热胁迫经历对麦长管蚜(Sitobion avenae)生活史性状的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究通过模拟麦长管蚜世代内经历气候变暖三大特征:短时高温、持续热天、持续热天夜间温度升高,以及世代间经历高温天频率变化,研究了高温历史经历对昆虫耐热性、生活史性状的即时和迟滞效应,以及最终的种群动态后果。所得主要结论如下:
     1.证实阶段基底耐热性最高并不意味着短时高温后的迟滞响应表现最好。前期热锻炼不能进一步提高基底耐热性最高的3-4龄若蚜高温存活,较长时间的热锻炼对其耐热性还产生了负面影响;而前期热锻炼对于基底耐热性较低的低龄若蚜和成蚜高温存活存在正向效应,但热锻炼持续时间延长效果下降;短时高温后的生活史迟滞效应因考察性状不同而存在差异。1龄和4龄若蚜短时高温对若蚜发育速率的影响较大,热激2-3龄若蚜对发育速率的抑制较小;成蚜寿命和繁殖则主要受前期热经历的剂量影响,而与热激阶段无关。总体上看,热激剂量和热激作用阶段对麦长管蚜种群参数都有显著影响。
     2.与若蚜晚期高温相比,若蚜早期或成虫期经历持续高温产生了更为显著的种群后果。出人意料地,高温对若蚜发育历期主要由1龄若蚜是否经历高温所决定,与高温持续天数无关。若蚜的存活由早期1龄若蚜受热和高温持续时间共同决定。成虫性状表现则主要受高温持续时间影响。但从1龄若蚜开始的早期高温对麦长管蚜种群产生了显著地筛选作用,4-6天的高温淘汰掉大量不耐热个体,存活下来的成蚜表现与未受热个体相当。总体上看,若蚜早期和成蚜期的持续高温对种群参数的影响相当。而若蚜后期持续高温经历的种群响应显著好于若蚜早期和成蚜期。
     3.证实与高温天组合的夜间变暖能够产生更显著的生物效应。除若蚜后期没有显著响应外,若蚜早期、全若期和全世代热天夜间温度升高均显著加速了若蚜发育。与恒温条件相比,高温天夜间温度升高将发育最适温度提高3度。而整个若蚜生长期经历高温天夜间变暖可导致若蚜存活的线性降低,虽然这时的夜间温度变化尚处于麦长管蚜的适宜存活范围。总体上看,除若蚜前期夜间变暖的种群效应完全被白天高温所致的负面影响掩盖外,麦长管蚜若蚜后期、全若期以及全世代夜间温度升高均能显著恶化高温天导致的种群下降。
     4.证实母代高温经历会产生显著的跨代后续效应。母代高温通过抑制子代发育,降低子代存活,减少了种群的内禀增长率。母代高频高温的经历也可显著增加子代性状的变异度。总体上看,子代正常温度恢复甚至补偿了母代高温对子代生活史性状的负面影响;子代高温加剧了母代高温对种群的负面效应。
By simulating temperature experiences of climate warming: short-time heat exposure, persistenthot days or night warming on hot days within generation, and the altered frequency of hot days inmaternal generation of Sitobion avenae, we investigated the immediate and time-lagged effects of heatstress experiences on the thermal tolerance and life history traits, as well as the consequence ofpopulation dynamics in S. avenae. The main conclusions are as follows:
     (1) Heat shock at the age with the greatest heat resistance does not mean that there are lessthermal time-lagged effects on other life history traits and population dynamics. The3rd-and4th-instars of S. avenae have the highest upper thermal tolerance. However, they were least able toacclimate (CTmax) in response to high temperatures, suggesting a potential trade-off between basaltolerance and the hardening ability to thermal tolerance. In addition, the time-lagged effects of heatshock at different ages may be trait-dependent. There were significant differences of nymphaldevelopmental times between heat exposure treatments at different age. The most inhibiting effects ondevelopmental time were observed at the first and fourth instars nymphs. But adult traits were affectedmainly by the duration of brief heat exposure. Further, the extent of population parameters reduceddepended on not only the duration of heat exposure but also the age exposed to heat.
     (2) Continuous hot days occurred at the early stage of nymphs or adult stage play moreimportant roles in population consequences than those occurred at the later stage of nymphs.Effect of high temperatures on nymph duration depended crucially on whether1st-instar stageexperienced hot days. And adult traits were determined largely by duration of hot days. However,nymphal survival depended on both1st-instar stage experienced hot days and duration of hot days.Overall, Continuous hot days occurred at the early stage of nymphs or adult stage play more importantroles in population consequences than those occurred at the later stage of nymphs.
     (3) Changes of these moderate nighttime temperatures have much biological impact whencombined with hot days. The development rates of nymphs increased with night warming on hot daysduring early or whole stage of nymph and a generation, although the increase of nighttime temperatureduring later stage of nymph did not significantly affect developmental rate. When compared toexpectations based on constant temperatures, night warming raised the optimum temperature fordevelopment by3°C, in contrast to results from experiments where temperature variability was alteredsymmetrically or in a parallel manner. Night warming experiences in whole stage of nymph alsoreduced linearly aphid survival under heat despite of temperatures shifting within a moderate range.Overall, night warming exacerbated the detrimental effects of hot days on the intrinsic rate ofpopulation increase except for any effects of night warming during early stage of nymph beingoverwhelmed by negative impacts of daytime high temperatures.
     (4) Maternal temperature has significant effects on population performance of offspringreared under high developmental temperature. Maternal temperature experience under continuous hot days affected negatively not only the development and survival of nymph exposed to highfluctuating temperature, but also the prereproductive time and the adult proportion of immediatelybreeding of offspring reared under22℃constant temperature. In addition, maternal high temperatureexperience (continuous hot days or frequent hot days) also affected profoundly fecundity of offspringunder normal fluctuating temperature. Further, both of two maternal patterns of hot days increased thedevelopmental variation of offspring. Although maternal experience of frequent hot days also increasedthe variation of adult traits, the least variation of offspring was observed when mothers were rearedunder continuous hot days. Overall, mediate temperatures of offspring might offset the negative effectsof maternal high temperature experience on population performance. However, maternal hightemperature condition can deteriorated further population consequence of offspring by50%if progenywas continued to be reared under high temperature condition.
引文
1.李鹄鸣,麦长管蚜实验群种的研究.吉首大学学报1990,11(5):59-70.
    2.刘绍友,李定旭,麦长管蚜发育起点温度及有效积温的研究.昆虫知识1990,27(003):132-134.
    3.汪世泽,郝树广,温度对麦长管蚜的影响.生态学杂志1993,12(003):53-56.
    4.尹青云,郑王义,谢咸升,李峰,李锐,郑晓玲,范绍强,温度对麦长管蚜发育和生殖力的影响.华北农学报2003,18(3):71-73.
    5.张海松,温度对麦长管蚜种群存活率的特征参数的影响.华东昆虫学报1994,3(2):66-68.
    6. Acreman S.,Dixon A., The effects of temperature and host quality on the rate of increase of thegrain aphid (Sitobion avenae) on wheat. Annals of applied biology1989,115(1):3-9.
    7. Addo-Bediako A., Chown S.L., Gaston K.J., Thermal tolerance, climatic variability and latitude.Proceedings of the Royal Society of London. Series B: Biological Sciences2000,267(1445):739-745.
    8. Agrawal A.A., Herbivory and maternal effects: mechanisms and consequences of transgenerationalinduced plant resistance. Ecology2002,83(12):3408-3415.
    9. Agrawal A.A., Transgenerational consequences of plant responses to herbivory: an adaptivematernal effect? The American Naturalist2001,157(5):555-569.
    10. Agrawal A.A., Laforsch C., Tollrian R., Transgenerational induction of defences in animals andplants. Nature1999,401(6748):60-63.
    11. Alexander L., Zhang X., Peterson T., Caesar J., Gleason B., Tank K., Haylock M., Collins D.,Trewin B., Rahimzadeh F., Global observed changes in daily climate extremes of temperature andprecipitation. Journal of Geophysical Research2006,111(D05109).
    12. Alford L., Blackburn T.M., Bale J.S., Effect of latitude and acclimat ion on the lethal temperaturesof the peach‐potato aphid Myzus persicae. Agricultural and Forest Entomology2011,14(1):69-79.
    13. Alford L., Blackburn T.M., Bale J.S., Effects of acclimation and latitude on the activity thresholdsof the aphid Myzus persicae in Europe. Journal Of Applied Entomology2012,135(5):332-346.
    14. Amarasekare P.,Sifuentes R., Elucidating the temperature response of survivorship in insects.Functional Ecology2012,26(4):959-968.
    15. Andersen D.H., Pertoldi C., Scali V., Loeschcke V., Heat stress and age induced maternal effects onwing size and shape in parthenogenetic Drosophila mercatorum. Journal of Evolutionary Biology2005,18(4):884-892.
    16. Angilletta M.J. Thermal adaptation: a theoretical and empirical synthesis. Oxford University Press,2009
    17. Asin L.,Pons X., Effect of high temperature on the growth and reproduction of corn aphids(Homoptera: Aphididae) and implications for their population dynamics on the northeastern Iberianpeninsula. Environmental entomology2001,30(6):1127-1134.
    18. Atkinson D., Temperature and organism size-a biological law for ectotherms? Advances inEcological Research1994,25:1-58.
    19. Badyaev A.V., Stress-induced variation in evolution: from behavioural plasticity to geneticassimilation. Proceedings of the Royal Society B: Biological Sciences2005,272(1566):877-886.
    20. Bahrndorff S., Mari n J., Loeschcke V., Ellers J., Dynamics of heat‐induced thermal stressresistance and hsp70expression in the springtail, Orchesella cincta. Functional Ecology2009,23(2):233-239.
    21. Bale J.S., Masters G.J., Hodkinson I.D., Awmack C., Bezemer T.M., Brown V.K., Butterfield J.,Buse A., Coulson J.C., Farrar J., Herbivory in global climate change research: direct effects ofrising temperature on insect herbivores. Global Change Biology2002,8(1):1-16.
    22. Beck S.D. Insect photoperiodism. Elsevier,2012
    23. Beck S.D., Insect thermoperiodism. Annual Review of Entomology1983,28(1):91-108.
    24. Beckwith R.C., Effects of constant laboratory temperatures on the Douglas-fir tussock moth(Lepidoptera: Lymantriidae). Environmental Entomology1982,11(6):1159-1163.
    25. Benton T., Plaistow S., Beckerman A., Lapsley C., Littlejohns S., Changes in maternal investmentin eggs can affect population dynamics. Proceedings of the Royal Society B: Biological Sciences2005,272(1570):1351.
    26. Benton T.G., St Clair J.J., Plaistow S.J., Maternal effects mediated by maternal age: from lifehistories to population dynamics. J Anim Ecol2008,77(5):1038-1046.
    27. Bernardo J., Maternal effects in animal ecology. American Zoologist1996a,36(2):83-105.
    28. Bernardo J., The particular maternal effect of propagule size, especially egg size: patterns, models,quality of evidence and interpretations. American zoologist1996b,36(2):216-236.
    29. Berreur P., Porcheron P., Moriniere M., Berreur-Bonnenfant J., Belinski-Deutsch S., Busson D.,Lamour-Audit C., Ecdysteroids during the third larval instar in1(3)ecd-1ts, a temperature-sensitivemutant of Drosophila melanogaster. General and comparative endocrinology1984,54(1):76-84.
    30. Birkemoe T.,Leinaas H., Effects of temperature on the development of an arctic Collembola(Hypogastrura tullbergi). Functional Ecology2000,14(6):693-700.
    31. Blanckenhorn W.U., Temperature effects on egg size and their fitness consequences in the yellowdung fly Scathophaga stercoraria. Evolutionary Ecology2000,14(7):627-643.
    32. Bowler K., Acclimation, heat shock and hardening. Journal of Thermal Biology2005,30(2):125-130.
    33. Bowler K.,Terblanche J.S., Insect thermal tolerance: what is the role of ontogeny, ageing andsenescence? Biological Reviews2008,83(3):339-355.
    34. Bozinovic F., Bastías D.A., Boher F., Clavijo-Baquet S., Estay S.A., Angilletta M.J., The mean andvariance of environmental temperature interact to determine physiological tolerance and fitness.Physiological and Biochemical Zoology2011,84(6):543-552.
    35. Brakefield P.M.,Kesbeke F., Genotype–environment interactions for insect growth in constant andfluctuating temperature regimes. Proceedings of the Royal Society of London. Series B: BiologicalSciences1997,264(1382):717-723.
    36. Brakefield P.M.,Mazzotta V., Matching field and laboratory environments: effects of neglectingdaily temperature variation on insect reaction norms. Journal of Evolutionary Biology1995,8(5):559-573.
    37. Brakefield P.M., Pijpe J., Zwaan B.J., Developmental plasticity and acclimation both contribute toadaptive responses to alternating seasons of plenty and of stress in Bicyclus butterflies. Journal ofBiosciences2007,32(3):465-475.
    38. Bull J., Sex determination in reptiles. Quarterly Review of Biology1980:3-21.
    39. Bullock T.H., Compensation for temperature in the metabolism and activity of poikilotherms.Biological Reviews1955,30(3):311-342.
    40. Burgess S.C.,Marshall D.J., Temperature-induced maternal effects and environmental predictability.The Journal of Experimental Biology2011,214(14):2329-2336.
    41. Burke G.R., McLaughlin H.J., Simon J.C., Moran N.A., Dynamics of a recurrent Buchneramutation that affects thermal tolerance of pea aphid hosts. Genetics2010,186(1):367-372.
    42. Butterfield J., The response of development rate to temperature in the univoltine cranefly, Tipulasubnodicornis Zetterstedt. Oecologia1976,25(1):89-100.
    43. Caesar J., Alexander L., Vose R., Large-scale changes in observed daily maximum and minimumtemperatures: Creation and analysis of a new gridded data set. Journal of Geophysical Research2006,111: D05101.
    44. Calosi P., Bilton D.T., Spicer J.I., Thermal tolerance, acclimatory capacity and vulnerability toglobal climate change. Biology Letters2008,4(1):99.
    45. Cannon R.J.C., The implications of predicted climate change for insect pests in the UK, withemphasis on non-indigenous species. Global Change Biology1998,4(7):785-796.
    46. Carroll D.,Hoyt S., Some effects of parental rearing conditions and age on progeny birth weight,growth, development, and reproduction in the apple aphid, Aphis pomi (Homoptera: Aphididae).Environmental Entomology1986,15(3):614-619.
    47. Chapperon C.,Seuront L., Behavioral thermoregulation in a tropical gastropod: links to climatechange scenarios. Global Change Biology2011,17(4):1740-1749.
    48. Chen C.-P., Lee Jr R.E., Denlinger D.L., A comparison of the responses of tropical and temperateflies (Diptera: Sarcophagidae) to cold and heat stress. Journal of Comparative Physiology B1990,160(5):543-547.
    49. Chen C.P., Lee R.E., Denlinger D.L., Cold shock and heat shock: a comparison of the protectiongenerated by brief pretreatment at less severe temperatures. Physiological Entomology1991,16(1):19-26.
    50. Chidawanyika F.,Terblanche J.S., Rapid thermal responses and thermal tolerance in adult codlingmoth Cydia pomonella (Lepidoptera: Tortricidae). Journal of Insect Physiology2011,57(1):108-117.
    51. Chown S.L., Hoffmann A.A., Kristensen T.N., Angilletta M.J., Stenseth N.C., Pertoldi C., Adaptingto climate change: a perspective from evolutionary physiology. Climate Research2010,43(1):3-15.
    52. Chown S.L., Jumbam K.R., S rensen J.G., Terblanche J.S., Phenotypic variance, plasticity andheritability estimates of critical thermal limits depend on methodological context. FunctionalEcology2009,23(1):133-140.
    53. Clarke D.N.,Zani P.A., Effects of night-time warming on temperate ectotherm reproduction:potential fitness benefits of climate change for side-blotched lizards. Journal of ExperimentalBiology2012,215(7):1117-1127.
    54. Clench H.K., Behavioral thermoregulation in butterflies. Ecology1966,47(6):1021-1034.
    55. Coleman P.C., Bale J.S., Hayward S.A., Cross generation plasticity in cold hardiness is associatedwith diapause, but not the non-diapause developmental pathway, in the blowfly, Calliphora vicina.the Journal of Experimental Biology2014.
    56. Cooper B.S., Czarnoleski M., Angilletta M.J., Jr., Acclimation of thermal physiology in naturalpopulations of Drosophila melanogaster: a test of an optimality model. Journal of EvolutionaryBiology2010,23(11):2346-2355.
    57. Coulson J., Horobin J., Butterfield J., Smith G., The maintenance of annual life-cycles in twospecies of Tipulidae (Diptera); a field study relating development, temperature and altitude. TheJournal of Animal Ecology1976:215-233.
    58. Coulson S.,Bale J., Effect of rapid cold hardening on reproduction and survival of offspring in thehousefly Musca domestica. Journal of Insect Physiology1992,38(6):421-424.
    59. Crean A.J.,Marshall D.J., Coping with environmental uncertainty: dynamic bet hedging as amaternal effect. Philosophical Transactions of the Royal Society B: Biological Sciences2009,364(1520):1087.
    60. Crill W.D., Huey R.B., Gilchrist G.W., Within-and between-generation effects of temperature onthe morphology and physiology of Drosophila melanogaster. Evolution1996,50(3):1205-1218.
    61. Danks H., Short life cycles in insects and mites. Can. Entomol2006,138:407-463.
    62. David J., Moreteau B., Gauthier J., Petavy G., Stockel A., Imasheva A., Reaction norms of sizecharacters in relation to growth temperature in Drosophila melanogaster. an isofemale linesanalysis. Genetics, Selection, Evolution1994,26:229-251.
    63. David J.R., Araripe L.O., Chakir M., Legout H., Lemos B., Petavy G., Rohmer C., Joly D.,Moreteau B., Male sterility at extreme temperatures: a significant but neglected phenomenon forunderstanding Drosophila climatic adaptations. Journal of Evolutionary Biology2005,18(4):838-846.
    64. Dean G.J., Effect of temperature on the cereal aphids Metopolophium dirhodum (Wlk.),Rhopalosiphum padi (L.) and Macrosiphum avenue (F.)(Hem., Aphididae). Bulletin ofEntomological Research1974,63(03):401-409.
    65. Debarro P.J.,Maelzer D.A., Influence of high-temperatures on the survival of Rhopalosiphum Padi(L)(Hemiptera, Aphididae) in irrigated perennial grass pastures in South-Australia. AustralianJournal of Zoology1993,41(2):123-132.
    66. Denlinger D.L.,Yocum G.D. Physiology of heat sensitivity. Temperature sensitivity in insects andapplication in integrated pest management(ed.^(eds G.J. Hallman and D.L. Denlinger): WestviewPress Oxford, United Kingdom,1998.7-53
    67. Deutsch C.A., Tewksbury J.J., Huey R.B., Sheldon K.S., Ghalambor C.K., Haak D.C., Martin P.R.,From the Cover: Impacts of climate warming on terrestrial ectotherms across latitude. Proceedingsof the National Academy of Sciences2008,105(18):6668-6672.
    68. DiDomenico B.J., Bugaisky G.E., Lindquist S., Heat shock and recovery are mediated by differenttranslational mechanisms. Proceedings of the National Academy of Sciences1982,79(20):6181-6185.
    69. Dillon M.E., Cahn L.R.Y., Huey R.B., Life history consequences of temperature transients inDrosophila melanogaster. Journal of Experimental Biology2007,210(16):2897-2904.
    70. Dillon M.E., Wang G., Huey R.B., Global metabolic impacts of recent climate warming. Nature2010,467(7316):704-706.
    71. Dixon A., Aphid ecology: life cycles, polymorphism, and population regulation. Annual Review ofEcology and Systematics1977,8:329-353.
    72. Dixon A.F.G. Aphid ecology: an optimization approach. Springer,1998
    73. Dobzhansky T., Maternal effect as a cause of the difference between the reciprocal crosses inDrosophila pseudo bscura. Proceedings of the National Academy of Sciences of the United Statesof America1935,21(7):443.
    74. Dobzhansky T.,Sturtevant A., Further data on material effects in Drosophila pseudo bscurahybrids. Proceedings of the National Academy of Sciences of the United States of America1935,21(10):566.
    75. Dziminski M.A.,Alford R.A., Patterns and fitness consequences of intrac lutch variation in eggprovisioning in tropical Australian frogs. Oecologia2005,146(1):98-109.
    76. Easterling D., Evans J., Groisman P.Y., Karl T., Kunkel K., Ambenje P., Observed variability andtrends in extreme climate events: a brief review. Bulletin-American Meteorological Society2000a,81(3):417-426.
    77. Easterling D.R., Horton B., Jones P.D., Peterson T.C., Karl T.R., Parker D.E., Salinger M.J.,Razuvayev V., Plummer N., Jamason P., Maximum and minimum temperature trends for the globe.Science1997,277(5324):364.
    78. Easterling D.R., Karl T.R., Gallo K.P., Robinson D.A., Trenberth K.E., Dai A., Observed climatevariability and change of relevance to the biosphere. Journal of Geophysical Research2000b,105:194.
    79. Einum S.,Fleming I.A., Maternal effects of egg size in brown trout (Salmo trutta): norms ofreaction to environmental quality. Proceedings of the Royal Society of London. Series B:Biological Sciences1999,266(1433):2095-2100.
    80. Ernsting G.,Isaaks J., Effects of temperature and season on egg size, hatchling size and adult size inNotiophilus biguttatus. Ecological Entomology1997,22(1):32-40.
    81. Estay S.A., Clavijo-Baquet S., Lima M., Bozinovic F., Beyond average: an experimental test oftemperature variability on the population dynamics of Tribolium confusum. Population Ecology2011(53):53-58.
    82. Eubank W., Atmar J., Ellington J., The significance and thermodynamics of fluctuating versusstatic thermal environments on Heliothis zea egg development rates. Environmental Entomology1973,2(4):491-496.
    83. Falconer D.S., Introduction to quantitative genetics.1960.
    84. Fantinou A.A.,Chourdas M.T., Thermoperiodic effects on larval growth parameters of the Sesamianonagrioides (Lepidoptera: Noctuidae). Journal of Pest Science2006,79(1):43-49.
    85. Fantinou A.A., Perdikis D.C., Chatzoglou C.S., Development of immature stages of Sesamianonagrioides (Lepidoptera: Noctuidae) under alternating and constant temperatures.Environmental Entomology2003,32(6):1337-1342.
    86. Fasolo A.G.,Krebs R.A., A comparison of behavioural change in Drosophila during exposure tothermal stress. Biological journal of the Linnean Society2004,83(2):197-205.
    87. Feder J.H., Rossi J.M., Solomon J., Solomon N., Lindquist S., The consequences of expressinghsp70in Drosophila cells at normal temperatures. Genes&Development1992,6(8):1402-1413.
    88. Feder M., Blair N., Figueras H., Natural thermal stress and heat‐shock protein expression inDrosophila larvae and pupae. Functional Ecology1997,11(1):90-100.
    89. Feder M.E., Necrotic fruit: a novel model system for thermal ecologists. Journal of ThermalBiology1997,22(1):1-9.
    90. Feder M.E.,Hofmann G.E., Heat-shock proteins, molecular chaperones, and the stress response:evolutionary and ecological physiology. Annual Review of Physiology1999,61(1):243-282.
    91. Fischer K., Bauerfeind S.S., Fiedler K., Temperature-mediated plasticity in egg and body size inegg size-selected lines of a butterfly. Journal of Thermal Biology2006,31(4):347-354.
    92. Fischer K., Bot A., Brakefield P., Zwaan B., Fitness consequences of temperature‐mediated eggsize plasticity in a butterfly. Functional Ecology2003a,17(6):803-810.
    93. Fischer K., Eenhoorn E., Bot A.N.M., Brakefield P.M., Zwaan B.J., Cooler butterflies lay largereggs: developmental plasticity versus acclimation. Proceedings of the Royal Society of London.Series B: Biological Sciences2003b,270(1528):2051.
    94. Fischer K.,Karl I., Exploring plastic and genetic responses to temperature variation using copperbutterflies. Climate Research2010,43:17-30.
    95. Flynn D.F., Sudderth E.A., Bazzaz F., Effects of aphid herbivory on biomass and leaf-levelphysiology of Solanum dulcamara under elevated temperature and CO2. Environ Exp Bot2006,56(1):10-18.
    96. Folguera G., Bastías D.A., Bozinovic F., Impact of experimental thermal amplitude on ectothermperformance: Adaptation to climate change variability? Comparative Biochemistry andPhysiology-Part A: Molecular&Integrative Physiology2009,154(3):389-393.
    97. Folguera G., Bastías D.A., Caers J., Rojas J.M., Piulachs M.D., Bellés X., Bozinovic F., Anexperimental test of the role of environmental temperature variability on ectotherm molecular,physiological and life-history traits: Implications for global warming. Comparative Biochemistryand Physiology-Part A: Molecular&Integrative Physiology2011,159(3):242-246.
    98. Forster J.,Hirst A.G., The temperature‐size rule emerges from ontogenetic differences betweengrowth and development rates. Functional Ecology2012,26(2):483-492.
    99. Fox C.W.,Czesak M.E., Evolutionary ecology of progeny size in arthropods. Annual Review ofEntomology2000,45(1):341-369.
    100. Frich P., Alexander L., Della-Marta P., Gleason B., Haylock M., Klein Tank A., Peterson T.,Observed coherent changes in climatic extremes during the second half of the twentieth century.Climate Research2002,19(3):193-212.
    101. Gabriel W., Luttbeg B., Sih A., Tollrian R., Environmental tolerance, heterogeneity, and theevolution of reversible plastic responses. The American Naturalist2005,166(3):339-353.
    102. Galloway L.F., The effect of maternal and paternal environments on seed characters in theherbaceous plant Campanula americana (Campanulaceae). American journal of botany2001,88(5):832-840.
    103. Galloway L.F., Response to natural environmental heterogeneity: maternal effects and selection onlife-history characters and plasticities in Mimulus guttatus. Evolution1995:1095-1107.
    104. Garbutt J.S., Scholefield J.A., Vale P.F., Little T.J., Elevated maternal temperature enhancesoffspring disease resistance in Daphnia magna. Functional Ecology2013.
    105. Gehring W.J.,Wehner R., Heat shock protein synthesis and thermotolerance in Cataglyphis, an antfrom the Sahara desert. Proceedings of the National Academy of Sciences1995,92(7):2994-2998.
    106. Geister T.L.,Fischer K., Testing the beneficial acclimation hypothesis: temperature effects onmating success in a butterfly. Behavioral Ecology2007,18(4):658-664.
    107. Georges A., Beggs K., Young J.E., Doody J.S., Modelling development of reptile embryos underfluctuating temperature regimes. Physiological and biochemical zoology2005,78(1):18-30.
    108. Geyspitz K.,Zarankina A., Some features of the photoperiodic reaction of Dasychira pudibundaL.(Lepidoptera, Orgyidae). Entomologicheskoe Obozrenie1963,42:29-38.
    109. Gibbs M., Van Dyck H., Karlsson B., Reproductive plasticity, ovarian dynamics and maternaleffects in response to temperature and flight in Pararge aegeria. Journal of insect physiology2010,56(9):1275-1283.
    110. Gibert P., Huey R.B., Gilchrist G.W., Locomotor performance of Drosophila melanogaster:interactions among developmental and adult temperatures, age, and geography. Evolution2001,55(1):205-209.
    111. Gilchrist G.W.,Huey R.B., Parental and developmental temperature effects on the thermaldependence of fitness in Drosophila melanogaster. Evolution2001,55(1):209-214.
    112. Gillespie D.R., Nasreen A., Moffat C.E., Clarke P., Roitberg B.D., Effects of simulated heat waveson an experimental community of pepper plants, green peach aphids and two parasitoid species.Oikos2012,121(1):149-159.
    113. Goto S.G., Expression of Drosophila homologue of senescence marker protein-30during coldacclimation. Journal of insect physiology2000,46(7):1111-1120.
    114. Goto S.G.,Kimura M.T., Heat-and cold-shock responses and temperature adaptations in subtropicaland temperate species of Drosophila. Journal of Insect Physiology1998,44(12):1233-1239.
    115. Gray E.M.,Bradley T.J., Metabolic rate in female Culex tarsalis (Diptera: Culic idae): age, size,activity, and feeding effects. Journal of medical entomology2003,40(6):903-911.
    116. Griffiths E.,Wratten S., Intra-and inter-specific differences in cereal aphid low-temperaturetolerance. Entomologia Experimentalis et Applicata1979,26(2):161-167.
    117. Gupta A.P.,Lewontin R., A study of reaction norms in natural populations of Drosophilapseudoobscura. Evolution1982:934-948.
    118. Hagstrum D.W.,Milliken G.A., Modeling differences in insect developmental times betweenconstant and fluctuating temperatures. Annals of the Entomological Society of America1991,84(4):369-379.
    119. Hardie J., Juvenile hormone and photoperiodically controlled polymorphism in Aphis fabae:Prenatal effects on presumptive oviparae. Journal of Insect Physiology1981a,27(4):257-265.
    120. Hardie J., Juvenile hormone and photoperiodically controlled polymorphism in Aphis fabae:Postnatal effects on presumptive gynoparae. Journal of Insect Physiology1981b,27(5):347-355.
    121. Hardie J.,Lees A., Photoperiodic regulation of the development of winged gynoparae in the aphid,Aphis fabae. Physiological entomology1983,8(4):385-391.
    122. Harrington R., Fleming R.A., Woiwod I.P., Climate change impacts on insect management andconservation in temperate regions: can they be predicted? Agricultural and Forest Entomology2001,3(4):233-240.
    123. Hazell S.P., Neve B.P., Groutides C., Douglas A.E., Blackburn T.M., Bale J.S., Hyperthermicaphids: insights into behaviour and mortality. Journal of Insect Physiology2010,56(2):123-131.
    124. Heath D.D.,Blouw D. Are maternal effects in fish adaptive or merely physiological side effects.Maternal effects as adaptations(ed.^(eds T.A. Mousseau and C.W. Fox): Oxford University Press,USA,1998.178-201
    125. Hercus M.J., Loeschcke V., Rattan S.I.S., Lifespan extension of Drosophila melanogaster throughhormesis by repeated mild heat stress. Biogerontology2003,4(3):149-156.
    126. Hoffmann A.A., Physiological climatic limits in Drosophila: patterns and implications. J Exp Biol2010,213(6):870-880.
    127. Hoffmann A.A.,Blows M.W., Species borders: ecological and evolutionary perspectives. Trends inEcology&Evolution1994,9(6):223-227.
    128. Hoffmann A.A., Chown S.L., Clusella-Trullas S., Fox C., Upper thermal limits in terrestrialectotherms: how constrained are they? Functional Ecology2012,27(4):934-949.
    129. Hoffmann A.A.,Parsons P.A. Evolutionary genetics and environmental stress. Oxford UniversityPress,1991
    130. Hoffmann A.A., S rensen J.G., Loeschcke V., Adaptation of Drosophila to temperature extremes:bringing together quantitative and molecular approaches. Journal of Thermal Biology2003,28(3):175-216.
    131. Hoffmann A.A.,Sgro C.M., Climate change and evolutionary adaptation. Nature2011,470(7335):479-485.
    132. Hoffmann K., Behrens W., Ressin W., Effects of a daily temperature cycle on ecdysteroid andcyclic nucleotide titres in adult female crickets, Gryllus bimaculatus. Physiological Entomology1981,6(4):375-385.
    133. Hofmann G.,Somero G., Evidence for protein damage at environmental temperatures: seasonalchanges in levels of ubiquitin conjugates and hsp70in the intertidal mussel Mytilus trossulus.Journal of Experimental Biology1995,198(7):1509.
    134. Hofmann G.E.,Todgham A.E., Living in the now: physiological mechanisms to tolerate a rapidlychanging environment. Annual Review of Physiology2010,72:127-145.
    135. Honek A., Femal size,reproduction and progeny size in pyrrhocoris apterus (Heteroptera,Pyrrhocoridae). Acta Entomologica Bohemoslovaca1992,89(3):169-178.
    136. Hood G.M., PopTools version3.2.5. Available on the internet. URL http://www.poptools.org2011.
    137. Hori Y.,Kimura M.T., Relationship between cold stupor and cold tolerance in Drosophila (Diptera:Drosophilidae). Environmental Entomology1998,27(6):1297-1302.
    138. Huang L.H., Chen B., Kang L., Impact of mild temperature hardening on thermotolerance,fecundity, and Hsp gene expression in Liriomyza huidobrensis. Journal of Insect Physiology2007,53(12):1199-1205.
    139. Huestis D.L.,Marshall J.L., Interaction between maternal effects and temperature affects diapauseoccurrence in the cricket Allonemobius socius. Oecologia2006,146(4):513-520.
    140. Huey R.,Berrigan D., eds. Testing evolutionary hypotheses of acclimation. Animals andtemperature: Phenotypic and evolutionary adaptation.1996.205-237.
    141. Huey R.B., Berrigan D., Gilchrist G.W., Herron J.C., Testing the adaptive significance ofacclimation: a strong inference approach. American Zoologist1999,39(2):323-336.
    142. Huey R.B.,Kingsolver J.G., Evolution of thermal sensitivity of ectotherm performance. Trends inEcology&Evolution1989,4(5):131-135.
    143. Huey R.B., Wakefield T., Crill W.D., Gilchrist G.W., Within-and between-generation effects oftemperature on early fecundity of Drosophila melanogaster. Heredity1995,74(2):216-223.
    144. Imasheva A.G., Loeschcke V., Zhivotovsky L.A., Lazebny O.E., Effects of extreme temperatureson phenotypic variation and developmental stability in Drosophila melanogaster and Drosophilabuzzatii. Biological Journal of the Linnean Society1997,61(1):117-126.
    145. IPCC, Climate change2007: The physical science basis. Contribution of Working Group I to thefourth assessment report of the Intergovernmental Panel on Climate Change.2007, New York:Cambridge University Press.
    146. Ismaeil I., Doury G., Desouhant E., Dubois F., Prevost G., Couty A., Trans-generational effects ofmild heat stress on the life history traits of an aphid parasitoid. PLoS ONE2013,8(2): e54306.
    147. J rgensen K.T., S rensen J.G., Bundgaard J., Heat tolerance and the effect of mild heat stress onreproductive characters in Drosophila buzzatii males. Journal of Thermal Biology2006,31(3):280-286.
    148. Jenkins N.L.,Hoffmann A.A., Genetic and maternal variation for heat resistance in Drosophilafrom the field. Genetics1994,137(3):783.
    149. Jensen D., Overgaard J., S rensen J.G., The influence of developmental stage on cold shockresistance and ability to cold-harden in Drosophila melanogaster. Journal of Insect Physiology2007,53(2):179-186.
    150. Johnston I.,Wilson R.S. Temperature-induced developmental plasticity in ectotherms. Comparativedevelopmental physiology Contributions,Tools and Trends(ed.^(eds S. Warburton, W. Burggren, B.Pelster, C. Reiber, and J. Spicer): Oxford University Press,2006.124-138
    151. Joshi D., Effect of fluctuating and constant temperatures on development, adult longevity andfecundity in the mosquito Aedes krombeini. Journal of Thermal Biology1996,21(3):151-154.
    152. Kaplan R.H., Greater maternal investment can decrease offspring survival in the frog Bombinaorientalis. Ecology1992,73(1):280-288.
    153. Kaplan R.H.,Phillips P.C., Ecological and developmental context of natural selection: maternaleffects and thermally induced plastic ity in the frog Bombina orientalis. Evolution2006,60(1):142-156.
    154. Karl I., Geister T.L., Fischer K., Intraspecific variation in wing and pupal melanization in copperbutterflies (Lepidoptera: Lycaenidae). Biological journal of the Linnean Society2009,98(2):301-312.
    155. Karl T.R., Jones P.D., Knight R.W., Kukla G., Plummer N., Razuvayev V., Gallo K.P., Lindseay J.,Charlson R.J., Peterson T.C., Asymmetric trends of daily maximum and minimum temperature.Bulletin of the American Meteorological Society1993,74(6):1007-1023.
    156. Kelty J.D.,Lee R.E., Induction of rapid cold hardening by cooling at ecologically relevant rates inDrosophila melanogaster. Journal of Insect Physiology1999,45(8):719-726.
    157. Kelty J.D.,Lee R.E., Rapid cold-hardening of Drosophila melanogaster (Diptera: Drosophiladae)during ecologically based thermoperiodic cycles. Journal of experimental biology2001,204(9):1659-1666.
    158. Kieckhefer R.W., Elliott N.C., Walgenbach D.D., Effects of constant and fluctuating temperatureson developmental rates and demographic statistics of the English grain aphid (Homoptera:Aphididae). Annals of the Entomological Society of America1989,82(6):701-706.
    159. Kingsolver J.G., Feeding, growth, and the thermal environment of cabbage white caterpillars, Pierisrapae L. Physiological and Biochemical Zoology2000,73(5):621-628.
    160. Kingsolver J.G., Izem R., Ragland G.J., Plasticity of size and growth in fluctuating thermalenvironments: comparing reaction norms and performance curves. Integrative and ComparativeBiology2004,44(6):450-460.
    161. Kingsolver J.G., Ragland G.J., Diamond S.E., Evolution in a constant environment: thermalfluctuations and thermal sensitivity of laboratory and field populations of Manduca sexta.Evolution2009,63(2):537-541.
    162. Kingsolver J.G.,Watt W.B., Mechanistic constraints and optimality models: thermoregulatorystrategies in Colias butterflies. Ecology1984:1835-1839.
    163. Klok C.,Chown S.L., Resistance to temperature extremes in sub-Antarctic weevils: interspecificvariation, population differentiation and acclimation. Biological Journal of the Linnean Society2003,78(3):401-414.
    164. Kofman O., The role of prenatal stress in the etiology of developmental behavioural disorders.Neuroscience&Biobehavioral Reviews2002,26(4):457-470.
    165. Koveos D.S., Rapid cold hardening in the olive fruit fly Bactrocera oleae under laboratory andfield conditions. Entomologia Experimentalis et Applicata2001,101(3):257-263.
    166. Krebs R.A.,Feder M.E., Deleterious consequences of Hsp70overexpression in Drosphillamelanogaster larvae. Cell Stress&Chaperones1997,2(1):60.
    167. Krebs R.A.,Loeschcke V., Costs and benefits of activation of the heat-shock response inDrosophila melanogaster. Functional Ecology1994a,8(6):730-737.
    168. Krebs R.A.,Loeschcke V., Effects of exposure to short‐term heat stress on fitness components inDrosophila melanogaster. Journal of Evolutionary Biology1994b,7(1):39-49.
    169. Krstevska B.,Hoffmann A.A., The effects of acclimation and rearing conditions on the response oftropical and temperate populations of Drosophila melanogaster and D. simulans to a temperaturegradient (Diptera: Drosophilidae). Journal of Insect Behavior1994,7(3):279-288.
    170. Krug P.J., Bet-hedging dispersal strategy of a specialist marine herbivore: a settlement dimorphismamong sibling larvae of Alderia modesta. Marine Ecology Progress Series2001,213:177-192.
    171. Krug P.J.,Zimmer R.K., Developmental dimorphism and expression of chemosensory-mediatedbehavior: habitat selection by a specialist marine herbivore. Journal of Experimental Biology2000,203(11):1741-1754.
    172. Laaksonen T., Hatching asynchrony as a bet‐hedging strategy–an offspring diversity hypothesis.Oikos2004,104(3):616-620.
    173. Lachenicht M., Clusella-Trullas S., Boardman L., Le Roux C., Terblanche J., Effects of acclimationtemperature on thermal tolerance, locomotion performance and respiratory metabolism in Achetadomesticus L.(Orthoptera: Gryllidae). Journal of Insect Physiology2010,56(7):822-830.
    174. Lactin D.J., Holliday N., Johnson D., Craigen R., Improved rate model of temperature-dependentdevelopment by arthropods. Environmental Entomology1995,24(1):68-75.
    175. Lagerspetz K.Y.H., What is thermal acclimation? Journal of Thermal Biology2006,31(4):332-336.
    176. Lamb K., Some effects of fluctuating temperatures on metabolism, development, and rate ofpopulation growth in the cabbage aphid, Brevicoryne brassicae. Ecology1961,42(4):740-745.
    177. Lambrechts L., Paaijmans K.P., Fansiri T., Carrington L.B., Kramer L.D., Thomas M.B., Scott T.W.,Impact of daily temperature fluctuations on dengue virus transmission by Aedes aegypti.Proceedings of the National Academy of Sciences2011,108(18):7460-7465.
    178. Landsberg J.,Smith M.S., A functional scheme for predicting the outbreak potential of herbivorousinsects under global atmospheric change. Australian Journal of Botany1992,40(5):565-577.
    179. Laughlin R., Biology and ecology of the garden chafer, Phyllopertha horticola (L.).VIII.—Temperature and larval growth. Bulletin of Entomological Research1964,54(04):745-759.
    180. Lee R.E., Chen C.P., Denlinger D.L., A rapid cold-hardening process in insects. Science1987,238(4832):1415-1417.
    181. Lee R.E., Elnitsky M.A., Rinehart J.P., Hayward S.A., Sandro L.H., Denlinger D.L., Rapidcold-hardening increases the freezing tolerance of the Antarctic midge Belgica antarctica. J ournalof Experimental Biology2006,209(Pt3):399-406.
    182. Leroi A.M., Bennett A.F., Lenski R.E., Temperature acclimation and competitive fitness: anexperimental test of the beneficial acclimation assumption. Proceedings of the National Academyof Sciences1994,91(5):1917-1921.
    183. Levins R., Thermal acclimation and heat resistance in Drosophila species. American Naturalist1969:483-499.
    184. Lewontin R., On the measurement or relative variability. Systematic Zoology1966,15:141-142.
    185. Li H.M., Studies on the population ecology of English grain aphid. Journal of Jishou University1990,11:59-70.
    186. Liefting M., Weerenbeck M., Van Dooremalen C., Ellers J., Temperature-induced plasticity in eggsize and resistance of eggs to temperature stress in a soil arthropod. Functional Ecology2010,24(6):1291-1298.
    187. Lindquist S., The heat-shock response. Annual Review of Biochemistry1986,55(1):1151-1191.
    188. Lindquist S.,Craig E.A., The heat-shock proteins. Annual Review of Genetics1988,22(1):631-677.
    189. Lindstr m J., Early development and fitness in birds and mammals. Trends in Ec ology&Evolution1999,14(9):343-348.
    190. Liu S.S., Chen F.Z., Zalucki M.P., Development and survival of the diamondback moth(Lepidoptera: Plutellidae) at constant and alternating temperatures. Environmental Entomology2002,31(2):221-231.
    191. Liu S.S., Zhang G.M., Zhu J., Influence of temperature variations on rate of development in insects:analysis of case studies from entomological literature. Annals of the Entomological Society ofAmerica1995,88(2):107-119.
    192. Loeschcke V.,Hoffmann A.A., Consequences of heat hardening on a field fitness component inDrosophila depend on environmental temperature. The American Naturalist2007,169(2):175-183.
    193. Luckinbill L., Selection for longevity confers resistance to low-temperature stress in Drosophilamelanogaster. The Journals of Gerontology Series A: Biological Sciences and Medical Sciences1998,53(2): B147-B153.
    194. Luterbacher J., Dietrich D., Xoplaki E., Grosjean M., Wanner H., European seasonal and annualtemperature variability, trends, and extremes since1500. Science2004,303(5663):1499-1503.
    195. Lykouressis D., A comparative study of different aphid population parameters in assessingresistance in cereals. Zeitschrift für Angewandte Entomologie1984,97(1-5):77-84.
    196. Lykouressis D.P., Temperature requirements of Sitobion avenae (F.) necessary for ecologicalstudies, by assessing methods for the estimation of instar duration. Zeitschrift für AngewandteEntomologie1985,100(1-5):479-493.
    197. Ma C.S., Hau B., Poehling H.M., The effect of heat stress on the survival of the rose grain aphid,Metopolophium dirhodum (Hemiptera: Aphididae). European Journal of Entomology2004a,101:327-332.
    198. Ma C.S., Hau B., Poehling H.M., Effects of pattern and timing of high temperature exposure onreproduction of the rose grain aphid, Metopolophium dirhodum. Entomologia Experimentalis etApplicata2004b,110(1):65-71.
    199. Ma G.,Ma C.S., Climate warming may increase aphids' dropping probabilities in response to hightemperatures. Journal of Insect Physiology2012a,58(11):1456-1462.
    200. Ma G.,Ma C.S., Effect of acclimation on heat-escape temperatures of two aphid species:Implications for estimating behavioral response of insects to climate warming. Journal of InsectPhysiology2012b,58(3):303-309.
    201. Mahroof R., Subramanyam B., Flinn P., Reproductive performance of Tribolium castaneum(Coleoptera: Tenebrionidae) exposed to the minimum heat treatment temperature as pupae andadults. Journal of Economic Entomology2005,98(2):626-633.
    202. Marshall D.J., Bonduriansky R., Bussi¨¨re L.F., Offspring size variation within broods as abet-hedging strategy in unpredictable environments. Ecology2008,89(9):2506-2517.
    203. Marshall D.J.,Keough M.J., Variable effects of larval size on post-metamorphic performance in thefield. Marine Ecology Progress Series2004,279:73-80.
    204. Marshall K.E.,Sinclair B.J., The impacts of repeated cold exposure on insects. The Journal ofExperimental Biology2012,215(10):1607-1613.
    205. Marshall K.E.,Sinclair B.J., Repeated stress exposure results in a survival-reproduction trade-off inDrosophila melanogaster. Proceedings of the Royal Society B: Biological Sciences2010,277(1683):963.
    206. Martin T.L.,Huey R.B., Why―suboptimal‖is optimal: Jensen’s inequality and ectotherm thermalpreferences. The American Naturalist2008,171(3): E102-E118.
    207. McCormick M.I., Mothers matter: crowding leads to stressed mothers and smaller offspring inmarine fish. Ecology2006,87(5):1104-1109.
    208. Meats A.,Kelly G., Relation of constant, daily fluctuating, and ambient feeding temperature to dailyand accumulated consumption of yeast autolysate and sucrose by female Queensland fruit fly.Entomologia Experimentalis et Applicata2008,129(1):87-95.
    209. Meehl G.A.,Tebaldi C., More Intense, More Frequent, and Longer Lasting Heat Waves in the21stCentury. Science2004,305(5686):994-997.
    210. Menéndez R., How are insects responding to global warming? Tijdschrift voor Entomologie2007,150(2):355.
    211. Messenger P.S.,Flitters N.E., Effect of variable temperature environments on egg development ofthree species of fruit flies. Annals of the Entomological Society of America1959,52(2):191-204.
    212. Mironidis G.K.,Savopoulou-Soultani M., Development, survivorship, and reproduction ofHelicoverpa armigera (Lepidoptera: Noctuidae) under constant and alternating temperatures.Environmental Entomology2008,37(1):16-28.
    213. Mironidis G.K.,Savopoulou-Soultani M., Effects of heat shock on survival and reproduction ofHelicoverpa armigera (Lepidoptera: Noctuidae) adults. Journal of Thermal Biology2010,35(2):59-69.
    214. Mitchell K.A.,Hoffmann A.A., Thermal ramping rate influences evolutionary potential and speciesdifferences for upper thermal limits in Drosophila. Functional Ecology2010,24(3):694-700.
    215. Monaghan P., Early growth conditions, phenotypic development and environmental change.Philosophical Transactions of the Royal Society B: Biological Sciences2008,363(1497):1635-1645.
    216. Mousseau T.A.,Dingle H., Maternal effects in insect life histories. Annual Review of Entomology1991,36(1):511-534.
    217. Mousseau T.A.,Fox C.W., The adaptive significance of maternal effects. Trends in Ecology&Evolution1998a,13(10):403-407.
    218. Mousseau T.A.,Fox C.W. Maternal effects as adaptations. Oxford University Press, USA,1998b
    219. Mousseau T.A., Uller T., Wapstra E., Badyaev A.V., Evolution of maternal effects: past and present.Philosophical Transactions of the Royal Society B: Biological Sciences2009,364(1520):1035.
    220. Naranjo S.E., Gibson R.L., Walgenbach D.D., Development, survival, and reproduction ofScymnus frontalis (Coleoptera: Coccinellidae), an imported predator of Russian wheat aphid, atfour fluctuating temperatures. Annals of the Entomological Society of America1990,83(3):527-531.
    221. Niehaus A.C., Angilletta M.J., Sears M.W., Franklin C.E., Wilson R.S., Predicting thephysiological performance of ectotherms in fluctuating thermal environments. The Journal ofExperimental Biology2012,215(4):694-701.
    222. Nyamukondiwa C.,Terblanche J.S., Within-generation variation of critical thermal limits in adultMediterranean and Natal fruit flies Ceratitis capitata and Ceratitis rosa: thermal history affectsshort-term responses to temperature. Physiological Entomology2010,35(3):255-264.
    223. Nylin S.,Gotthard K., Plasticity in life-history traits. Annual Review of Entomology1998,43(1):63-83.
    224. Ohtsu T., Katagiri C., Kimura M.T., Biochemical aspects of climatic adaptations in Drosophilacurviceps, D. immigrans, and D. albomicans (Diptera: Drosophilidae). Environmental Entomology1999,28(6):968-972.
    225. Orizaola G.,Laurila A., Microgeographic variation in the effects of larval temperature environmenton juvenile morphology and locomotion in the pool frog. Journal of Zoology2009,277(4):267-274.
    226. Ottenheim M.M.,Volmer A.D., Wing length plasticity in Eristalis arbustorum (Diptera: Syrphidae).Netherlands Journal of Zoology1999,49(1):15-27.
    227. P rtner H.O., Bennett A.F., Bozinovic F., Clarke A., Lardies M.A., Lucassen M., Pelster B.,Schiemer F., Stillman J.H., Trade‐Offs in Thermal Adaptation: The Need for a Molecular toEcological Integration*. Physiological and Biochemical Zoology2006,79(2):295-313.
    228. Pétavy G., David J.R., Debat V., Gibert P., Moreteau B., Specific effects of cycling stressfultemperatures upon phenotypic and genetic variability of size traits in Drosophila melanogaster.Evolutionary Ecology Research2004,6(6):873-890.
    229. Paaijmans K.P., Blanford S., Bell A.S., Blanford J.I., Read A.F., Thomas M.B., Influence of climateon malaria transmission depends on daily temperature variation. Proceedings of the NationalAcademy of Sciences2010,107(34):15135-15139.
    230. Parmesan C.,Yohe G., A globally coherent fingerprint of climate change impacts across naturalsystems. Nature2003,421(6918):37-42.
    231. Piersma T.,Drent J., Phenotypic flexibility and the evolution of organismal design. Trends inEcology&Evolution2003,18(5):228-233.
    232. Pigliucci M., Evolution of phenotypic plasticity: where are we going now? Trends in Ecology&Evolution2005,20(9):481-486.
    233. Potter K.A., Davidowitz G., Arthur Woods H., Cross‐stage consequences of egg temperature inthe insect Manduca sexta. Functional Ecology2011,25(3):548–556.
    234. Precht H., J. Christophersen u. H. Hensel: Temperatur und Leben. Springer-Verlag,Berlin—G ttingen—Heidelberg1955,27:351.
    235. Prosser C., Physiological variation in animals. Biological Reviews1955,30(3):229-261.
    236. Ragland G.J.,Kingsolver J.G., The effect of fluctuating temperatures on ectotherm life-history traits:comparisons among geographic populations of Wyeomyia smithii. Evolutionary Ecology Research2008,10(1):29-44.
    237. Reeves R.B., The interaction of body temperature and acid-base balance in ectothermic vertebrates.Annual Review of Physiology1977,39(1):559-586.
    238. Rinehart J.P., Hayward S.A.L., Elnitsky M.A., Sandro L.H., Lee R.E., Denlinger D.L., Continuousup-regulation of heat shock proteins in larvae, but not adults, of a polar insect. Proceedings of theNational Academy of Sciences2006,103(38):14223.
    239. Rinehart J.P., Yocum G.D., Denlinger D.L., Thermotolerance and rapid cold hardening amelioratethe negative effects of brief exposures to high or low temperatures on fec undity in the flesh fly,Sarcophaga crassipalpis. Physiological Entomology2000,25(4):330-336.
    240. Rohlfs M.,Hoffmeister T.S., Maternal effects increase survival probability in Drosophilasubobscura larvae. Entomologia Experimentalis et Applicata2005,117(1):51-58.
    241. Rohmer C., Heat induced male sterility in Drosophila melanogaster: adaptive genetic variationsamong geographic populations and role of the Y chromosome. Journal of Experimental Biology2004,207(16):2735-2743.
    242. Ross L., Dealey E.J., Beukeboom L.W., Shuker D.M., Temperature, age of mating and starvationdetermine the role of maternal effects on sex allocation in the mealybug Planococcus citri.Behavioral Ecology and Sociobiology2011,65(5):909-919.
    243. Rossiter M., Maternal effects generate variation in life history: consequences of egg weightplasticity in the gypsy moth. Functional Ecology1991:386-393.
    244. Roux O., Le Lann C., Van Alphen J., Van Baaren J., How does heat shock affect the life historytraits of adults and progeny of the aphid parasitoid Aphidius avenae (Hymenoptera: Aphidiidae)?Bulletin of Entomological Research2010,100(5):543-549.
    245. Ruel J.J.,Ayres M.P., Jensen’s inequality predicts effects of environmental variation. Trends inEcology&Evolution1999,14(9):361-366.
    246. S rensen J.G., Application of heat shock protein expression for detecting natural adaptation andexposure to stress in natural populations. Current Zoology2010,56:703-713.
    247. S rensen J.G., Kristensen T.N., Loeschcke V., The evolutionary and ecological role of heat shoc kproteins. Ecology Letters2003,6(11):1025-1037.
    248. Sakwińska O., Persistent maternal identity effects on life history traits in Daphnia. Oecologia2004,138(3):379-386.
    249. Scannapieco A.C., S rensen J.G., Loeschcke V., Norry F.M., Heat-induced hormesis in longevity oftwo sibling Drosophila species. Biogerontology2007,8(3):315-325.
    250. Sch r C., Vidale P.L., Lüthi D., Frei C., H berli C., Liniger M.A., Appenzeller C., The role ofincreasing temperature variability in European summer heatwaves. Nature2004,427(6972):332-336.
    251. Scharf I., Bauerfeind S.S., Blanckenhorn W.U., Sch fer M.A., Effects of maternal and offspringenvironmental conditions on growth, development and diapause in latitudinal yellow dung flypopulations. Climate Research2010,43:115-125.
    252. Scriber J.M.,Sonke B., Effects of diurnal temperature range on adult size and emergence timesfrom diapausing pupae in Papilio glaucus and P. canadensis (Papilionidae). Insect Science2011,18(4):435-442.
    253. Sejerkilde M., S rensen J.G., Loeschcke V., Effects of cold-and heat hardening on thermalresistance in Drosophila melanogaster. Journal of Insect Physiology2003,49(8):719-726.
    254. Sengonca C., Hoffmann A., Kleinhenz B., Investigations on development, survival and fertility ofthe cereal aphids Sitobion avenae (F.) and Rhopalosiphum padi (L.)(Hom., Aphididae) at differentlow temperatures. Journal of Applied Entomology1994,117:224-233.
    255. Sharpe P.J.H.,DeMichele D.W., Reaction kinetics of poikilotherm development. Journal ofTheoretical Biology1977,64(4):649-670.
    256. Shreve S.M., Kelty J.D., Lee R.E., Preservation of reproductive behaviors during modest cooling:rapid cold-hardening fine-tunes organismal response. Journal of Experimental Biology2004,207(11):1797-1802.
    257. Silbermann R.,Tatar M., Reproductive costs of heat shock protein in transgenic Drosophilamelanogaster. Evolution2000,54(6):2038-2045.
    258. Sinclair B.J.,Chown S.L., Climatic variability and hemispheric differences in insect cold tolerance:support from southern Africa. Functional Ecology2005,19(2):214-221.
    259. Singer M.A.,Lindquist S., Multiple effects of trehalose on protein folding in vitro and in vivo.Molecular Cell1998,1(5):639-648.
    260. Smith J.M., Acclimatization to high temperatures in inbred and outbred Drosophila subobscura.Journal of Genetics1956,54:497-505.
    261. Steigenga M.J.,Fischer K., Within-and between-generation effects of temperature on life-historytraits in a butterfly. Journal of Thermal Biology2007,32(7-8):396-405.
    262. Stevens D.J., Pupal development temperature alters adult phenotype in the speckled wood butterfly,Pararge aegeria. Journal of Thermal Biology2004,29(4-5):205-210.
    263. Stillman J.H., Acclimation capacity underlies susceptibility to climate change. Science2003,301(5629):65.
    264. Stillwell R.C.,Fox C.W., Complex patterns of phenotypic plasticity: interactive effects oftemperature during rearing and oviposition. Ecology2005,86(4):924-934.
    265. Stone D.,Weaver A., Factors contributing to diurnal temperature range trends in twentieth andtwenty-first century simulations of the CCCma coupled model. Climate Dynamics2003,20(5):435-445.
    266. Sweeney B.W.,Schnack J.A., Egg development, growth, and metabolism of Sigara alternata (Say)(Hemiptera: Corixidae) in fluctuating thermal environments. Ecology1977,58(2):265-277.
    267. Tassou K.T.,Schulz R., Combined effects of temperature and pyriproxyfen stress in a full life-cycletest with Chironomus riparius (Insecta). Environmental toxicology and chemistry/SETAC2012,31(10):2384-2390.
    268. Terblanche J., Klok C., Chown S., Metabolic rate variation in Glossina pallidipes (Diptera:Glossinidae): gender, ageing and repeatability. Journal of Insect Physiology2004,50(5):419-428.
    269. Terblanche J.S.,Chown S.L., The relative contributions of developmental plasticity and adultacclimation to physiological variation in the tsetse fly, Glossina pallidipes (Diptera, Glossinidae).Journal of Experimental Biology2006,209(6):1064.
    270. Terblanche J.S., Klok C.J., Krafsur E.S., Chown S.L., Phenotypic plasticity and geographicvariation in thermal tolerance and water loss of the tsetse fly,Glossina pallidipes (Diptera:Glossinidae): implications for distribution modelling. the American Journal of Tropical Medicineand Hygiene2006,74(5):786-794.
    271. Terblanche J.S., Sinclair B.J., Jaco Klok C., McFarlane M.L., Chown S.L., The effects ofacclimation on thermal tolerance, desiccation resistance and metabolic rate in Chirodicachalcoptera (Coleoptera: Chrysomelidae). Journal of Insect Physiology2005,51(9):1013-1023.
    272. Thomas C.D., Cameron A., Green R.E., Bakkenes M., Beaumont L.J., Collingham Y.C., ErasmusB.F.N., De Siqueira M.F., Grainger A., Hannah L., Extinction risk from climate change. Nature2004,427(6970):145-148.
    273. Toonen R.J.,Pawlik J.R., Foundations of gregariousness: a dispersal polymorphism among theplanktonic larvae of a marine invertebrate. Evolution2001,55(12):2439-2454.
    274. Tregenza T., Wedell N., Hosken D.J., Ward P.I., Maternal effects on offspring depend on femalemating pattern and offspring environment in yellow dung flies. Evolution2003,57(2):297-304.
    275. Triggs A.M.,Knell R.J., Parental diet has strong transgenerational effects on offspring immunity.Functional Ecology2012,26(6):1409-1417.
    276. van Dooremalen C., Berg M.P., Ellers J., Acclimation responses to temperature vary with verticalstratification: implications for vulnerability of soil-dwelling species to extreme temperature events.Global Change Biology2013,19(3):975-984.
    277. Van Dyck H.,Matthysen E., Thermoregulatory differences between phenotypes in the speckledwood butterfly: hot perchers and cold patrollers? Oecologia1998,114(3):326-334.
    278. van Emden H.F.,Harrington R. Aphids as crop pests. CABI,2007
    279. Verbeke P., Fonager J., Clark B.F.C., Rattan S.I.S., Heat shock response and ageing: mechanismsand applications. Cell Biology International2001,25(9):845-857.
    280. Vose R.S., Easterling D.R., Gleason B., Maximum and minimum temperature trends for the globe:An update through2004. Geophysical Research Letters2005,32(23): L23822.
    281. Wade M.J. The evolutionary genetics of maternal effects. Oxford University Press, USA,1998,5-21
    282. Walton A.,Hammond J., The maternal effects on growth and conformation in Shire horse-Shetlandpony crosses. Proceedings of the Royal Society B: Biological Sciences1938,125:311-335.
    283. Wehner R., Marsh A., Wehner S., Desert ants on a thermal tightrope. Nature1992,357:586-587.
    284. Welbergen J.A., Klose S.M., Markus N., Eby P., Climate change and the effects of temperatureextremes on Australian flying-foxes. Proceedings of the Royal Society B: Biological Sciences2008,275(1633):419-425.
    285. Whitney-Johnson A., Thompson M., Hon E., Responses to predicted Global warming in Pierisrapae L.(Lepidoptera): consequences of nocturnal versus diurnal temperature change on fitnesscomponents. Environmental Entomology2005,34(3):535-540.
    286. Wilson R.S.,Franklin C.E., Testing the benefic ial acclimation hypothesis. Trends in Ecology&Evolution2002,17(2):66-70.
    287. Woods H.A.,Harrison J.F., Interpreting rejections of the beneficial acclimation hypothesis: when isphysiological plasticity adaptive? Evolution2002,56(9):1863-1866.
    288. Worner S.P., Performance of phenological models under variable temperature regimes:consequences of the Kaufmann or rate summation effect. Environmental Entomology1992,21(4):689-699.
    289. Wu T., Hao S., Sun O.J., Kang L., Specificity responses of grasshoppers in temperate grasslands todiel asymmetric warming. PLoS ONE2012,7(7): e41764.
    290. Wyatt I.,White P., Simple estimation of intrinsic increase rates for aphids and tetranychid mites.Journal of Applied Ecology1977:757-766.
    291. Yang Y.,Stamp N.E., Simultaneous effects of night-time temperature and an allelochemical onperformance of an insect herbivore. Oecologia1995,104(2):225-233.
    292. Yoder J.A., Chambers M.J., Tank J.L., Keeney G.D., High temperature effects on water loss andsurvival examining the hardiness of female adults of the spider beetles, Mezium affine and Gibbiumaequinoctiale. Journal of Insect Science2009,9.
    293. Zamudio K.R., Huey R.B., Crill W.D., Bigger isn't always better: body size, developmental andparental temperature and male territorial success in Drosophila melanogaster. Animal Behaviour1995,49(3):671-677.
    294. Zera A.J.,Denno R.F., Physiology and ecology of dispersal polymorphism in insects. AnnualReview of Entomology1997,42(1):207-230.
    295. Zhang J., Marshall K.E., Westwood J.T., Clark M.S., Sinclair B.J., Divergent transcriptomicresponses to repeated and single cold exposures in Drosophila melanogaster. The Journal ofExperimental Biology2011,214(23):4021-4029.
    296. Zhang W., Zhao F., Hoffmann A.A., Ma C.S., A single hot event that does not affect survival butdecreases reproduction in the diamondback moth, Plutella xylostella. PLoS ONE2013,8(10):e75923.
    297. Zhao F., Zhang W., Hoffman A.A., Ma C.S., Night warming on hot days produces novel impacts ondevelopment, survival and reproduction in a small arthropod. Journal of Animal Ecology2014.
    298. Zhou Z.-S., Rasmann S., Li M., Guo J.-Y., Chen H.-S., Wan F.-H., Cold temperatures increase coldhardiness in the next generation Ophraella communa Beetles. PloS ONE2013,8(9): e74760.
    299. Zizzari Z.V.,Ellers J., Effects of exposure to short-term heat stress on male reproductive fitness in asoil arthropod. Journal of Insect Physiology2011.