近中性CO_2饱和盐水溶液中缓蚀剂在碳钢表面吸附和缓蚀行为的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
溶液pH值的变化引起金属表面状态的变化,不仅对金属腐蚀行为有较大的影响,也会对缓蚀剂的吸附和缓蚀行为及相应的缓蚀机理等产生重要影响。关于CO2腐蚀用缓蚀剂的性能评价和机理研究,大部分工作是在含有CO2的酸性环境下进行,对于近中性环境下(例如油田产出水等)缓蚀剂的吸附和缓蚀行为尚缺乏系统性的研究。由于缓蚀剂的性能对环境有明显的依存性,在酸性环境下性能好的缓蚀剂在中性环境下常常表现不好,反之依然。对在近中性环境下缓蚀剂的吸附和缓蚀行为及相应缓蚀规律和机理的研究,不仅有助于阐释缓蚀剂随应用环境的变化相应缓蚀机理的差异,也能为近中性环境下缓蚀剂的选择和设计提供重要的参考依据。
     本研究采用具有简单分子结构的十二胺(有机碱)和月桂酸(有机酸)作为模型缓蚀剂,主要采用电化学和表面分析等方法,系统地研究了N80碳钢在近中性CO2饱和盐水溶液中的腐蚀行为及腐蚀机理;有机碱和有机酸在近中性CO2饱和盐水溶液中的吸附和缓蚀行为以及相应的缓蚀机理;同时也对近中性环境下有机碱和有机酸与腐蚀产物的相互作用进行了探讨。
     研究结果表明在近中性的CO2饱和盐水溶液中金属的腐蚀行为依赖于溶液的pH值。pH< 6.8,腐蚀的阴极过程受电化学反应过程控制;pH >6.8,腐蚀的阴极过程受传质过程控制;随溶液pH值的进一步增加,腐蚀的阴极过程受电化学反应和传质过程的混合控制。对腐蚀的阳极过程而言,pH<5.9,金属呈活性溶解的状态;pH 6.5时金属呈过渡态特征;pH >6.8,可以观察到典型的阳极钝化行为,在金属表面能够形成连续的腐蚀产物保护膜,但过高pH值会加快腐蚀产物膜的溶解。
     十二胺对金属的保护作用强烈地依赖于溶液的pH值,随溶液pH值的增加,十二胺的缓蚀性能增加,最低有效缓蚀浓度降低。在低pH值下,十二胺主要抑制金属腐蚀的阴极过程;在近中性pH值下,十二胺同时抑制金属腐蚀的阴、阳极过程。对缓蚀剂吸附状态的研究表明十二胺主要以未质子化的分子状态吸附在金属表面。在低pH值时,缓蚀剂分子主要以十二胺鎓离子的形式存在,荷正电的金属表面不利于鎓离子的吸附,金属表面分子吸附状态可能起因于十二胺鎓离子在金属阴极部位的还原吸附。高pH值时,缓蚀剂分子以分子状态存在的比例增大,分子状态的十二胺分子氮原子上的电子云密度比质子化状态时更大,使得在高pH值下缓蚀剂分子与金属原子的空‘d’轨道具有更强的配位能力,因此具有较大的吸附能力和吸附稳定性。
     从酸性到近中性pH值范围内,月桂酸抑制金属腐蚀的能力同样依赖于溶液的pH值。随溶液pH值的增加,月桂酸对金属腐蚀的抑制能力降低,相应的最低有效缓蚀浓度增加。月桂酸在金属表面上的吸附状态与在溶液中的存在状态不尽相同,低pH值时,月桂酸根离子在静电作用下吸附在金属表面,显著地改变了金属表面的荷电状态,使金属表面呈现电中性,有利于分子状态的月桂酸的进一步吸附,吸附的月桂酸分子中的羧基与呈活性溶解状态的金属发生化学键合,因此可以有效阻止金属腐蚀过程的进行。高pH值时,虽然呈阴离子状态的月桂酸根离子容易吸附在荷正电荷的金属表面,但是缓蚀剂的吸附并不能显著改变金属表面的电荷状态。另外在高pH值的条件下金属覆盖有一层保护性的腐蚀产物层,月桂酸根离子可能不容易在腐蚀产物表面附着吸附,因此在高pH值下缓蚀剂并不能完全阻止金属的腐蚀作用。
     腐蚀产物膜与缓蚀剂之间的相互作用与缓蚀剂的类型和溶液pH值相关。pH 6.9时十二胺对FeCO3晶体形貌影响不大,但月桂酸对FeCO3晶体存在明显的溶蚀作用;两种缓蚀剂对于FeCO3晶粒的进一步形成均有一定程度的抑制作用,缓蚀剂的加入降低了金属表面上的覆盖层与金属基体之间的结合力;十二胺对金属表面腐蚀产物膜的保护作用起正面的效果,而月桂酸的效果则相反。pH 7.4时,十二胺和月桂酸的加入虽然对FeCO3晶粒的形成仍然有一定程度的抑制作用,但缓蚀剂的加入却极大地促进了FeCO3晶粒的细化和有序排列,有效地提高了覆盖层与金属之间的结合力;十二胺和月桂酸不仅能有效抑制均匀腐蚀,同时还能降低N80碳钢对局部腐蚀的敏感性,其中十二胺的作用效果更加明显。
The change of the metal surface state with the change of pH value not only has influence on the corrosion behavior of the metal, but also can effect significantly on the adsorption behavior, inhibition efficiency and the inhibition mechanism of the inhibitors. Much work about the performance evaluation and mechanism investigation of the inhibitors is carried out in the CO2-containing acidic environment, less work in the near neutral environment such as the produced water containing CO2 in oil gas industries. The performance of the inhibitors is much environment-dependent, the inhibitors which behave well in acidic environment might have no role in neutral environment and vice verse. The investigation about the adsorption behavior, inhibition performance of the inhibitors in near neutral environments will facilitate not only to the better understanding of the inhibition mechanism of the inhibitors but also to the effective selection and successful design of new inhibitors in the near neutral environments.
     Dodecylamine (organic alkali) and lauric acid (organic acid) which have the simple molecule structures were considered as the model inhibitors in this work. Electrochemcal methods and surface analysis methods were used to investigate the corrosion behavior and the corrosion mechanism of N80 carbon steel in near neutral CO2-saturated brine solution. The inhibition performance, adsorption behavior and the inhibition mechanism of the inhibitors in near neutral environments were also investigated. Furthermore, the interaction between the inhibitors and the corrosion products formed in near neutral environments were studied.
     The results have shown the corrosion behavior of carbon steel was dependent on pH value of the solution. The cathode reaction of the corrosion was controlled by the electrochemical reaction in the range of pH< 6.8, and the determining process was transfered to a mass-diffusion process when pH> 6.8. With the further increase of pH value, the cathode reaction was controlled by both the electrochemical and mass-diffusion processes. For the anode reaction, the metal was in the active dissolution state in the range of pH< 5.9. The metal state has the characteristics of the transition state at pH 6.5;When pH> 6.8, the typical passivation phenomena was observed, and the complete and continuous corrosion product film formed on the metal surface. However, the higher pH value enhanced the dissolution action of the corrosion products.
     The inhibition ability of dodecylamine was strongly dependent on pH value of the solution and improved with the increase of pH value. The minumum effective inhibitor concentration reduced distinctly with the increase of pH value. At lower pH value, dodecylamine inhibited mainly the cathode process; while it inhibited both the anode and cathode processes in near neutral environments. At lower pH value, the adsorption state of the inhibitor was mainly the unprotonated dodecylamine. It was unfavorable to adsord on the metal surface with the positive net charge. The adsorption state of dodecylamine on the metal surface might be attributable to the adsorption of the unprotonated dodecylamine after the reduction of the dodecylamine onium on the cathode site. The ratio of the unprotonated to the protonated of dodecylamine increased with the increase of pH value, which was favorable to the adsorption of the inhibitor. The higher electron cloud density of the unprotonated provided much stronger coordination with the 'd ' orbital of the metal atom and hence the adsorbed inhibitor was more stable and tight on the metal surface.
     Lauric acid reduced the corrosion rate of N80 carbon steel both in acidic and near neutral environments. The inhibition ability and the minimum effective inhibitor concentration were both pH-dependent. The former decreased and the latter increased with pH value. Lauric acid inhibited mainly the anode reaction in the test pH values. The adsorption state of the inhibitor was not totally consistent with that in the solution. At lower pH value, laurate adsorbed on the metal surface by the electrostatic interaction and changed the charge state of the metal surface from the positive to the electrically neutral. The carboxyl group bonded chemically with the metal in the active-dissolution state. At higher pH values, although the net charge state was favorable to the adsorption of laurate, the adsorption of the inhibitor had no obvious influence on the charge state of the metal surface. Besides, the protective corrosion product film was formed at higher pH value which was favorable to the adsorption of the inhibibitor and hence did not prevent the corrosion effectively.
     The interaction between the inhibitors and the corrosion products in near neutral environments has relation with the type of the inhibitors and pH value of the solution. At pH 6.9, dodecylamine has no obvious influence on the morphology of FeCO3 crytal, while lauric acid has obvious dissolution-erosion action to FeCO3 crystal. Both inhibitors have some inhibitive role to the formation of FeCO3 crystal and the addition of the inhibitors reduced the adhesion strength of the film on the metal surface. Dodecylamine has certain positive role to the protection ability of the film while lauric acid on the contrary. At pH 7.4, both of dodecylamine and lauric acid contributed to the grain refinement and orderly arangement of FeCO3 crystals. The adhesion strengths of the corrosion product film were enhanced in both cases. Dodecylamine and lauric acid not only inhibited the uniform corrosion, but also reduced the sensitivity of the metal to the localized corrosion and the former was more obvious than the latter.
引文
[1] G. A. Zhang, C. F. Chen, M. X. Lu, C. W. Chai and Y. S. Wu. Evaluation of inhibition efficiency of an imidazoline derivative in CO2-containing aqueous solution, Materials Chemistry and Physics, 2007, 105(2-3): 331~340
    [2] S. Nesic, S. H. Wang, J. Y. Cai, Y. Xiao. Integrated CO2 corrosion-multiphase flow model. NACE: Corrosion, 2004, paper no 04626
    [3] L. G. S. Gray, et al. Effect of pH and temperature on the mechanism of carbon steel corrosion by aqueous carbon dioxide. NACE: Corrosion, Paper No 40
    [4] C. de Waard, U. Lotz, D. E. Milliams. Predictive model for carbon dioxide corrosion engineering in wet natural gas pipelines. Corrosion, 1991, 47(12): 976~985
    [5] S. Nesic, John Postlethwaite. Modeling of CO2 corrosion mechanisms. Applied Sciences, 1994, 266(Modelling Aqueous Corrosion), 317~335
    [6] C. de Waard, D. E. Milliams. Carbonic acid corrosion of steel. NACE: Corrosion, 1975, 31(5): 177~181
    [7] G. Schmitt, B. Rothmann. Study of the corrosion mechanism of unalloyed steel in oxygen-free carbon dioxide solutions, Part II. Kinetics of iron dissolution. Werkstoffe und Korrosion, 1978, 29(2): 98~100
    [8] R. Zvauya, J. L. Dawson. Electrochemical reduction of carbon dioxide and the effect of the enzyme carbonic anhydrase 11 on iron corrosion. Journal of Chemical Technology & Biotechnology, 1994, 61(4): 319~324
    [9] S. Nesic, B. F. M. Pots. J. Postlethwaite and N. Thevenot. Superposition of diffusion and chemical reaction controlled limiting currents-application to CO2 corrosion. Journal of Corrosion Science and Engineering, 1995, 1(Avail. URL: http://www.cp.umist.ac.uk/JCSE/Vol1/PAPER3/V1_P3.PDF), No pp. given)
    [10] J.O.M. Bockris, A.R. Despic, A. R. Despic. The electrode kinetics of the deposition and dissplution of iron. Electrochemical Acta, 1961, 4(4): 325~361
    [11] C. de Waard, D. E. Milliams. Prediction of carbonic acid corrosion in natural gaspipelines. K./Shell-Lab. Amsterdam, Neth. Editor(s): Clarke, J. A.; Coles, N. G. Proc. Int. Conf. Intern. External Prot. Pipes, 1st (1975), Paper No. F1, 1-8, X85~X87
    [12] E. Dayalan, F. D. de Moraes, J. R. Shadley, S. A. Shirazi, E. F. Rybicki. CO2 corrosion prediction in pipe flow under FeCO3 scale-forming conditions. NACE: Corrosion, 1998, paper no 51
    [13] B. F. M. Pots. Mechanistic models for the prediction of CO2 corrosion rates under multi-phase flow conditions. NACE: Corrosion, 1995, paper no. 137
    [14] J. L. Crolet, N. Thevenot, S. Nesic. Role of conductive corrosion products in the protectiveness of corrosion layers. Corrosion, 1998, 54(3): 194~203
    [15] D. H. Davis, G. T. Burstein. The effects of bicarbonate on the corrosion and passivation of iron. Corrosion, 1980, 36(8): 416~422
    [16] S. Nesic, J. Postlethwaite, M. Vrhovac. CO2 corrosion of carbon steel-form mechanism to empirical modeling. Corrosion Reviews, 1997, 15: 1~2
    [17] R. Nyborg. Overviews of CO2 corrosion models for wells and pipelines. NACE: Corrosion, 2002, paper no 233
    [18] M. Nordsveen, S. Nesic, R. Nyborg, A. Stangeland. A mechanistic model for carbon dioxide corrosion of mild steel in the presence of protective iron carbonate films-part 1: theory and verification. Corrosion, 2003, 58(5): 443~456
    [19] J. L. Mora-Mendoza, S. Turgoose. Fe3C influence on the corrosion rate of mild steel in aqueous CO2 systems under turbulent flow conditions. Corrosion Science,2002, 44: 1223~1246
    [20] Lohodny -Sarc O. Corrosion inhibition in oil and gas drilling and production operations. A Working Party Report on Corrosion Inhibitions, 1994, 104~120.
    [21] Arne Dugstad. Mechanism of protective film formation during CO2 corrosion of carbon steel. Corrosion 1998, NACE: 31
    [22]周波,崔润炯.浅谈CO2对油井管的腐蚀及抗蚀套管的开发现状.钢管,2003, 32(1): 21~24
    [23] B. Mishra, A. Al-Hassan, D. L. Olson, et al. Development of a predictive model for activation-controlled corrosion of steel in solutions containing carbon dioxide.Corrosion, 1997, 53(11): 852~859
    [24] S. Nesic, G.T.Solvi, S.Skjerve. Comparison of rotating cylinder and loop methods for test CO2 corrosion inhibitors. British Corrosion Journal. 1997, 32(4): 269~276
    [25] C.de.Waard, U.Lotz, A.Dugstad. Influence of liquid flow velocity on CO2 corrosion: a setnt-empirical model. 1997, NACE:128
    [26] Ketil Videm. The anodic behavior of iron and steel in aqueous solutions with CO2, HCO3-, CO32-, and Cl-, NACE: Corrosion, 2000, paper no. 00039
    [27] P. E. Burke. Recent progress in the understanding of CO2 corrosion. NACE: Corrosion, 1985, paper no1
    [28] J. K. Heuer, J. F. Stubbins. Microstructure analysis of coupons exposed to carbon dioxide corrosion in multiphase flow. Corrosion, 1998, 54(7):566~575
    [29] N.E.S. Thompson, D.Redmore, B.A.Oude Alink, B.T. Outlaw, Compounds containing sulfur and amino groups, US Patent, 4332967, June1,1982.
    [30] W. H. Durnie, B. J. Kinsella, R.De Marco and A. Jefferson, A study of the adsorption properties of commercial carbon dioxide corrosion inhibitor formulations, Journal of applied electrochemistry, 2001, 31:1221~1226
    [31] C.Cao, On electrochemical techniques for interface inhibitor research, Corrosion Science, 1996, 38(12): 2073~2082
    [32] S. Ramachandran, B. L. Tsai, M. Blanco, H. Chen, Y. C. Tang, W. A. Goddard. III. Self-assembled monolayer mechanism for corrosion inhibition of iron by imidazolines. Langmuir, 1996, 12: 6419~6428
    [33] S. Ramachandran, V. Jovancicevic. Molecular modeling of the inhibition of mild steel CO2 corrosion by imidazolines. NACE: Corrosion, 1998, paper no 17
    [34] S. Ramachandran, V. Jovancicevic, M. B. Ward. Understanding localized CO2 corrosion of carbon steel from physical properties of iron carbonate scales. NACE: Corrosion, 1999, paper no. 7
    [35] S. Ramachandran, B. L. Tsai, M. Blanco, H. Chen, Y. Tang, W.A. Goddard. III. Atomistic simulation of oleic imidazolines bound to ferric clusters. Journal Physical Chemistry, 1997, 101(1): 83~89
    [36] S. Ramachandran, S. Canpbell, M. B. Ward. The interaction and properties ofcorrosion inhibitors with byproduct layers. NACE: Corrosion, 2000, paper No 25
    [37] H. Malik. Influence of C16 quaternary amine on surface film and polarization resistance of mild steel in carbon dioxide-saturated 5% sodium chloride. Corrosion, 1995, 51(4): 321~328
    [38] S. Campbell, V. Jovancicevic. Corrosion inhibitor film formation studied by ATR-FTIR. NACE: Corrosion, 1999, paper no 484
    [39] M. Frey, S. G. Harris, J. M. Holmes. Elucidating the mode of action of a corrosion inhibitor for iron. Chemistry A European Journal, 2000, 6(8): 1407~1415
    [40] K. Juttner, W. J. Lorenz, F. Mansfeld. Interface and interphase inhibition. NACE: Corrosion, 1989, paper no135
    [41] K. Kowata, K. Takahashi. Interaction of corrosion inhibitors with corroded steel surface. NACE: Corrosion, 1996, paper no 219
    [42] R. H. Hausler, D. W. Stegman, C. I. Cruz, et al. Laboratory study on flow induced localized corrosion in CO2/H2S environments. NACE: Corrosion, 1990, paper no 143
    [43] S. D. Kapusta, P. R. Rhodes, S. A. Silverman. Inhibitor testing for CO2 environments. NACE: Corrosion, 1991, paper no 471
    [44] R. H. Hausler. Corrosion inhibition in the presence of corrosion product layers. Proceeding. 6th European Symposium on corrosion inhibitors (6SEIC): Ann. Univ. Ferrara. Italy, Suppl. No 8, 1985(Ferrara, 1985), p.41
    [45] J. A. Dougherty, D. W. Stegmann. The effects of flow on corrosion inhibitor performance. Materials Performance, 1996, 35(4): 47~53
    [46] E. Gulbrandsen. S. Nesic. A. Stangeland. T. Burchardtt. Effect of precorrosion on the performance of inhibitors for CO2 corrosion of carbon steel. NACE: Corrosion, 1998, paper no 13
    [47] G. Schmitt, M. Muelle, M. Papenfuss. Understanding localized CO2 corrosion of carbon steel from physical properties of iron carbonate scale. NACE: Corrosion, 1999, paper no 38
    [48] A. N. Markin, T. T. Markina. Study on inhibition of carbon dioxide corrosion accompanied with salt deposition. Zashchita Metallov, 1992, 28(6): 946~954
    [49] M. Al-Sayed. Effect of flow and pH on CO2 corrosion and inhibition. PhD. Dissertation, Corrosion and Protection Centre, UMIST, 1989
    [50] Y. J. Tan, S. Bailey, B. Kinsella. An investigation of the formation and destruction of corrosion inhibitor films using electrochemical impedance spectroscopy (EIS), Corrosion Science,1996, 38(9), 1545~1561
    [51] J. H. Qiu, P. H. Chua. EIS and XPS study of the corrosion of carbon steel in inhibited natural seawater. Surface and Interface Analysis, 1999, 28: 119~122
    [52] L. S. Moiseeva, N. S. Rashevskaya. Effect of pH value on corrosion behavior of steel in CO2-containing aqueous media. Russian Journal of Applied Chemistry, 2002, 75(10): 1625~1633
    [53]黄金营.含咪唑杂环的长链烷基双季铵盐的合成及其特性研究: [博士论文].武汉:华中科技大学图书馆, 2005
    [54] S. Hernandez, J. R. Vera. A statistical approach for studying CO2 corrosion inhibition of carbon steel, using electrochemical impedance spectroscopy. NACE: Corrosion, 1998, paper no 23
    [55] P. Altoe, G. Pimenta, C. F. Moulin, S. L. Diaz, O. R. Mattos. Evaluation of oilfield corrosion inhibitors in CO2 containing media:A kinetic study. Electrochimica Acta, 1996, 41(7/8): 1165~1172
    [56]郭兴蓬,付朝阳.缓蚀剂和CO2腐蚀产物膜的相互作用.第十二届全国缓蚀剂学术讨论会, 2001, 10,中国:青岛
    [57] V. Jovancicevic, S. Ramachandran, P. Prince. Inhibition of CO2 corrosion of mild steel by imidazolines and their precursors. NACE: Corrosion, 1998, paper no 18
    [58] T. Burchardt, T. Valand, J. Kvarekval. The effect of diamines on CO2 corrosion of low carbon steel. European Federation of Corrosion Publications , 1999 ,26(Advances in Corrosion Control and Materials in Oil and Gas Production), 410~416
    [59] R. De Marco, W. Durnie, A. Jefferson, B. Kinsella. Surface analysis of adsorbed CO2 corrosion inhibitors. Corrosion, 2001, 57(1): 9~18
    [60] H. Malik. Corrosion inhibition by N coco-amine-2-prorionic acid on mild steel in CO2 saturated 5 percent NaCl at pH 6.5. Anti-Corrosion Methods and Materials,1999, 46(6): 434~438
    [61] David E Bergberiter, Srinivas B. Surface selectivity in blending polyethylene-poly (ethylene glycol) block cooligomers into high-density polyethylene Macromolecules, 1992, 25(2): 636~643
    [62]顾溶祥,林天烽,钱祥荣.现代物理研究方法及其在腐蚀科学中的应用.北京:化学工业出版社,1990. 87~93
    [63]屈钧娥.缓蚀剂界面行为与缓蚀机理的电化学及AFM研究: [博士论文].武汉:华中科技大学图书馆, 2005
    [64]周公度,段连运.结构化学基础.北京:北京大学出版社,1995. 362~379
    [65]周公度,段连运.结构化学基础.北京:北京大学出版社,1995. 160~162
    [66]梅平,艾俊哲,陈武,袁谷.二氧化碳对N80钢腐蚀行为的影响研究.腐蚀与防护, 2004, 25(9): 379~382
    [67]李珣,姜放,陈文梅等.高温高压下N80的CO2腐蚀.天然气与石油,2006, 24(6): 21~23
    [68]李金波,舒欣欣,仝明信,郑茂盛. N80油套管钢在长庆油田采出液/砂粒两相介质中的腐蚀磨损.焊管, 2006, 29(6): 22~24, 29
    [69]李金波,郑茂盛. Cl-对N80油套管钢钝化膜半导体性能的影响.西安交通大学学报, 2006, 40(11): 1325~1328
    [70] G. F. Lin, M. S. Zheng, Z. Q. Bai, Y. R. Feng. Wear resistance of CO2 corrosion product scale formed at high temperature. Journal of Iron and Steel Research, 2006, 13(5): 47~52
    [71]顾春元,狄勤丰,王掌洪. N80钢在地层水中的应力腐蚀行为研究.石油学报, 2006, 27(2): 141~144
    [72]任呈强,刘道新,白真权,李铁虎. N80油管钢腐蚀产物膜的力学性能研究.材料工程, 2004, (8): 17~20, 24
    [73]吕祥鸿,赵国仙. N80钢动态和静态CO2腐蚀行为对比研究.腐蚀科学与防护技术, 2003, 15(1): 5~8
    [74]李桂芝,孙冬柏,采油管材N80钢在流动介质中的腐蚀行为研究.腐蚀与防护,2001, 22(12): 544~545
    [75]李柱芝. N80钢在模拟流动介质中的腐蚀行为研究.石油与天然气化工, 2001, 30(3): 141~142
    [76] P. Agarwal, D. Landolt. Effect of anions on the efficiency of aromatic carboxylic acid corrosion inhibitors in near neutral media: Experimental investigation and theoretical modeling. Corrosion Science, 1998, 40(4/5): 673~691
    [77] S. Arzola, J. Mendoza-Flores, R. Duran-Romero, et al. Electrochemical behavior of API X70 steel in hydrogen sulfide-containing solution. Corrosion, 2006, 62(5): 433~443
    [78] Y. Garsany, D. Pletcher, D. Sidorin, et al. Quantifying the acetate-enhanced corrosion of carbon steel in oilfield brines. Corrosion, 2004, 60(12): 1155~1167
    [79] E. Gulbrandsen, J. H. Morard, J. L. Crolet. Study of the possible mechanisms of steel passivation in CO2 corrosion. NACE: Corrosion, 1999, paper no 624
    [80] L. S. Moiseeva, O. V. Kuksina. On the dependence of steel corrosion in oxygen-free aqueous media on pH and the pressure of CO2. Zashchita Metallov, 2003, 39(5): 542~551
    [81]赵景茂,左禹,熊金平,田连朋. pH值对低碳钢在高含盐污水中的腐蚀影响.材料保护, 2001, 34(7): 8~9
    [82] J. G. N. Thomas, J. D. Davies. Influence of hydrogen carbonate and chloride ions on the stability of oxide films on mild steel in near-neutral solutions. British Corrosion Journal, 1977, 12 (2): 108~114
    [83] R. Jasinski. Corrosion of N80-type steel by CO2/water mixtures. Corrosion, 1987, 43(4): 214~218
    [84]许立铭,董泽华,范汉香.油气田产出水中CO2和HCO3-碳钢腐蚀的影响.天然气工业, 1996, 16(4), 57~60
    [85]张国安,路民旭,吴荫顺. HCO3-浓度对油气田中CO2腐蚀的影响.电化学,2005, 11(4): 387~392
    [86]曹楚南,陈家坚,缓蚀剂在油气田的应用,石油化工腐蚀与防护. 1997, 14(4): 34~36
    [87] Odd Hagerup, Stein Olsen, Corrosion control by pH stabilizer ,materials and corrosion monitoring in a 160 km multiphase offshore pipeline, Corrosion, 2003, paper no 03328
    [88]周晴,油气田开发中的CO2腐蚀与控制,油气田地面工程,2005, 24(11): 46
    [89]魏宝明.金属腐蚀理论及应用.北京:化学工业出版社, 1984, p41
    [90] H. R. Hausler. The mechanism of CO2 corrosion of steel in hot, deep gas wells. NACE: Corrosion. 1985, 72~86
    [91]由于电极电容对电极表面膜的形成非常灵敏,因此可以通过对EIS图上容抗弧的研究而了解N80碳钢表面从活性溶解到钝化金属表面状态的变化信息
    [92]王佳,曹楚南.缓蚀剂阳极脱附现象的研究Ⅱ.缓蚀剂阳极脱附对电极阻抗的影响,中国腐蚀与防护学报,1995, 15(4), 247~252
    [93] Damia′n A. Lo′pez, S.N. Simison, S.R. de Sa′nchez,The influence of steel microstructure on CO2 corrosion. EIS studies on the inhibition efficiency of benzimidazole, Electrochimica Acta, 2003, 48, 845~854
    [94] A. Popova, E. Sokolova, S. Raicheva, et al. AC and DC study of the temperature effect on mild steel corrosion in acid media in the presence of benzimidazole derivatives. Corrosion Science, 2003, 45, 33~58
    [95] B. Kinsella, Y. J. Tan, S. Bailey, Electrochemical impedance spectroscopy and surface characterization techniques to study carbon dioxide corrosion product scales, Corrosion, 1998, 54(10): 835~841
    [96]樊治海,吕祥鸿,赵国仙,路民旭,常压条件下N80钢的CO2腐蚀的电化学特性.腐蚀科学与防护技术, 2005, 17(2), 75~78
    [97] J.O.M. Bockris, D. Drazic, A.R. Despic, Electrode kinetics of the deposition and dissolution of iron, Electrochim Acta, 1961, 4(4):325~361
    [98]邵海波,王晓艳,王建明等.碱土金属离子与EDTA对纯铝在碱性溶液中的协同缓蚀作用.物理化学学报, 2006, 22(3), 312~315
    [99] F. Mansfeld, M. W. Kendig, W. J. Lorenz. Corrosion inhibition in neutral, aerated media. Journal of the Electrochemical Society, 1985, 132(2): 290~292
    [100] Y. Chen. Inhibition mechanisms of corrosion inhibitors in multiphase flowconditions using electrochemical techniques. PhD. Dissertation. Ohio: Ohio University, 2000
    [101] A. Ikeda, S. Mukai, M. Ueda. Prevention of CO2 corrosion of line pipe and oil country tubular goods. NACE: Corrosion, 1984, paper no 289
    [102] S. Nesic, K.L. John Lee, V. Ruzic, presented at Corrosion, 2002, paper no 02237.
    [103] C. de Waard, U. Lots. Prediction of CO2 corrosion of carbon steel. A working party report on predicting CO2 corrosion in oil and gas industry, 1994: 30~58
    [104] J. K. Heuer, J. F. Stubbins. An XPS characterization of FeCO3 films from CO2 corrosion. Corrosion Science, 1999, 41, 1231~1243
    [105]刘烈炜,胡倩,彭建雄.中性水介质中碳钢CO2腐蚀与其表面膜结构关系.材料保护, 2001, 34(1), 6~7, 21
    [106] P. Li, J. Y. Lin, K. L. Tan, J.Y. Lee. Electrochemical impedance and X-ray photoelectron spectroscopic studies of the inhibition of mild steel corrosion in acids by cyclohexylamine. Electrochimica Acta, 1997, 42(4):605~615
    [107]郭兴蓬,付朝阳.缓蚀剂和CO2腐蚀产物膜的相互作用.第十二届全国缓蚀剂学术讨论会, 2001, 10,中国:青岛
    [108] V. Jovancicevic, S. Ramachandran, P. Prince. Corrosion, 1980, 36(8): 416
    [109] G. Wu, N. Li, D. L. Wang, D. R. Zhou, B. Q. Xu, Kurachi Mitsuo. Effect ofα-Al2O3 particles on the electrochemical codeposition of Co-Ni alloys from sulfamate electrolytes. Materials Chemistry and Physics, 2004, 87: 411~419
    [110] R. De Marco, W. Durnie, A. Jefferson, B. Kinsella, A. Crawford, Persistence of carbon dioxide corrosion inhibitors, Corrosion, 2002, 58(4): 354~363
    [111] W. Villamizar, M. Casales, J. G. Gonzales-Rodriguez, L. Martinez. An EIS study of the effect of the pedant group in imidazolines as corrosion inhibitors for carbon steel in CO2 environments. Materials and Corrosion, 2006, 57(9): 696~704
    [112] H. Ashassi-Sorkhabi, S. A. Nabavi-Amri. Polarization and impedance methods in corrosion inhibition study of carbon steel by amines in petroleum-water mixtures. Electrochimica Acta, 2002, 47, 2239~2244
    [113] C. N. Cao. On the impedance plane displays for irreversible electrode reactions based on the stability conditions of the steady-state. I. One state variable besideselectrode potential. Electrochimica Acta, 1990, 35(5): 831~836
    [114] V. Jovancicevic, S. Ramachandran, P. Prince. Inhibition of CO2 corrosion of mild steel by imidazolines and their precursors, Corrosion, 1999, 55(5): 449~455
    [115]杨怀玉,曹殿珍,陈家坚,祝英剑,时维才,钱家煌,郭文斌. CO2饱和溶液中缓蚀剂的电化学行为及缓蚀性能.腐蚀科学与防护技术, 2000, 12(4): 211~214
    [116] Wu Haoqing, Li Yongfang, Electrochemical kinetics, Beijing: High education press and Springer-Verlag press,1998, June ,edition1, p9, p21,p155
    [117] A. N. Frumkin, V. V. Batrakov, A. I. Sidnin. Effect of the structure of the zinc surface on the adsorption of tetrabutylammonium iodide. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry.1972, 39(1): 225~228
    [118]薛齐.高分子结构研究中的光谱方法.北京:高等教育出版社, 1995, p310
    [119] G. L. Makovei, I. N. Kurmakova, L. D. Keris. Effect of benzimidazole derivatives on the corrosion-electrochemical behavior of iron,Zashch. Met., 1985, 21(4): 632~635
    [120] A. N. Frumkin, V. V. Batrakov, A. I. Sidnin. Effect of the structure of the zinc surface on the adsorption of tetrabutylammonium iodide. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry.1972, 39(1): 225~228
    [121] J. Smart. Wetability-A major factor in oil and gas system. NACE: Corrosion, 1993, p 70~78
    [122] G. Schmitt. Wettability of steel surfaces at CO2 corrosion conditionsⅠ.Effect of surface active compounds in aqueous and hydrocarbon media. NACE: Corrosion, 1998, paper no 28
    [123] X. H. Li, G. N. Mu, Q. Qu. The inhibition action of tween-80 on the corrosion of cold rolled steel in sulphuric acid. 2006, 14th Asian-pacific corrosion control conference, October 21-24, Shanghai, China
    [124] E. F. Otte, W. Skinner. British Corrosion Journal, 1995, 30 (2): 135~137
    [125] A. Sari, K. Kaygusuz. Renewable Energy, 2003, 28: 939~948
    [126] K. Bilkova, N. Hackerman, M. Bartos. Inhibition of CO2 corrosion of carbon steel by thioglycolic acid. NACE: Corrosion, 2002, paper no 02284
    [127] W. H. Durnie, B. J. Kinsella, R. De Marco, A. Jefferson. A study of the adsorptionproperties of commercial carbon dioxide corrosion inhibitor formulations. Journal of Applied Electrochemistry, 2001, 31: 1221~1226
    [128] Y. I. Kuznetsov, K. A. Ibatullin. On the inhibition of the carbon dioxide corrosion of steel by carboxylic acids. Zashchita Metallov, 2002, 38(5): 439~444
    [129] Robert A. Cottis, Murali Kumaraguru, Marios Marti. Combined measurement of electrochemical noise and electrochemical impedance. NACE: Corrosion, 2003, paper no 03402
    [130]杜俊宝,娄世松,刘丽英,杨建强,渗铝碳钢材料的二氧化碳腐蚀行为研究,石油与天然气化工,2007, 36(3): 234~238
    [131] E. Gulbrandsen. S. Nesic. A. Stangeland. T. Burchardtt. Effect of precorrosion on the performance of inhibitors for CO2 corrosion of carbon steel. NACE: Corrosion, 1998, paper no 13
    [132] Khaled M. Ismail, Evaluation of cysteine as environmently friendly corrosion inhibitor for copper in neutral and acidic chloride solutions, Electrochimica Acta, 2007, 52: 7811~7819
    [133] H. Castaneda, G. Zambrano, C. Angeles, J. Genesca. Film stability for API 5L X-52 line pipe steel in CO2 (aq) and Cl- (aq) solutions in presence of amine based inhibitor under hydrodynamic conditions. NACE: 2004, paper no 04361
    [134] Bertocci U, Huet F. Noise analysis applied to electrochemical system. Corrosion, 1995, 15(2): 13~144
    [135] R. A. Cottis, H. A. Al-Mazeedi, S. Turgoose. Measures for the identification of localized corrosion from electrochemical noise measurements. NACE: Corrosion, 2002, paper no 02329
    [136] S. I. Magaino, A. Kawaguchi, A. Hirata, et al. Spectrum analysis of corrosion potential fluctuations for localized corrosion of type 304 stainless steel. J. Electrochem. Soc., 1987, 134(12): 2993~2997
    [137] A. Legat, V. Doleoek. Corrosion monitoring system based on measurement an analysis of electrochemical noise. Corrosion, 1995, 51(4): 295~300
    [138] P. R. Robere. Analysis of electrochemical noise by the stochastic process detector method. Corrosion, 1994, 50(7): 502~512
    [139]刘晓方,王汉功,权高峰等.电化学系统噪声分析进展.腐蚀科学与防护技术, 2001, 13(2): 100~105
    [140] R. A. Cottis, H. A. Al-Mazeedi, S. Turgoose. Measures for the identification of localized corrosion from electrochemical noise measurements. NACE: Corrosion, 2002, paper no 02329
    [141]邱于兵,黄家怿,郭兴蓬.多项式拟合法消除电化学噪声的直流漂移.华中科技大学学报(自然科学版), 2005, 33(10): 39~45
    [142] R. Jasinski. Corrosion of N80-type steel by CO2/water mixtures. Corrosion, 1987, 43(4): 214~218
    [143]李爱魁,李国敏,郭兴蓬.缓蚀剂在N80钢上吸附行为的研究.电化学, 2003, 9(3): 314~319
    [144] G. Schmitt, M. Mueller, M. Papenfuss. Uunderstanding localized CO2 corrosion of carbon steel from physical properties of iron carbonate scales. NACE: Corrosion, 1999, paper no 38