模拟酸雨对大叶黄杨茎和叶片的电阻抗参数与生理参数影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
大叶黄杨(Euonymus japonicus)是卫矛科卫矛属常绿阔叶灌木,多用于带状绿篱、列植球株等景观用材,具有较强耐寒、抗旱性,是中国北方城市道路景观绿化和园林绿化广泛使用的重要园艺材料。酸雨已成为一个国际性的环境污染问题,酸雨胁迫对对植物的生长发育产生严重的不良影响。园林绿化植物是改善城市环境、维护生态平衡的重要物质基础,大叶黄杨在园林绿化中应用极为广泛。因此研究模拟酸雨对其生理特性的影响,深入探讨其逆境下生理生态特性,为该类树种在城市绿化中的推广应用提供一些科学参考依据。研究目的验证酸雨胁迫下电阻抗图谱(EIS)参数与及生理指标的相关性,分析酸雨胁迫下对大叶黄杨叶片的叶绿素荧光特性的参数变化。研究了在不同酸雨浓度(pH为1.0、2.0、3.0、4.0、5.0)梯度胁迫下大叶黄杨茎和叶片的电阻抗图谱参数以及净光合速率、胞间二氧化碳浓度、气孔导度、蒸腾速率、叶绿素荧光、叶绿素相对含量等生理指标的变化。
     主要结果如下:
     1.随着酸雨浓度的增加和长时间处理,大叶黄杨茎和叶片的电阻抗图谱和EIS参数发生变化。
     2. pH为1.0酸雨胁迫下大叶黄杨叶片的的叶绿素相对含量、叶片净光合速率、气孔导度、蒸腾速率和Fv/Fm的变化与胞外电阻之间呈显著的正相关(R2=0.91、0.98、0.97、0.91)。
     3.不同酸雨浓度胁迫下大叶黄杨叶片的叶绿素相对含量、叶片净光合速率、气孔导度、蒸腾速率、Fv/Fm的变化与胞外电阻之间呈显著的正相关(R2=0.95、0.92、0.98、0.97、0.97)。
     4. pH为1.0酸雨胁迫下胞间二氧化碳浓度与叶片胞内电阻呈极显著(P<0.01)的负相关(R2=0.99)
     5.随着酸雨浓度的增加和长时间胁迫,大叶黄杨叶片的叶绿素荧光参数ΦPSⅡ、Fv/Fm均呈整体下降。
     6.不同酸雨浓度对茎表现为低浓度促进,高浓度抑制。酸雨浓度为pH1.0,叶绿素含量比对照低76%;pH3.0、4.0和5.0,叶绿素含量比对照上升了84.2%、88.5%和92.6%。pH值为2.0无显著差异。
     7.研究结果证实,电阻抗图谱参数与生理指标的密切相关,能够有效地表示大叶黄杨受酸雨胁迫的程度。
Euonymus japonicus, belonging to the family of Celastraceae and the genus of Euonymus, is an evergreen broadleaf shrub used as strip hedge and column ball plant. It is the famous plant landscape materials with strong cold and drought resistance in northern China applied in urban road landscaping and used as important gardening materials. Acid rain has become an international environmental pollution, and acid rain stress on plant growth has serious adverse effects. Landscape plants improve the urban environment, and maintain ecological balance. Thus, the researches of simulated acid rain on the influence of physiological characteristic in Euonymus japonicus are important in application of urban greening. The objective of this study is to test the relationship between the electrical impedance spectroscopy (EIS) parameters and the physiological indexes, and to analyze the changes of chlorophyll fluorescence characteristic parameters under acid rain stress. The changes of EIS parameters, and the net photosynthetic rate, the intercellular CO2 concentration, transpiration rate, stomata conductance, chlorophyll fluorescence, and chlorophyll content were studied under simulated acid rain stress (pH 1.0, 2.0, 3.0, 4.0, 5.0).
     The main results are as follows:
     1. With increase of simulated acid rain concentration and long time stress, the changes of electrical impedance spectra and EIS parameters of Euonymus japonicus shoots and leaves occurred.
     2. There were significant positive correlations between extracellular resistance and chlorophyll contents, photosynthetic rate, stomatal conductance, as well as Fv/Fm of Euonymus japonicus leaves under pH1.0 of simulated acid rain stress (The coefficient of determination R2 was 0.91, 0.98, 0.97 and 0.91, respectively).
     3. There were significant positive correlations between extracellular resistance and chlorophyll contents, photosynthetic rate, stomatal conductance, apricot varieties as well as Fv/Fm of Euonymus japonicus leaves under simulated acid rain stresses (R2 was 0.95, 0.92, 0.98, 0.97 and 0.97, respectively).
     4. There were significant positive correlations bwteen intracellular resistance and Ci of Euonymus japonicus leaves under pH1.0 of simulated acid rain stress (R2 was 0.99).
     5. With increase of simulated acid rain concentration and long time stress, the chlorophyll fluorescence parameterΦPSⅡand Fv/Fm decreased.
     6. Effects of concentration of acid rain on stems showed promoting performance under the low concentration, and depressing performance under the high concentrations. When the acid rain was pH 1.0, the chlorophyll content was 76% lower than that of control, and for the concentration of pH 3.0, 4.0 and 5.0, the chlorophyll content was 84.2%, 88.5% and 92.6 % higher than that of control. Under pH value of 2.0 no significant difference was found.
     7. The results showed that the EIS parameters closely related to the physiological indexes, and they could indicate the degree of acid rain stress.
引文
[1]冯宗炜.中国酸雨对陆地生态系统的影响和防治对策[J].中国工程科学,2000,2(9):5-11.
    [2]赵睿新.环境污染化学[M].化学工业出版社,2004,101-102.
    [3]刘菊秀.酸沉降背景下鼎湖山森林水和土壤化学特征[D].北京:中国科学院研究生院, 2001.
    [4] Smith R.A. Air and rain: the beginnings of a chemical climatology[M]. London: Longmans, Green, and Co., 1872: 17-24.
    [5]郝吉明,谢绍东,段雷,等.酸沉降临界负荷及其应用[M].北京:清华大学出版社,2001.
    [6]唐孝炎,张远航.大气环境化学[M].北京:高等教育出版社,2006,366-367.
    [7]丁国安,徐晓斌,王淑凤,等.中国气象局酸雨网基本资料数据集及初步分析[J].应用气象学报, 2004, 15(S1): 85-94.
    [8].吴丹,王式功,尚可政.中国酸雨研究综述[J].干旱气象,2006, 24(2): 70-77.
    [9]谭燕宏.中国酸沉降现状[J].辽宁师专学报, 2004, 6(1): 95-98.
    [10]王美秀.酸雨问题概述[J].内蒙古教育学院学报(自然科学版), 1999, 12(2): 25-27.
    [11]吴丹,王式功,尚可政.中国酸雨研究综述[J].干早气象,2006,24(2):70-77.
    [12]赵艳霞,侯青. 1993─2006年中国区域酸雨变化特征及成因分析[J].气象学报, 2008, 66(6): 1032-1042.
    [13]蒲维维,张小玲,徐敬,等.北京地区酸雨特征及影响因素[J].应用气象学报,2010,21(4):464-471.
    [14]汤洁,徐晓斌,巴金,等.近年来京津地区酸雨形势变化的特点分析[J].中国科学院研究生院学报.2007,24(5):667-673.
    [15]林慧萍.酸雨对陆生植物的影响机理[J].福建林业科技,2005,32(1):60-64.
    [16]周忠泽,鲁润龙,葛磊.模拟酸雨处理与四种植物叶、花关系的初步研究[J].生物学志,1998,15(2):27-31,36.
    [17]杜敏华,张乃群,李玉英,等.大气污染对城市绿化植物叶片叶绿素含量的影响[J].中国环境监测,2007,23(2):86-88.
    [18]GARY D H. Physiological Effect of Direct Impact ofAcidic Deposition on Foliage[J]. Agricultural Eco-Environmental, 1992, 42: 307.
    [19]彭海霞,彭彩霞,彭长连,等.模拟酸雨对农作物种子萌发和幼苗生长的影响[J].热带亚热带植物学报,2003,11(4):400-404.
    [20]李志国,姜卫兵,翁忙玲,等.模拟酸雨对木兰科树种叶片膜脂过氧化和抗氧化系统的影响[J].生态环境,2007,16(3):779-784.
    [21]Paoletti E. UV-band and acid rain effects on beach (Fagus sylvatica L.) and holm oak (Quereus ilex L.) leaves[J]. Chemosphere, 1998, 36: 835-840.
    [22]陈树元,徐和宝,史建文. 110种树木对模拟酸雨和SO2单一和复合暴露的反应[J].应用与环境生物学报,1997,3(3):199-203.
    [23]彭彩霞,彭长连,林桂珠,等.模拟酸雨对农作物种子萌发和幼苗生长的影响[J].热带亚热带植物学报,2003,11(4):400-404.
    [24]许泽洪,罗英,王煜,等.模拟酸雨对蚕豆植物生长的影响[J].中国微生态学杂志, 2001,13(1):26-29.
    [25]吕均良,李三玉,黄寿波.模拟酸雨对桃梨叶片和果实的影响[J].浙江农业大学学报, 1998,24(6):603-607.
    [26]黄继山,温文保,蔺万煌,等.酸雨对树木叶细胞伤害的模拟研究[J].林业科学研究, 2002,1(52):219-224.
    [27]单云峰.酸雨、大气污染与植物[M].北京:中国环境科学出版社(1994).
    [28]田大伦,付晓萍,方晰,等.模拟酸雨对樟树幼苗光合特性的影响[J].林业科学, 2007,43(8):29-35.
    [29]邱栋梁,刘星辉,郭素枝.模拟酸雨对龙眼叶片气体交换和叶绿素荧光参数的影响(英文) [J].植物生态学报, 2002,26(4):441-446.
    [30]WyrwiCka A, Sklodowska M. Influence of repeated acid rain treatment on antioxidative enzyme activities and on lipid peroxidation in cucumber leaves. Enviro[J]. Enviormental and Experimental Botany, 2006, 56(2): 198-204.
    [31]Gabara B, Sklodowska M, WyrwiCka A, et al. Changes in the ultrastructure of chloroplasts and mitochondria and antioxidant enzyme activity in Lycopersicon esculentum Mill. leaves sprayed with acid rain[J]. Plant Seience, 2003. 164(4): 507-516.
    [32]黄建昌,肖艳,张运新,等.模拟酸雨对芒果的生理伤害和生长的影响[J].热带作物学报, 2003,24(1):28-30.
    [33]刘建福.模拟酸雨对杨梅生理生化特征的影响[J].中国农学通报,2007,23(10):110-113.
    [34]李志国,姜卫兵,翁忙玲,等.模拟酸雨对木兰科树种叶片膜脂过氧化和抗氧化系统的影响[J].生态环境,2007,16(3):779-754.
    [35]张建萍,王进军,赵志模,等.模拟酸雨对朱砂叶蜻寄主植物三月早茄生理生化的影响[J].应用生态学报,2005,16(3):450-454.
    [36]Krause G H, Weis E. Chlorophyll Fluorescence and Photosynthesis: The Basics[J]. Annual Review of Plant Physiology and Plant Molecular Biology, 1991, 42: 313-349.
    [37]许大全.光合作用效率[M].上海:上海科学技术出版社,2002.
    [38]邱栋梁,刘星辉.模拟酸雨对龙眼叶片叶绿素a荧光特性的影响[J].园艺学报, 2000,27(3):177-181.
    [39]Sitaula BK, Bakken LR, Abrahamsen G. N-fertilization and soil acidification effects on N2O and CO2 emission from temperature pine forest soil[J]. Soil Biology and Biochemistry, 1995, 27(11): 1401-1408.
    [40]Barbara Walna, Jerzy Siepak, Stanislaw Drzymala. Soil degradation in the Wielkopolski National Park (Poland) as an Effect of Acid Rain Simulation [J]. Water, Air, and Soil Pollution, 2001, 130: 1727-1732.
    [41]高太忠,戚鹏,张杨,等.酸雨对土壤营养元素迁移转化的影响[J].生态环境, 2004, 13(1): 23-26.
    [42]杨学春,朱亚萍.酸沉降对土壤化学性质的影响[J].四川环境, 1995, 14(1): 6-9. [43 ]广西水文地质工程地质队,柳州酸雨对土壤养分和地下水化学特征影响的研究[J].南宁: 1992.
    [44]俞元春,丁爱芳.模拟酸雨对酸性土壤铝溶出及其形态转化的影响[J].土壤与环境, 2001,10(2):87-90.
    [45]Kunzli N, Ackermann LU, Brandli O, Tschopp JM, Schindler C, Leuenberger P. Clinically small effects of air pollution on FVC have a large public health impact. Swiss Study on Air Pollution and Lung Disease in Adults (SAPALDIA) Team[J]. European Respiratory Journal, 2000, 15(1): 131-136.
    [46]Zhang MIN, Willison JHM. Electrical impedance analysis in plant tissues: the effect of freeze-thaw injury on the electrical properties of potato tuber and carrot root tissues[J]. Canadian Journal of Plant Science, 1992, 72: 545-553.
    [47]温学,孔国辉,彭长连.植物监测大气污染及其抗性[J].热带亚热带植物学报, 2003,11(4): 348-357.
    [48]胡羡聪,张德强,孔国辉.大气SO2氟化物对植物生理生态指标的影响[J].热带亚热带植物学报, 2003,11(4): 372-378.
    [49]Repo T, Zhang G, Ryypp? A, et al. The electrical impedance spectroscopy of Scots pine (Pinus sylvestris L.) shoots in relation to cold acclimation[J]. Journal of Experimental Botany, 2000, 51: 2095-2107.
    [50]Ackmann JJ, Seitz MA. Methods of complex impedance measurements in biological tissue. CRC Crit Rev Biomed Eng[J].1984, 11: 281-311.
    [51]Repo T. Impedance spectroscopy and temperature acclimation of forest trees[J]. Doctoral Thesis. Joensuu, Finland: University of Joensuu, Faculty of Forestry, Res. Notes 9. 1993.
    [52]Mancuso S. Seasonal dynamics of electrical impedance parameters in shoots and leaves relate to rooting ability of olive (Olea europaea) cuttings[J]. Tree Physiology, 1998, 19: 95-101.
    [53]Repo T, Pelkonen P, Tuovinen T. Frost hardiness assessment: New developments[J]. Proceedings of the XIX IUFRO World Congress, division 2, 1990, 101-106.
    [54]Repo T, Leinonen M, P??kk?nen T. Electrical impedance analysis of shoots of Scots pine: intracellular resistance correlates with frost hardiness[J]. Proceedings of the Finnish-Japanese Workshop. Molecular and physiological aspects of cold and chilling tolerance of northern crops. Jokioinen. 1997, 27-30.
    [55]Zhang Gang, Ryypp? A, Vapaavuori E, et al. Quantification of additive response and stationarity of frost hardiness by photoperiod and temperature in Scots pine[J]. Canadian Journal of Forest Research, 2003, 33: 1772-1784.
    [56]Vainola A, Repo T. Impedance spectroscopy in frost hardiness evaluation of Rhododendron leaves[J]. Annals of Botany, 2000, 86: 799-805.
    [57] Repo T, Zhang MIN, Ryypp? A, et al. Effects of freeze-thaw injury on parameters of distributed electrical circuits of stems and needles of Scots pine seedlings at different stages of acclimation[J]. Journal of Experimental Botany, 1994, 45: 823-833.
    [58]Repo T, Zhang Gang, Ryypp? A, et al. The relation between growth cessation and frost hardening in Scots pines of different origins[J]. Trees, 2000, 14: 456-464.
    [59]Mancuso S, Nicese F P, Masi E, et al. Comparing fractal analysis, electrical impedance and electrolyte leakage for the assessment of cold tolerance in Callistemon and Grevillea spp[J]. Journal of Horticultural Science & Biotechnology, 2004, 79: 627-632.
    [60]倪寿清,赵大传,崔清洁,等.模拟酸雨对北方小麦生长规律影响的研究[J].山东大学学报:理学版, 2006,41(6): 109-113.
    [61]贺立红,贺立静,顾群,等.银杏同一叶片不同部位叶绿素荧光特性的研究[J].北方园艺, 2006,(6): 27-29.
    [62]陈笑玲,何东进,洪伟,等.酸雨胁迫对园林植物伤害机理的研究进展[J].亚热带农业研究, 2007,2(2): 99-103.
    [63]毕玉蓉,张承烈.模拟酸雨对菜豆叶片的伤害和Mefluidide保护效应的研究[J].环境科学学报, 1993,13(3): 379-383.
    [64]王玮.模拟酸雨处理的青菜显微和亚显微结构观察及部分生理指标测定[J].环境科学, 1988,9(3): 12-17.
    [65]高吉喜,舒俭民,张林波. SO2和酸雨对大豆的单一及复合效应[J].应用与环境生物学报, 1998,4(2): 132-135.
    [66]梁骏,麦博儒,郑有飞,等.模拟酸雨对油菜(Brassica napus L.)生长、产量及品质的影响[J].生态学报, 2008,28 (1):274-281.
    [67]Ferenbangh RW. Effects of simulated acid rain on Phaseolus vulgaris L. (Fabaceae) [J]. American Jonrnal of Botany, 1976,63(3): 283-288.
    [68]Hindawi IJ, Rea JA, Griffis WL. Response of bush bean exposed to acid rain mist [J]. American Journal of Botany, 1980,67(2): 168-173.
    [69]张守仁.叶绿索荧光动力学参数的意义及讨论[J].植物学通报, 1999,16(4): 444-448.
    [70]柯世省,金则新.水分胁迫和温度对夏蜡梅叶片气体交换和叶绿素荧光特性的影响[J].应用生态学报, 2008,19(1): 43-49.
    [71]蔡永萍,李玲,李合生,等.霍山石斛叶片光合速率和叶绿素荧光参数的日变化[J].园艺学报, 2004,3(6): 778-783.
    [72]李春霞,曹慧.干旱对苹果属植物叶绿素荧光参数的影响[J].安徽农业科学, 2008,36(31): 13536-13538.
    [73] Repo T. Physical and physiological aspects of impedance measurements in plants[J]. Silva Fennica, 1988, 22: 181-193.