癌细胞株MRC5的细胞毒性较低,显示该活性蛋白具有较强的广谱抗肿瘤活性,且对肿瘤细胞显示出良好的选择性。
     (3)确定了EPS72通过影响肿瘤细胞的粘附、伸展、转移、侵袭及增殖、存活能力发挥体外抗肿瘤作用,EPS72具有体外抗肿瘤转移能力。
     (4)初步推测EPS72可能通过直接靶向肿瘤细胞表面的β1-整合素,进而影响整合素—细胞骨架信号通路发挥体外抗肿瘤转移作用。
Eupolyphaga sinensis Walker (Blattaria:Corydiidae), popularly known as'Tubie', is a well-known edible and medicinal insect in China and now has been artificially propagated on a large scale. In Chinese folk and traditional medicine, it is widely used as a natural healthy product to prevent and treat many diseases, including bone injury, cancer and immune-related diseases, etc. In recent years, it has been reported that E. sinensis has antithrombotic, antitumor, immune-protective and antioxidant activities. The antitumor and thrombolytic activities are the most attractive among these bioactivities. Previous studies on the antitumor activities showed that the crude protein extracts from E. sinensis could inhibit angiogenesis and tumor growth in vivo. However, the components responsible for its activity have not been addressed, and no purified active protein fraction has been obtained from this species.
     In this study, we purified a72kDa anticancer protein, designated as EPS72, from the fresh female E. sinensis using a line of purification techniques. EPS72showed potent cytotoxicity against the human liver cancer Bel-7402, lung cancer A549cell lines, etc. To gain insight into the potential antitcancer mechanism of this protein, we further investigated its effects on cellular morphology, proliferation, apoptosis, adhesion, spreading, migration and invasion of A549cells. We found that EPS72showed an antimetastatic activity in vitro. The probable molecular mechanism underlining its effects on A549cancer cells was also studied. All the results of the anticancer protein were summarized as follows:
     1Isolation, purification and identification of the E. sinensis anticancer protein
     The crude extracts (Fraction I) were obtained by ammonium sulfate precipitation (50%~80%saturation), ultra-filtration (10kDa cut-off) and lyophilization. The anticancer protein fraction(s) was/were purified using three phases Capture, Intermediate Purification and Polishing:(1) Capture:CM-Sepharose FF cation-exchange chromatography (CIEX) and DEAE-Sepharose FF anion-exchange chromatography (AIEX) were used;(2) Intermediate Purification:Q-Sepharose HP anion-exchange chromatography (AIEX) and Butyl Sepharose HP hydrophobic chromatography (HIC) were used;(3) Polishing:Superdex75gel filtration chromatography (GF) was used. During the separation and purification process, the protein elution profile was monitored at280nm and MTT assay was performed to monitor the cytotoxicity of each elution fraction. The final active fraction (Fraction Ⅵ) was lyophilized to obtain a purified anticancer protein. The recovery of the purified anticancer protein was about0.0056%.
     The Fraction VI appeared as a single band on SDS-PAGE, with an apparent molecular mass of about72kDa. Its accurate molecular mass was71.737kDa as determined by MALDI-TOF mass spectrometry analysis. The results suggested that after performing several steps of purification, a pure72-kDa single-stranded protein with anticancer activity in vitro, named EPS72, was obtained.
     2Antitumor activities in vitro of EPS72
     The results of MTT assay indicated that EPS72displayed potent cytotoxicity against the human liver cancer Bel-7402, lung cancer A549cell lines, etc. We further investigated its effects on cellular morphology, proliferation, apoptosis, adhesion, spreading, migration and invasion using the human lung cancer A549cell line as a tumor model in vitro. The results of microscopic morphological observation, re-culture when withdrawn EPS72, trypan blue staining, JC-1staining to detect mitochondrial membrane potential (ΔΨm) and adridine orange/ethidium bromide(AO/EB) staining of A549cells indicated that EPS72could induce cell detachment in the early stage, which further led to cell apoptosis in the late stage. But the initially detached cell clusters induced by EPS72remained viable, suggesting that EPS72had a direct role on cell adhesion and indirect role on cell apoptosis.5μg/ml of EPS72remarkably inhibited A549cells attachment to fibronectin (FN) and collagen IV (Col IV), but could not inhibit A549cells adhesion to poly-L-lysine (PL) in a cell adhesion assay, could affect spreading ability of A549cells on ECM gel in a time-dependent mode in an spreading assay in vitro, and could inhibit A549cells migration into the wounded areas in a wound healing assay. In a Boyden chamber assay, EPS72was found to inhibit the invasive activities of A549cancer cells in a dose-dependent mode. These results suggested that EPS72exerted its antitumor activities in vitro by affecting adhesion, spreading, migration, invasion, proliferation and survival of cancer cells and EPS72has an antimetastatic activity in vitro.
     3Possible molecular mechanism underlining its antitumor effects in vitro of EPS72
     In order to further investigate the possible molecular mechanism underlining the antimetastatic effects in vitro of EPS72, we examined the effect of EPS72on F-actin with an Actin-tracker Green fluorescent probe under a fluorescence microscope and performed flow cytometry and Western blot analysis to detect the expression of β1-integrin and/or integrin-linked kinase (ILK) in A549cells. The results indicated that EPS72could induce depolymerization of F-actin and down-regulate the expression of β1-integrin and ILK in A549cells, suggesting that EPS72exerted the antimetastatic effects in vitro probably by directly targeting β1-integrin, then further influencing the integrin-cytoskeleton signaling pathway.
     Major achievements and conclusions of the article are as follows:
     (1) We purified a72-kDa anticancer protein (EPS72) from E. sinensis by using ammonium-sulfate-precipitation, ultra-filtration, CIEX-AIEX-HIC-GF isolation and purification protocol, which is mild, easily operational and easy-to-scaling-up. The purified protein, to our knowledge, is the first purified anticancer protein from this species.
     (2) In an in vitro study, EPS72was found to display potent cytotoxicity against the human liver cancer Bel-7402, lung cancer A549cell lines, etc., but the normal cell line human fibroblast cell MRC5was not very sensitive to the treatment of EPS72, suggesting EPS72exhibited relatively broad antitumor activities in vitro and showed some specificity to human cancer cells.
     (3) We found that EPS72exerted its antitumor effects in vitro by affecting adhesion, spreading, migration, invasion, proliferation and apoptosis of cancer cells, and EPS72has an antimetastatic activity in vitro.
     (4) We tentativly concluded that EPS72exerted the antimetastatic effects in vitro probably by directly targeting β1-integrin, then further influencing the integrin-cytoskeleton signaling pathway.
引文
1. American Cancer Society. Global Cancer Facts and Figures 2007. American Cancer Society, Atlanta.2007.
    2.丁健.抗肿瘤药物的研究新进展[J].中国薪药杂志.2000,9(3):149-154.
    3. Du W. Towards new anticancer drugs:a decade of advances in synthesis of camptothecins and related alkaloids[J]. Tetrahedron.2003,59:8649-8687.
    4.尚海,潘莉,杨澍,等.微管蛋白抑制剂的研究进展[J].药学学报.2010,45(9):1078-1088.
    5.任萱,林莉萍,丁健.Combretastatin A4的抗肿瘤作用研究进展[J].中国新药杂志.2007,16(17):1336-1340.
    6.蔡于琛,邹永,冼励坚.小分子血管阻断剂抗肿瘤研究进展[J].药学学报.2010,45:283-288.
    7.王超磊,孙炳峰,姚和权,等.植物来源的抗肿瘤药物研究进展[J].药学进展.2011,35(5):193-202.
    8.张靖,杨柳,高文远.天然抗肿瘤药物研究进展[J].中草药.2010,41(6):1014-1020.
    9.廖日强,吴一龙.培美曲塞在肺癌治疗中的新进展[J].中国处方药.2010,(3):46-49.
    10. Sumi M, Tauchi T, Sashida G, Nakajima A, Gotoh A, et al. A G-quadruple-interactive agent, telomestatin(SOT-095), induces telomere shortening with apoptnsis and enhances ehemosensitivity in acute myeloid leukemia[J]. Int J Oncol.2004,24(6):1481-1487.
    11.林茂芳,孟小莉.高三尖杉酯碱诱导白血病细胞凋亡与人端粒酶逆转录酶及端粒酶的关系[J].上海医学.2003,26(6):285-288.
    12.钟梁,刘北忠,郝坡,等.苦参碱诱导肺腺癌A549细胞凋亡及对人端粒酶逆转录酶表达的影响[J].中草药.2008,39(10):1507-1510.
    13.侯旭奔,方浩,杜金童,等.细胞周期蛋白依赖性激酶抑制剂的临床研究进展[J].中国新药杂志.2011,20(14):1280-1286.
    14. Kummar S, Gutierrez M, Doroshow JH, Murgo AJ. Drug development in oncology: classical cytotoxics and molecularly targeted agents[J]. Br J Clin Pharmacol.2006, 62(1):15-26.
    15. Aggarwal BB, Sethi G, Baladandayuthapani V, Krishnan S, Shishodia S. Targeting cell signaling pathways for drag discovery:an old lock needs a new key[J]. J Cell Biochem. 2007,102(3):580-592.
    16.陆鹏,李增新.靶点抗肿瘤药物研究进展[J].现代医药卫生.2010,26(5):732-734
    17. Ma WW, Adjei AA. Novel Agents on the Horizon for Cancer Therapy [J]. CA Cancer J Clin.2009,59(2):111-137.
    18. Berrier AL, Yamada KM. Cell-matrix adhesion. J. Cell Physiol.2007,213:565-573.
    19. Legate KR, Montanez E, Kudlacek O, Fassler R. ILK, PINCH and parvin:the tIPP of integrin signalling[J]. Nature Rev. Mol. Cell Biol.2006,7:20-31.
    20. Zoller M. Tetraspanins:push and pull in suppressing and promoting metastasis [J]. Nature Rev. Cancer.2009,9:40-55.
    21. Desgrosellier JS, Cheresh DA. Integrins in cancer biological implications and therapeutic opportunities[J]. Nat. Rev. Cancer.2010,10(1):9-22.
    22. Pytela R, Pierschbacher MD, Ruoslahti E. Identification and isolation of a 140 kd cell surface glycoprotein with properties expected of a fibronectin receptor[J]. Cell.1985,40: 191-198.
    23. Harburger DS, Calderwood DA. Integrin signalling at a glance[J]. J Cell Sci.2009,122: 159-163.
    24. Berman AE, Kozlova NI, Morozevich GE. Integrins as a Potential Target for Targeted Anticancer Therapy [J]. Biochemistry (Moscow) Supplement Series B:Biomedical Chemistry.2012,6:205-210.
    25. Eble JA, Kuhn K. Integrin-Ligand Interaction[M]. NewYork:Chapman and Hall.1997: 1-40.
    26. Arnaout MA, Mahalingam B, Xiong JP. Integrin structure, allostery, and bidirectional signaling[J]. Annu Rev Cell Dev Biol.2005,21:381-410.
    27. Berman AE, Kozlova NI, Morozevich GE. Integrins:structure and signaling[J]. Biochemistry (Mosc).2003,68(12):1284-1299.
    28. Guo W, Giancotti FG. Integrin signalling during tumour progression [J]. Nat Rev Mol Cell Biol.2004,5(10):816-826.
    29. Meyer T, Hart IR. Mechanisms of tumour metastasis[J]. Eur. J. Cancer.1998,34(2): 214-221.
    30. Munshi HG, Stack MS. Reciprocal interactions between adhesion receptor signaling and MMP regulation[J]. Cancer Metastasis Rev.2006,25(1):45-56.
    31. Pankov R, Cukierman E, Clark K, Matsumoto K, Hahn C, et al. Specific betal integrin site selectively regulates Akt/protein kinase B signaling via local activation of protein phosphatase 2A[J]. J Biol Chem.2003,278:18671-18681.
    32. Stupack DG, Puente XS, Butsaboualoy S, Storgard CM, Cheresh DA. Apoptosis of adherent cells by recruitment of caspase-8 to unligated integrins[J]. J Cell Biol.2001,155: 459-470.
    33. Kim S, Bakre M, Yin H, Varner J. Inhibition of endothelial cell survival and angiogenesis by protein kinase A[J]. J Clin Invest.2002,110:933-941.
    34. Ren X-D, Kiosses WB, Schwartz MA. Regulation of the small GTPbinding protein Rho by cell adhesion and the cytoskeleton[J]. EMBO J.1999,18:578-585.
    35. Assoian RK, Schwartz MA. Coordinate signaling by integrins and receptor tyrosine kinases in the regulation of G1 phase cell-cycle progression [J]. Curr Opin Genet Dev. 2001,11:48-53.
    36. Bakre MM, Zhu Y, Yin H, Burton DW, Terkeltaub R, et al. Parathyroid hormone-related peptide is a naturally occurring, protein kinase A-dependent angiogenesis inhibitor[J]. Nat Med.2001,8:995-1003.
    37. Meredith Jr. JE, Fazeli B, Schwartz MA. The extracellular matrix as a cell survival factor[J]. Mol Biol Cell.1993,4:953-961.
    38. Kim S, Harris M, Varner JA. Regulation of integrin α v β 3-mediated endothelial cell migration and angiogenesis by integrin α 5 β 1 and protein kinase A[J].J Biol Chem. 2000,275:33920-33928.
    39. Carmeliet P, Jain RK. Angiogenesis in cancer and other diseases[J]. Nature.2000, 407(6801):249-257.
    40. Asahara T, Murohara T, Sullivan A, Silver M, van der Zee R, et al.Isolation of putative progenitor endothelial cells for angiogenesis[J]. Science.1997,275(5302):964-967.
    41. Francis SE, Goh KL, Hodivala-Dilke K, Bader BL, Stark M, et al. Central roles of alpha5betal integrin and fibronectin in vascular development in mouse embryos and embryoid bodies[J]. Arterioscler Thromb Vasc Biol.2002,22:927-933.
    42. Taverna D, Hynes RO. Reduced blood vessel formation and tumor growth in alpha 5-integrin-negative teratocarcinomas and embryoid bodies[J]. Cancer Res.2001,61: 5255-5261.
    43. Yang JT, Rayburn H, Hynes RO. Cell adhesion events mediated by alpha 4 integrins are essential in placental and cardiac development[J]. Development.1995,121:549-560.
    44. Bader BL, Rayburn H, Crowley D, Hynes RO. Extensive vasculogenesis, angiogenesis, and organogenesis precede lethality in mice lacking all alpha v integrins[J].Cell.1998,95: 507-519.
    45.Hodivala-Dilke KM, Mchugh KP, Tsakiris DA, Rayburn H, Crowley D, et al. β 3-Integrin-deficient mice are a model for Glanzmann thrombasthenia showing placental defects and reduced survival[J]. J Clin Invest.1999,103:229-238.
    46. Huang X, Griffiths M, Wu J, Farese Jr. RV, Sheppard D. Normal development, wound healing, and adenovirus susceptibility in beta5-deficient mice[J]. Mol Cell Biol.2000,20: 755-759.
    47. Reynolds LE, Wyder L, Lively JC, Taverna D, Robinson SD, et al.Enhanced pathological angiogenesis in mice lacking β3 and β5 integrins[J]. Nat Med.2002,8: 229-238.
    48. Brooks PC, Montgomery AM, Rosenfeld M, Reisfeld RA, Hu T, et al. Integrin alpha v beta 3 antagonists promote tumor regression by inducing apoptosis of angiogenic blood vessels[J]. Cell.1994,79:1157-1164.
    49. Cheresh DA, Stupack DG. Integrin-mediated death:an explanation of the integrin-knockout phenotype?[J]. Nat Med.2002,8:193-194.
    50. Zhong J, Eliceiri B, Stupack D, Penta K, Sakamoto G, et al. Neovascularization of ischemic tissues by gene delivery of the extracellular matrix protein Del-1 [J].J Clin Inves. 2003,112:30-41
    51. Friedlander M, Brooks PC, Shaffer RW, Kincaid CM, Varner JA, et al. Definition of two angiogenic pathways by distinct alpha v integrins[J]. Science.1995,270:1500-1502.
    52. Senger DR, Claffey KP, Benes JE, Perruzzi CA, Sergiou AP, et al. Angiogenesis promoted by vascular endothelial growth factor:regulation through alphalbetal and alpha2betal integrins[J]. Proc Natl Acad Sci USA.1997,94:13612-13617.
    53. Felding-Habermann B, Fransvea E, O'toole TE, Manzuk L, Faha B, et al. Involvement of tumor cell integrin alpha v beta 3 in hematogenous metastasis of human melanoma cells[J]. Clin Exp Metast.2002,19:427-436.
    54. Gehlsen KR, Davis GE, Sriramarao P. Integrin expression in human melanoma cells with differing invasive and metastatic properties [J]. Clin Exp Metast.1992,10:111-120.
    55. Nip J, Shibata H, Loskutoff DJ, Cheresh DA, Brodt P. Human melanoma cells derived from lymphatic metastases use integrin alpha v beta 3 to adhere to lymph node vitronectin[J]. J Clin Inves.1992,90:1406-1413.
    56. Garzino-Demo P, Carrozzo M, Trusolino L, Savoia P, Gandolfo S, et al. Altered expression of alpha 6 integrin subunit in oral squamous cell carcinoma and oral potentially malignant lesions[J]. Oral Oncol.1998,34:204-210.
    57. Mercurio AM, Bachelder RE, Chung J, O'Connor KL, Rabinovitz I, et al. Integrin laminin receptors and breast carcinoma progression[J]. J Mammary Gland Biol Neoplasia. 2001,6:299-309
    58. Ramos DM, But M, Regezi J, Schmidt BL, Atakilit A, et al. Expression of integrin beta 6 enhances invasive behavior in oral squamous cell carcinoma[J]. Matrix Biol.2002,21: 297-307
    59. Park CC, Zhang H, Pallavicini M, Gray JW, Baehner F, et al. β1-integrin inhibitory antibody induces apoptosis of breast cancer cells, inhibits growth, and distinguishes malignant from normal phenotype in three dimensional cultures and in vivo[J]. Cancer Res.2006,66:1526-1535.
    60. Hofmeister V, Schrama D, Becker JC. Anti-cancer therapies targeting the tumor stroma[J]. Cancer Immunol Immunother.2008,57:1-17.
    61. Ramakrishnan V, Bhaskar V, Law DA, Wong MH, DuBridge RB, et al. Preclinical evaluation of an anti-alpha5betal integrin antibody as a novel anti-angiogenic agent[J]. J Exp Ther Oncol.2006,5:273-286.
    62. Yazji S, Bokowski R, Kondagunta V, Figlin R. Final results from phase II study of volociximab, an α 5 β1 anti-integrin antibody, in refractory or relapsed metastatic clear cell renal cell carcinoma (mCCRCC)[J]. J Clin Oncol.2007,18S(suppl):5094.
    63. Kuwada SK. Drug evaluation:Volociximab, an angiogenesis-inhibiting chimeric monoclonal antibody[J]. Curr. Opin. Mol. Ther.2007,.9(1):92-98.
    64. Stupp R, Ruegg C. Integrin inhibitors reaching the clinic[J].J Clin Oncol.2007,25: 1637-1638.
    65. Hariharan S, Gustafson D, Holden S, McConkey D, Davis D, et al. Assessment of the biological and pharmacological effects of the alpha nu beta3 and alpha nu beta5 integrin receptor antagonist, cilengitide (EMD 121974), in patients with advanced solid tumors[J]. Ann Oncol.2007,18:1400-1407.
    66. Beekman KW, Colevas AD, Cooney K, Dipaola R, Dunn RL, et al. Phase Ⅱ evaluations of cilengitide in asymptomatic patients with androgen-independent prostate cancer: scientific rationale and study design[J]. Clin. Genitourin Cancer.2006,4:299-302.
    67. Reardon DA, Fink KL, Mikkelsen T, Cloughesy TF, O'Neill A, Plotkin S, Glantz M, et al. Randomized phase II study of cilengitide, an integrin-targeting arginine-glycine-aspartic acid peptide, in recurrent glioblastoma multiforme[J]. J. Clin. Oncol.2008,26: 5610-5617.
    68. Konstantinopoulos PA, Karamouzis MV, Papatsoris AG., Papavassiliou AG.. Matrix metalloproteinase inhibitors as anticancer agents[J]. Int. J. Biochem. Cell Biol.2008,40: 1156-1168.
    69. Fingleton B. MMPs as therapeutic targets-still a viable option?[J]. Semin Cell Dev Biol. 2008,19:61-68.
    70. Cuniasse P, Dev L, Makaritis A, Beau F, Georgiadis D, et al. Future challenges facing the development of specific active-site directed synthetic inhibitors of MMPs[J]. Biochimie. 2005,87:393-402.
    71. Devy L, Huang L, Naa L, Yanamandra N, Pieters H, et al. Selective inhibition of matrix metalloproteinase-14 blocks tumor growth, invasion, and angiogenesis[J]. Cancer Res. 2009,69:1517-1526.
    72. Hadler-Olsen E, Fadness B, Sylte I, Uhlin-Hansen L, Winberg JO. Regulation of matrix metalloproteinase activity in health and disease[J]. FEBS J.2010,278:28-45.
    73. Overall CM. Molecular determinants of metalloproteinase substrate specificity:matrix metalloproteinases and new'intracellular'substrate binding domains, modules and exosites[J]. Mol Biotechnol Chem.2002,383:1059-1066.
    74. Lauer-Fields J, Brew K, Whitehead JK, Li S, Hammer RP, et al. Triple-helical transition state analogues:a new class of selective matrix metalloproteinase inhibitors[J]. J Am Chem Soc.2007,129:10408-10417.
    75. Li W, Li X, Chen Z, Zhu Y, Sun Y, et al. Cantharidin, a potent and selective PP2A inhibitor, induces an oxidative stress-independent growth inhibition of pancreatic cancer cells through G2/M cell cycle arrest and apoptosis[J]. Cancer Sci.2010,101:1226-1233.
    76.安中原,王正,赵越.斑蝥素及其衍生物的抗肿瘤研究进展[J]亚太传统医药2009,5:128-130.
    77. Georgieva D, Arni RK, Betzel C. Proteome analysis of snake venom toxins: pharmacological insights[J]. Expert Review Proteomics.2008,5:787-797.
    78. Hynes RO.. Integrins:versatility, modulation, and signaling in cell adhesion[J]. Cell. 2002,69:11-25.
    79. Calvete JJ, Marcinkiewicz C, Monleon D, Esteve V, Celda B, et al. Snake venom disintegrins:evolution of structure and function[J]. Toxicon 2005,45:1063-1074.
    80. Sheu JR, Yen MH, Kan YC, Hung WC, Chang PT, et al. Inhibition of angiogenesis in vitro and in vivo:comparison of the relative activities of triflavin, an Arg-Gly-Asp-containing peptide and anti-alpha(v)beta3 integrin monoclonal antibody [J]. Biochim Biophys Acta.1997,1336:445-454.
    81. Kang IC, Kim DS, Jang Y, Chung KH. Suppressive mechanism of salmosin, a novel disintegrin in B16 melanoma cell metastasis [J]. Biochem Biophys Res Commun.2000, 275:169-173.
    82. Yeh CH, Peng HC, Huang IF. Accutin, a new disintegrin, inhibits angiogenesis in vitro and in vivo by acting as integrin alphavbeta3 antagonist and inducing apoptosis[J]. Blood 1998,92:3268-3276.
    83. Yeh CH, Peng HC, Yang RS, Huang TF. Rhodostomin, a snake venom disintegrin, inhibits angiogenesis elicited by basic fibroblast growth factor and suppresses tumor growth by a selective alpha(v) beta(3) blockade of endothelial cells[J]. Mol Pharmacol 2001,59:1333-1342.
    84. Zhou Q, Nakada MT, Brooks PC, Swenson SD, Ritter MR, et al. Contortrostatin, a homodimeric disintegrin, binds to integrin alphavbeta5[J]. Biochem Biophys Res Commun.2000,267:350-355.
    85. Kisiel DG, Calvete JJ, Katzhendler J, Fertala A, Lazarovici P, et al. Structural determinants of the selectivity of KTS-disintegrins for the alphalbetal integrin[J]. FEBS Lett.2004,577:478-482.
    86. Marcinkiewicz C, Weinreb PH, Calvete JJ, Kisiel DG, Mousa SA, et al. Obtustatin:a potent selective inhibitor of alphalbetal integrin in vitro and angiogenesis in vivo[J]. Cancer Res.2003,63:2020-2023.
    87. Olfa KZ, Jose L, Salma D, Amine B, Najet SA, et al. Lebestatin, a disintegrin from Macrovipera venom, inhibits integrin-mediated cell adhesion, migration and angiogenesis[J]. Lab Invest.2005,85:1507-1516.
    88. Sanz L, Chen RQ, Perez A, Hilario R, Juarez P, et al. cDNA cloning and functional expression of jerdostatin, a novel RTSdisintegrin from Trimeresurus jerdonii and a specific antagonist of the alphalbetal integrin[J]. J Biol Chem 2005,280:40714-40722.
    89. Markland FS, Shieh K, Zhou Q, Golubkov V, Sherwin RP, et al. A novel snake venom disintegrin that inhibits human ovarian cancer dissemination and angiogenesis in an orthotopic nude mouse model [J]. Haemostasis.2001,31:183-191.
    90. Swenson S, Costa F, Minea R, Sherwin RP, Ernst W, et al. Intravenous liposomal delivery of the snake venom disintegrin contortrostatin limits breast cancer progression [J]. Mol Cancer Ther.2004,3:499-511.
    91. Minea R, Swenson S, Costa F, Chen TC, Markland FS. Development of a novel recombinant disintegrin, contortrostatin, as an effective anti-tumor and anti-angiogenic agent[J]. Pathophysiol Haemost Thromb.2005,34:177-183.
    92. Goudet C, Chi CW, Tytgat J. An overview of toxins and genes from the venom of the Asian scorpion Buthus martensi Karsch[J]. Toxicon.2002,40:1239-1258.
    93. DeBin, JA, Strichartz G. Chloride channel inhibition by the venom of the scorpion Leiurus quinquestriatus[J]. Toxicon.1991,29:1403-1408.
    94. Soroceanu L, Manning Jr TJ, Sontheimer H. Modulation of glioma cell migration and invasion using Cl- and K+ ion channel blockers[J]. J Neurosci.1999,19:5942-5954.
    95. Deshane J, Garner CC, Sontheimer H. Chlorotoxin inhibits glioma cell invasion via matrix metalloproteinase-2[J]. JBiol Chem.2003,278:4135-4144.
    96. Veiseh M, Gabikian P, Bahrami SB, Veiseh O, Zhang M, et al. Tumor paint:a chlorotoxin: Cy5.5 bioconjugate for intraoperative visualization of cancer foci[J]. Cancer Res.2007, 67:6882-6888.
    97. Hockaday DC, Shen S, Fiveash J, Raubitschek A, Colcher D, et al. Imaging glioma extent with 131 I-TM-601[J]. JNucl Med 2005,46:580-586.
    98. Shen S, Khazaeli MB, Gillespie GY, Alvarez VL. Radiation dosimetry of 131 I-chlorotoxin for targeted radiotherapy in glioma-bearing mice[J]. J Neurooncol.2005, 71:113-119.
    99. Veiseh O, Sun C, Gunn J, Kohler N, Gabikian P, et al. Optical and MRI multifunctional nanoprobe for targeting gliomas[J]. Nano Lett.2005,5:1003-1008.
    100.Ali SA, Stoeva S, Schutz J, Kayed R, Abassi A, et al. Purification and primary structure of low molecular mass peptides from scorpion (Buthus sindicus) venom[J]. Comp Biochem Physiol A Mol Integr Physiol.1998,121:323-332.
    101.Son DJ, Park MH, Chae SJ, Moon, SO, Lee, JW, et al. Inhibitory effect of snake venom toxin from Vipera lebetina turanica on hormonerefractory human prostate cancer cell growth:induction of apoptosis through inactivation of nuclear factor kappab[J]. Mol Cancer Ther.2007,6:675-683.
    102.Chueng WY. Calmodulin:an overview[J]. Fed Proc.1982,41:2253-2257.
    103.Gest JE, Salomon Y. Inhibition by melittin and fluphenazine of melanotropin receptor function and adenylate cyclase in M2R melanoma cell membranes[J]. Endocrinology. 1987,121:1766-1772.
    104.Holle L, Song W, Holle E, Wagner T, et al. A matrix metalloproteinase 2 cleavable melittin/avidin conjugate specifically targets tumor cells in vitro and in vivo[J].Int J Oncol.2003,22:93-98.
    105.Moon DO, Park SY, Heo MS, Kim KC, Park C, et al. Key regulators in bee venom-induced apoptosis are Bcl-2 and caspase-3 in human leukemic U937 cells through downregulation of ERK and Akt[J]. Int Immunopharmacol.2006,6:1796-1807.
    106.Sharma SV. Melittin resistance:a counter selection for ras transformation[J]. Oncogene. 1992,7:193-201.
    107.Wang C, Chen T, Zhang N, Yang M, Li B, et al. Melittin, a major component of bee venom, sensitizes human hepatocellular carcinoma cells to tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-induced apoptosis by activating CaMKII-TAKl-JNK/p38 and inhibiting IkappaB alpha kinase-NFkappaB[J]. J Biol Chem. 2009,284:3804-3813.
    108.Nuijen B, Bouma M, Manada C, Jimeno JM, Schellens JH, et al. Pharmaceutical development of anticancer agents derived from marine sources[J]. Anticancer Drugs. 2000,11:793-811.
    109.Rinehart KL Jr, Gloer JB, Cook JC Jr, Mizsak ST, Seahill TA. Structures of the didemnins, antiviral and cytotoxic depsipeptides from a Caribbean tunicate[J]. J Am Chem Soc.1987, 103:1857-9.
    110.Vera M, Joullie MM. Natural products as probes of cell biology:20 years of didemnin research[J]. Med Res Rev.2002,22:102-145.
    111.Crews CM, Collins JL, Lane WS, Snapper ML, Schereiber SL. GTP-dependent binding of the antiproliferative agent didemnin to elongation factor la[J]. J Biol Chem.1994,269: 15411-15414.
    112.Johnson K, Lawen A. Rapamycin inhibits didemnin B-induced apoptosis in human HL-60 cells:evidence for the possible involvement of FK506-binding protein 25[J]. Immunol Cell Biol.1999,77:242-248.
    113.Poncet J, BusquetM, Roux F. Synthesis and biological activity of chimeric structures derived from the cytotoxic natural compounds dolastatin 10 and dolastatin 15[J]. J Med Chem.1998,41:1524-1530.
    114.Bai R, Pettit GR, Hamel E. Binding of dolastatin 10 to tubulin at a distinct site for peptide antimitotic agents near the exchangable nucleotide and Vinca alkaloid sites[J]. J Biol Chem.1990,265:17141-17149.
    115.Bai R, Pettit GR, Hamel E. Dolastatin 10, a powerful cytostatic peptide derived from a marine animal. Inhibition of tubulin polymerization mediated through the Vinca alkaloid binding domain[J]. Biochem Pharmacol.1992,43:2637-2645.
    116.Petzelt C, Joswigy G, Stammery H, Werner D. Cytotoxic Cyplasin of the sea hare, Aplysia punctata:cDNA cloning, and expression of bioactive recombinants in insect cells[J]. Neoplasia.2002,4:49-59.
    117.苏德民,沈烈行,徐瑞军,等.土鳖虫的化学成分及药理作用研究进展[J].时珍国药研究.1997,8(2):152
    118.周彦钢,任玉翠.地鳖虫的营养成分分析[J].食品研究与开发.1998,19(2):51-53.
    119.张勤.酶法制取土鳖虫氨基酸口服液的研究[J].广州食品工业科技.1998,14(3):20-22.
    120.李卫星,王中枢.地鳖血纤维蛋白溶酶原激活物样成分的研究[J].中国生物化学与生物物理学学报.21(4):1989,299-306.
    121.王淑敏,赵学良,王本祥,等.中药土鳖虫溶栓成分的分离纯化研究[J].分析化学2005, 33(10):1385-1388.
    122.韩雅莉,李张伟.地鳖虫纤溶成分的分离纯化和活性测定[J].中药材.2006,29(8):765-767.
    123.韩雅莉,李张伟.地鳖纤溶活性蛋白的纯化及性质研究[J].生物工程学报.2006,22(4):639-643.
    124.郭桅,韩雅莉,陈少鹏,等.地鳖虫蛋白提取物对小鼠S180肉瘤及鸡胚尿囊膜血管生成的抑制作用[J].细胞生物学杂志.2007,29(3):425-428.
    125.林静华,吴映娥,蔡应木,等.地鳖虫纤溶活性蛋白组分的提取及对肿瘤细胞的抑制作用[J].国际检验医学杂志.2007,28(12):1088-1090,1093.
    126.李兴暖,韩雅莉.地鳖虫纤溶活性蛋白组分抑制血管的生成[J].动物学报.2007,53(1):135-142.
    127.韩雅莉,谢昆.土鳖虫糖蛋白的提取及抗肿瘤活性初步研究[J].汕头大学学报(自然科学版).2006,21(4):46-50.
    128.韩雅莉,郭桅,李兴暖,等.地鳖纤溶活性蛋白对H22荷瘤小鼠的抑瘤作用[J].中国药理学通报.2009,25(7):900-903.
    129.龙子江,盛炎炎,董宏超.土鳖虫总生物碱对家兔心泵功能的影响[J].安徽中医学院学报.1988,8(3):84-86.
    130.杨耀芳,王钦茂,王明华,等.土鳖虫总生物碱对动物耐缺氧的影响[J].中草药.1989,20(6):20-21,24.
    131.傅桂香,徐永珍,芮和恺,等.地鳖虫挥发油的气—质谱分析[J].中药通报.1987,12(4):230-231.
    132.田军鹏.地鳖虫生物碱的提取分离、结构鉴定及急性毒理研究[D].华中农业大学硕士学位论文.2006
    133."中华真地鳖新食品资源综合开发利用研究”通过了专家鉴定[R].食品科学.2004,25(9):224.
    134.金向群,严铭铭,黄恩喜,等.土鳖虫脂溶性成分的研究[J].中国中药杂志.1993,18(6):355-356.
    135.卢颖,江佩芬.土鳖虫化学成分的研究[J].中国中药杂志.1992,17(8):487-489.
    136.贺卫和,成细华,徐爱良.土鳖虫提取液对家兔抗凝血作用的实验研究[J].湖南中医学院学报.2003,23(2):7-9.
    137.王征,陈晓光,吴岩.土鳖虫溶栓酶抗凝血及抗血栓作用的实验研究[J].中国实验诊断学.2007,11(9):1143-1145.
    138.于燕,刘继兰,王菊英,等.土鳖虫水提液对实验性高脂血症大鼠血管内皮细胞的保护作用[J].山东大学学报(医学版).2002,40(5):398-400.
    139.于燕,刘继兰,王菊英,等.土鳖虫水提物对实验性高脂血症大鼠血管内皮和内皮素的影响[J].中国生化药物杂志.2003,24(1):15-17.
    140.王怡,翁维良,刘剑刚.动物类活血化瘀药对血液流变性作用的比较研究[J].中药药理与临床.1997,13(3):1-4.
    141.周春凤,莱萌,王秀华,等.土鳖虫对大鼠血液流变学的影响[J].中草药1994,25(1):28-29,55.
    142.黄金保,冯改壮,刘骁驷,等.土鳖虫抗兔心脑缺氧实验研究[J].长治医学院学报.1994,8(2):102-104.
    143.吴海歌,姚子昂,白雪芳,等.抑制肿瘤血管生成治疗策略研究进展[J].中国生化药物杂志.2007,28(2):130-132.
    144.邹玺,刘宝瑞,钱晓萍,等.土鳖虫提取液对人胃低分化腺癌细胞BGC2823的抑制作用[J].时珍国医国药2006,17(9):1695-1696.
    145.邹玺,刘宝瑞,钱晓萍,等.土鳖虫脂肪酸乳剂的制备及体内抗肿瘤作用[J].肿瘤2007,27(4):333-334.
    146.张微,邹玺,钱晓萍,等.土鳖虫含药血清对肝癌HepG-2细胞增殖的抑制作用[J].中药新药与临床药理.2007,18(4):257-259.
    147.陈永培,郑鸣金,黄锦燕.临床常用抗肿瘤中草药的抗突变初步研究[J].中国中药杂志.1992,17(7):431-432.
    148.罗佩强.土鳖虫促进骨折愈合的实验研究[J].中国骨伤.1992,5(6):6-7.
    149.冯伟,傅文,魏义勇,等.单味中药对成骨相关基因表达的影响[J].中医正骨.2004,16(3):6-8.
    150.杨耀芳,彭名淑,杨翊雯,等.土鳖虫对血虚小鼠红细胞免疫功能的实验研究[J].中国 免疫学杂志.2003,19(10):686-689.
    151.杨耀芳,王赛前,封美佳,等.土鳖虫对血瘀大鼠红细胞CR1活性及抗心磷脂抗体水平的影响[J].细胞与分子免疫学杂志.2005,21(1):53-56.
    152.张璐,朴美子,王莹,等.地鳖虫酶解液体外抗氧化作用的研究[J].食品研究与开发.2010,31(3):159-162,166
    153.唐庆峰,吴振廷,金涛,等.地鳖虫活性物质的超临界C02萃取及其药效[J].昆虫知识.2006,43(3):375-381.
    154.徐成钢,梅长林,赵海丹.土鳖虫水煎剂对人多囊肾病囊肿衬里上皮细胞增殖的影响[J]第二军医大学学报.2002,23(2):200-202.
    155.司徒镇强,吴军正.细胞培养[M].西安:世界图书出降到公司.1996
    156.Mosmann T. Rapid colorimetric assay for cellular growth and survival:application to proliferation and cytotoxicity assays[J]. J Immunol Methods.1983,65:55-63.
    157.Laemmli UK. Cleavage of structural protein during the assembly of head of bacteriophages T4[J]. Nature.1997,227:680-685.
    158.Kasibhatla S, Amarante-Mendes GP, Finucane D, Brunner T, Bossy-Wetzel E, et al. Acridine orange/ethidium bromide (AO/EB) staining to detect apoptosis[J]. CSH Protoc. 2006, (3). pii:pdb.prot4493.
    159.Salvioli S, Ardizzoni A, Franceschi C, Cossarizza A.. JC-1, but not DiOC6(3) or rhodamine 123, is a reliable fluorescent probe to assess ΔΨm changes in intact cells: Implications for studies on mitochondrial functionality during apoptosis[J]. FEBS Lett. 1997,411:77-82.
    160.Bazaa A, Luis J, Srairi-Abid N, Kallech-Ziri O, Kessentini-Zouari R, et al. MVL-PLA2, a phospholipase A2 from Macrovipera lebetina transmediterranea venom, inhibits tumor cells adhesion and migration[J]. Matrix Biol.2009,28(4):188-193.
    161.Su R, Li Z, Li H, Song H, Bao C, et al. Grp78 promotes the invasion of hepatocellular carcinoma[J]. BMC Cancer.2010,10:20.
    162.Chen JY, Lin WJ, Wu JL, Her GM, Hui CF. Epinecidin-1 peptide induces apoptosis which enhances antitumor effects in human leukemia U937 cells[J]. Peptides.2009, 30(12):2365-2373.
    163.Sarray S, Delamarre E, Marvaldi J, El Ayeb M, Marrakchi N, et al. Lebectin and lebecetin, two C-type Iectins from snake venom, inhibit α5β1 and αV-containing integrins[J]. Matrix Biol.2007,26(4):306-313.
    164.McCarthy JB, Hagen ST, Furcht LT. Human fibronectin contains distinct adhesion-and motility-promoting domains for metastatic melanoma cells[J]. J. Cell Biol.1986,102(1): 179-188.
    165.Santini MT, Rainaldi G, Indovina PL. Apoptosis, cell adhesion and the extracellular matrix in the three-dimensional growth of multicellular tumor spheroids [J]. Crit Rev Oncol Hematol.2000,36:75-87.
    166.Hehlgans S, Haase M, Cordes N. Signalling via integrins:Implications for cell survival and anticancer strategies [J]. Biochimica et Biophysica Acta (BBA).2007,1775:163-180.
    167.Leung WW, Keung WM, Kong YC. The cytolytic effect of cobra cardiotoxin on Ehrlich ascites tumor cells and its inhibition by Ca2+[J]. Naun Schmied Arch Pharmacol.1976, 292:193-198.
    168.Yoshikura H, Ogawa H, Ohsaka A, Omori-Satoh T. Action of Trimeresurus flavoviridis venom and partially purified hemorrhagic principles on animal cells cultivated in vitro[J]. Toxicon.1966,4:183-190.
    169.Frisch SM, Francis H. Disruption of epithelial-cell matrix interactions induces apoptosis[J]. J Cell Biol.1994,124:619-626.
    170.Frisch SM, Screaton RA. Anoikis mechanisms [J]. Curr Opin Cell Biol.2001,13: 555-562.
    171.Woodhouse EC, Chuaqui RF, Liotta LA. General mechanisms of metastasis [J]. Cancer. 1997,80(8 Suppl):1529-1537.
    172.Chambers AF, MacDonald IC, Schmidt EE, Morris VL, Groom AC. Clinical targets for anti-metastasis therapy[J]. Adv. Cancer Res.2000,79:91-121.
    173.Lauffenburger DA, Horwitz AF. Cell migration:a physically integrated molecular process[J]. Cell.1996,84(3):359-369.
    174.Aplin AE, Howe AK, Juliano RL. Cell adhesion molecules, signal transduction and cell growth[J]. Curr. Opin. Cell Biol.1999,11(6):737-744.
    175.Ramsay AG., Marshall JF, Hart IR. lntegrin trafficking and its role in cancer metastasis[J]. Cancer Metastasis Rev.2007,26(3-4):567-578.
    176.Bray D. Cell Movements[M]. Garland Publishing, New York,1992.
    177.Wu Y, Chen L, Zheng PS, Yang BB. beta 1-Integrin-mediated glioma cell adhesion and free radical-induced apoptosis are regulated by binding to a C-terminal domain of PG-M/versican[J]. J Biol Chem.2002,277:12294-12301.
    178.Wu N, Zhao X, Liu M, Liu H, Yao W, et al. Role of microRNA-26b in glioma development and its mediated regulation on EphA2[J]. PLoS One.2011,6(1):e16264.
    179.Chung DH, Lee JI, Kook MC, Kim JR, Kim SH, et al.. ILK (β 1-integrin-linked protein kinase):a novel immunohistochemical marker for Ewing's sarcoma and primitive neuroectodermal tumour[J]. Virchows Arch.1998,433(2):113-117.
    180.Beekman KW, Colevas AD, Cooney K, Dipaola R, Dunn RL, et al. Phase II evaluations of cilengitide in asymptomatic patients with androgen-independent prostate cancer: scientific rationale and study design[J]. Clin. Genitourin Cancer.2006,4(4):299-302.
    181.Reardon DA, Fink KL, Mikkelsen T, Cloughesy TF, O'Neill A, et al. Randomized phase Ⅱ study of cilengitide, an integrin-targeting arginine-glycine-aspartic acid peptide, in recurrent glioblastoma multiforme[J]. J. Clin. Oncol.2008,26(34):5610-5617.
    182.Kuwada SK. Drug evaluation:Volociximab, an angiogenesis-inhibiting chimeric monoclonal antibody[J]. Curr. Opin. Mol. Ther.2007,9(1):92-98.
    183.Park CC, Zhang H, Pallavicini M, Gray JW, Baehner F, et al. β1 integrin inhibitory antibody induces apoptosis of breast cancer cells, inhibits growth, and distinguishes malignant from normal phenotype in three dimensional cultures and in vivo[J].Cancer Res.2006,66(3):1526-1535.
    184.Edwards GM, Streuli CH. Activation of integrin signaling pathways by cell interactions with extracellular matrix[J]. Adv. Mol. & Cell Biol.1999,28:237-268.