人牙周膜干细胞雌激素受体的表达及雌激素对细胞骨分化能力影响的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
绝经后妇女由于雌激素水平下降,易于引发骨质疏松,对骨质疏松与颌骨、牙槽骨关系的研究表明,骨质疏松症的绝经后妇女下颌骨量与全身骨量有明显的相关关系,绝经后可出现不同程度的牙槽骨骨质疏松症状[1-4]。雌激素替代疗法(estrogen replacement treatment,ERT)可有效提高绝经期妇女体内雌激素的水平,是预防绝经后骨质疏松症及骨折的有效方法[2],同时,ERT也可减少牙周炎患者的牙龈出血和附着丧失,维持牙槽骨的骨量,提高牙齿的保留率[5,6]。牙周膜细胞是牙周膜内的主要成分,对维持牙周膜的形态、功能有决定性的作用,并且在牙槽骨的改建中发挥重要作用。以往的研究显示牙周膜细胞内有雌激素受体的表达,而且在外源性雌激素作用下,牙周膜细胞的成骨作用增强[7]。在牙周膜内有数种细胞成分,除占主要地位的牙周膜成纤维细胞外,还有成骨细胞、破骨细胞及未分化间充质细胞--牙周膜干细胞(PDLSCs),PDLSCs是牙周膜内各主要功能细胞的来源[8],而PDLSCs与雌激素在牙周改建及再生过程中的关系尚无研究报道。由此,我们设想,牙周膜干细胞内是否也有雌激素受体的表达,如果有雌激素受体表达,外源性雌激素对牙周膜干细胞成骨作用有何影响?通过本研究,我们将对这些问题进行探讨,以进一步明确雌激素在牙周改建及再生中的作用机制,为牙周病及正畸临床治疗提供一定新的思路和理论基础。
     实验内容:
     (1)收集临床拔除的正常人牙周健康、无龋的新鲜第三磨牙,刮取根中1/3牙周膜组织进行牙周膜原代细胞培养。取第四代人牙周膜细胞,通过免疫磁珠技术,以复合间充质干细胞的表面标记物STRO-1抗体的磁珠对人牙周膜干细胞进行筛选、扩增培养,MTT法测定PDLSCs生长曲线并与牙周膜细胞进行比较。
     (2)取第三代PDLSCs进行克隆形成率、细胞周期分析,对其生物学行为进行研究;以流式细胞仪对PDLSCs及牙周膜细胞进行细胞表面特异性抗原CD34、CD44、CD45、CD146表达测定;以免疫细胞化学方法对PDLSCs进行干细胞表面特异性抗原STRO-1及间充质细胞相对特异性抗原Vimentin表达测定;PDLSCs成脂及成骨多向诱导分化研究。通过上述实验对所分离的PDLSCs干细胞特征进行鉴定。
     (3)取第三代PDLSCs以免疫细胞化学方法进行ERα及ERβ特异性抗体染色;以逆转录聚合酶链式反应(RT-PCR)法检测PDLSCs在雌激素作用前后ERα及ERβmRNA表达的变化并与牙周膜细胞作比较研究;以Western blot法分析PDLSCs在雌激素作用前后ERα及ERβ蛋白表达的变化并与牙周膜细胞作比较研究。
     (4)取第三代PDLSCs进行成骨诱导,加入不同浓度梯度(10-7、10-8、10-9M)的外源性雌激素(17β-雌二醇),MTT法测定成骨分化过程中的PDLSCs在雌激素作用下的细胞增殖变化情况。
     (5)取第三代PDLSCs进行成骨诱导,加入不同浓度梯度(10-7、10-8、10-9M)的外源性雌激素(17β-雌二醇),并以ER抑制剂ICI182780作对照,进行碱性磷酸酶(ALP)表达变化及羟脯氨酸含量的检测。
     结果:
     (1)所筛选PDLSCs呈类梭形外观,形态不规则,核为卵圆形、位于胞质中央,似成纤维样细胞。细胞生长曲线示可见PDLSCs较牙周膜细胞生长慢,具有慢增殖周期的干细胞特点。
     (2)PDLSCs生物学研究显示其具备克隆形成能力及干细胞细胞周期特点,流式分析显示所分离PDLSCs高表达间充质干细胞表面标记物CD44及CD146,内皮细胞及造血系细胞表面标记物CD34和CD45表达极低;干细胞表面特异性抗原STRO-1及间充质细胞相对特异性抗原Vimentin染色均为阳性,此外,PDLSCs经成脂及成骨诱导获得了茜素红染色阳性的类成骨细胞和油红-O染色阳性的类脂肪细胞。
     (3)免疫细胞化学染色显示ERα及ERβ在PDLSCs中均阳性表达,定位于细胞核;RT-PCR及Western blot检测示:在mRNA及蛋白水平,均可检测到ERα及ERβ表达,且ERα表达高于ERβ。此外,PDLSCs与同来源牙周膜细胞相比, ERα及ERβ的表达较高;而PDLSCs在雌激素作用后ERα及ERβ的表达较作用前均增加。
     (4)在17-β雌二醇作用下,PDLSCs的增殖发生变化,与对照组相比,前3天雌激素干扰组细胞增殖受到抑制,此后雌激素干扰组细胞增殖高于对照组,在不同药物浓度组间,1×10-7M组对细胞增殖影响最为明显,其细胞增殖水平高于其余两组。
     (5)在17-β雌二醇作用下,PDLSCs碱性磷酸酶(ALP)的表达发生动态变化,自第三天开始,各组ALP表达均升高,而雌激素干扰组ALP表达量高于对照组,在不同药物浓度组间1×10-7M组ALP表达增加高于其余两组。
     (6)在17-β雌二醇作用下,PDLSCsⅠ型胶原合成表达与对照组相比有增加趋势,且与药物浓度有剂量依赖关系,在不同药物浓度组间1×10-7M组作用最为明显。
     结论:
     (1)用复合间充质干细胞特异性抗体STRO-1的免疫磁珠可自牙周膜细胞中成功筛选PDLSCs,所筛选PDLSCs具有克隆形成、慢细胞周期、表达干细胞特异性标记物及多向分化能力等干细胞特点。
     (2)PDLSCs中ERα及ERβ均有表达,ERα表达高于ERβ,提示雌激素对PDLSCs的调控作用可能主要通过ERα途径;在外源性雌激素作用下,成骨分化过程中ERα及ERβ表达均增加,提示PDLSCs可能是雌激素调控牙周改建的上游细胞,雌激素通过其受体对PDLSCs的成骨分化进行调控。
     (3)雌激素可促进PDLSCs的增殖,并对PDLSCs成骨分化过程有促进作用,该作用与ER及雌激素浓度密切相关,提示雌激素可以通过PDLSCs促进牙周改建及再生,对牙周损伤的恢复有积极的作用。
Estrogen deficiency is important in the pathogenesis of postmenopausal osteoporosis. Previous studies show that the bone mass in the mandible and skeletal bone mass had an evident correlation in postmenopausal women with osteoporosis, and the osteoporotic alveolar bone would appear in postmenopausal women. Estrogen replacement treatment (ERT) can increase the estrogen level in postmenopausal women and decrease the bone loss, gingival blooding and attachment loss. Estrogen exerts its influence by binding to specific receptors, estrogen receptor (ER). ER-αand ER-βhave been detected in periodontal ligament (PDL) cells, and it has been reported that estrogen could stimulate bone formation capacity in cultured PDL cells by increasing alkaline phosphatase activity, the production of osteocalcin and the formation of mineralized nodules.
     Periodontal ligament stem cells (PDLSCs) are progenitors of PDL cells, and the application of PDLSCs may be effective for periodontal regenerative therapy as for their ability to form different tissue types and self-renew. However, considering the effects of estrogen on bone-forming capability in cultured human PDL cells, few studies have been conducted in PDLSCs. The aims of the present study were to determine ERs expression in human periodontal ligament stem cells and to investigate the effects that estrogen on osteogenic differentiation of PDLSCs in vitro.
     In the present study, PDLSCs were isolated by immunomagnetic method. The flow cytometry and immunocytochemistry procedure were used to disclose the cell cycle and surface marker of the PDLSCs. And osteoinduction and adipoinduction were done to conform the multidirectional differentiation ability of PDLSCs as meanwhille. We investigated ERs expression in PDLSCs by immunocytochemistry, ERs mRNA expression by RT-PCR and ERs protein expression by Western Blot analysis. Furthermore, we evaluated the effects of estrogen on ALP activity and collagen synthesis in the osteogenic differentiation of PDLSCs.
     We harvested the following results:
     1. The isolated PDLSCs have orbicular-ovate nuclei and irregular morphous, which are similar to fibroblast-like cells. The cell growth curve indicated that PDLSCs had a low proliferation rate.
     2. The isolated PDLSCs have the ability to form multi-cell clusters and cell life cycle which similar to that of stem cells. Analysis of surface epitopes of PDLSCs by FACS showed CD44 and CD146 were of high expression, in the contrary, CD34 and CD45 were of low expression. In the meanwhile, STRO-1 and Vimentin were both positively stained. Furthermore, after adipogenetic induction, PDLSCs developed into oil red O-positive lipid-laden fat cells as well as small round alizarin red-positive nodules were also formed in the osteogenic induction cultures.
     3. Immunocytochemistry showed that both ER-αand ER-βwere positively stained in the nuclei of PDLSCs. Western blot analysis and RT-PCR procedure indicated that the expressions of ERs (both ER-αand ER-β) in PDL cells were in a lower level compared with that in the PDLSCs. In PDLSCs groups, the expression of ER-αwas higher than that of ER-β, and the expressions of ERs in 17-βestradiol treated group were higher than that of untreated group.
     4. Comparing to the group of control, the DNA synthesis of PDLSCs depressed in the first three days, and increased apparently in the following time while treated with 17-βestradiol. In the estrogen treated groups, the DNA synthesis was of a dose dependent manner.
     5. When PDLSCs were treated with 17-βestradiol, the ALP expression increased from day 3. Furthermore, the ALP levels were higher in the estrogen treated groups than control group, and in the estrogen treated groups, the ALP activity was of a dose dependent manner.
     6. When PDLSCs were treated with 17-βestradiol, compared with control groups, the synthesis of typeⅠcollagen increased more apparently in the estrogen treated groups, and the synthesis was of a dose dependent manner.
     Conclusion:
     1. Immunomagnetic method is an effective way to isolate and purify the PDLSCs. The acquired cells showed the characteristics of stem cells.
     2. Both ER-αand ER-βare expressed in PDLSCs. The expression of ER-αis higher than ER-β, which indicates that estrogen effects on PDLSCs are probably mainly displayed via ER-α. When PDLSCs were treated with estrogen while osteogenic induction, the expression of ER-αand ER-βincreased, this signified that estrogen may modulate the osteogenic differentiation of PDLSCs through ERs.
     3. Estrogen could accelerate the DNA synthesis and osteogenic differentiation of PDLSCs, which indicates that the estrogen effects on periodontal reconstruction may be displayed through PDLSCs.
引文
[1] Kribbs PJ, Smith DE, Cheanut III CH. Oral findings in osteoporosis. Part I: Measurement of mandibular bone density [J]. J Prosth Dent, 1983, 50: 562-579.
    [2] Kribbs PJ, Chesnut CH, Ott SM, et al. Relationship between mandibular and skeletal bone in an osteoporotic population [J]. J Prosth Dent, 1989, 62(6): 703-707.
    [3] Kribbs PJ, Chesnut CH, Ott SM, et al. Relationship between mandibular and skeletal bone in a population normal women [J]. J Prosth Dent, 1990, 63(1): 86-89.
    [4] Margoret R, Davis MD. Screening for postmenopausal osteoporosis [J]. Am J Obst Gyne, 1987, 156: 123.
    [5] Ronderos M, Jacobs DR, Himes JH, et al. Associations of periodontal disease with femoral bone mineral density and estrogen replacement therapy: cross-sectional evaluation of US adults from NHANES III [J]. J Clin Periodontol, 2000, 27(10): 778- 786.
    [6] Hildebolt CF, Pilgram TK, Yokoyama-Crothers N, et al. The pattern of alveolar crest height change in healthy postmenopausal women after 3 years of hormone/estrogen replacement therapy [J]. J Periodontol, 2002, 73(11): 1279- 1284.
    [7] Cao M, Shu L, Li J, et al. The expression of estrogen receptors and the effects of estrogen on human periodontal ligament cells [J]. Methods Find Exp Clin Pharmacol, 2007, 29(5): 329-335.
    [8] Seo BM, Miura M, Gronthos S, et al. Investigation of multipotent postnatal stem cells from human periodontal ligament [J]. Lancet, 2004, 364(9429): 149-155.
    [9] Payne JB, Reinhardt RA, Nummikoski PV, et al. Longitudinal alveolar bone loss in postmenopausal osteoporotic/osteopenic women [J]. Osteoporos Int, 1999, 10(1): 34-40.
    [10] Tanaka M, Ejiri S, Toyooka E, et al. Effects of ovariectomy on trabecular structures of rat alveolar bone [J]. J Periodontal Res, 2002, 37(2): 161-165.
    [11] Tanaka M, Toyooka E, Kohno S, et al. Long-term changes in trabecular structure of aged rat alveolar bone after ovariectomy [J]. Oral Surg Oral Med Oral Pathol Oral Radiol Endod, 2003, 95(4): 495-502.
    [12] Melcher AH. Cells of periodontium: their role in the healing of wounds [J]. Ann R Coll Surg Engl, 1985, 67: 130–131.
    [13] Amar S. Implications of cellular and molecular biology advances in periodontalregeneration [J]. Anat Rec, 1996, 245: 361–373.
    [14] Pitaru S, McCulloch CAG, Naryanan AS. Cellular origins and differentiation control mechanisms during periodontal development and wound healing [J]. J Periodontal Res, 1994, 29: 81–94.
    [15] 骆凯,闫福华. 雌激素与牙周病[J]. 国际口腔医学杂志, 2006,33(6):436-438.
    [16] Riggs BL, Khosla S, Melton LJ. Sex steroids and the construction and conservation of the adult skeleton [J]. Endocr. Rev, 2002, 23: 279–302.
    [17] Parfitt AM. Osteonal and hemi-osteonal remodeling: the spatial and temporal framework for signal traffic in adult human bone [J]. J. Cell Biochem, 1994, 55; 273–286.
    [18] Jilka RL, Takahashi M, Munshi DC, et al. Loss of estrogen upregulates osteoblastogenesis in the murine bone marrow. Evidence for autonomy from factors released during bone resorption [J]. J. Clin. Invest, 1998, 101(9):1942-1950.
    [19] Lacey DL, Timms E, Tan HL, et al. Osteoprotegerin ligand is a cytokine that regulates osteoclast differentiation and activation [J]. Cell, 1998, 93: 165–176.
    [20] Eghbali-Fatourechi G, Khosla S, Sanyal A, et al. Role of RANK ligand in mediating increased bone resorption in early postmenopausal women [J]. J Clin. Invest, 2003, 111: 1221–1230.
    [21] Simonet WS, Lacey DL, Dunstan CR, et al. Osteoprotegerin: a novel secreted protein involved in theregulation of bone density [J]. Cell, 1997, 89: 309–319.
    [22] Hofbauer LC, Khosla S, Dunstan CR, et al. Estrogen stimulates gene expression and protein production of osteoprotegerin in human osteoblastic cells [J]. Endocrinology, 1999, 140: 4367–4370.
    [23] Kimble RB, Vannice JL, Bloedow DC, et al. Interleukin-1 receptor antagonist decreases bone loss and bone resorption in ovariectomized rats [J]. J Clin Invest, 1994, 93: 1959–1967.
    [24] Ammann P, Rizzoli R, Bonjour J, et al. Transgenic mice expressing soluble tumor necrosis factor-receptor are protected against bone loss caused by estrogen deficiency [J]. J Clin Invest, 1997, 99: 1699–1703.
    [25] Kimble RB, Srivastava S, Ross FP, et al. Estrogen deficiency increases the ability of stromal cells to support murine osteoclastogenesis via an interleukin-1 and tumor necrosis factor-mediated stimulation of macrophage colony-stimulating factor production [J]. J. Biol Chem, 1996, 271: 288-297.
    [26] Kitazawa R, Kimble RB, Vannice JL, et al. Interleukin-1 receptor antagonist andtumor necrosis factor binding protein decrease osteoclast formation and bone resorption in ovariectomized mice [J]. J Clin Invest, 1994, 94: 2397–2406.
    [27] Girasole G, Jilka RL, Passeri G, et al. 17b-Estradiol inhibits interleukin-6 production by bone marrow-derived stromal cells and osteoblasts in vitro: a potential mechanism for the antiosteoporotic effect of estrogens [J]. J Clin Invest, 1992,89: 883–891.
    [28] Jilka RL, Hangoc G, Girasole G, et al. Increased osteoclast development after estrogen loss: mediation by interleukin-6. Science, 1992, 257: 88–91.
    [29] Hughes DE, Dai A, Tiffee JC, et al. Estrogen promotes apoptosis of murine osteoclasts mediated by TGF-β [J]. Nat Med 1996, 2: 1132–1136.
    [30] Chen JR, Kousteni S, Bellido T, et al. Gender-independent induction of murine osteoclast apoptosis in vitro by either estrogens or non aromatizable androgens [J]. J Bone Miner Res, 2001, 16(Suppl. 1): S159.
    [31] Oursler MJ, Pederson L, Fitzpatrick L, et al. Human giant cell tumors of the bone (osteoclastomas) are estrogen target cells [J]. Proc Natl Acad Sci, 1994, 91: 5227–5231.
    [32] Pederson L, Kremer M, Judd J, et al. Androgens regulate bone resorption activity of isolated osteoclasts in vitro [J], Proc Natl Acad Sci, 1999, 96: 505–510.
    [33] Kousteni S, Bellido T, Plotkin LI, et al. Manolagas, nongenotropic, sex-nonspecific signaling through the estrogen or androgen receptors: dissociation from transcriptional activity [J]. Cell, 2001, 104: 1–20.
    [34] Kousteni S, Han L, Chen JR, et al. Kinase-mediated regulation of common transcription factors accounts for the bone-protective effects of sex steroids [J]. J Clin Invest, 2003, 111: 1651–1664.
    [35] Ernst M, Heath JK, Rodan GA, et al. Estradiol effects on proliferation, messenger ribonucleic acid for collagen and insulin-like growth factor-I, and parathyroid hormone-stimulated adenylate cyclase activity in osteoblastic cells from calvariae and long bones [J]. Endocrinology, 1989, 125: 825–833.
    [36] Gray TK, Mohan S, Linkhart TA, et al. Estradiol stimulates in vitro the secretion of insulin-like growth factors by the clonal osteoblastic cell line, UMR106 [J]. Biochem Biophys Res Commun, 1989, 158: 407–412.
    [37] Monroe DG, Getz BJ, Johnsen SA, et al. Estrogen receptor isoform-specific regulation of endogenous gene expression in human osteoblastic cell lines expressing either ER α or ER β [J]. J Cell Biochem, 2003, 90: 315–326.
    [38] Kassem, MR Okazaki D, DeLeon SA, et al. Potential mechanism ofestrogen-mediated decrease in bone formation: estrogen increases production of inhibitory insulin-like growth factorbinding protein-4 [J], Proc Assoc Am Phys, 1996, 108: 155–164.
    [39] Robinson J.A., Harris S.A., Riggs B.L. Estrogen regulation of human osteoblastic cell proliferation and differentiation[J]. Endocrinology 138 (1997) 2919–2927.
    [40] Waters KM, Rickard DJ, Riggs BL. Estrogen regulation of human osteoblast function is determined by the stage of differentiation and the estrogen receptor isoform [J]. J Cell Biochem, 2001, 83: 448–462.
    [41] Cao L., Bu R, Oakley JI. Estrogen receptor-beta modulates synthesis of bone matrix proteins in human osteoblast-like MG63 cells [J]. J Cell Biochem, 2003, 89(1): 152-164.
    [42] Kian MT, Rogatsky I, Tzagarakis-Foster C. Leitman. Estradiol and selective estrogen receptor modulators differentially regulate target genes with estrogen receptors alpha and beta [J]. Mol Biol Cell, 2004, 15(3): 1262-1272.
    [43] Stossi F, Barnett DH, Frasor J. Transcriptional profiling of estrogen-regulated gene expression via estrogen receptor (ER) a or ERβ in human osteosarcoma cells: distinct and common target genes for these receptors [J]. Endocrinology, 2004, 145: 3473–3486.
    [44] Monroe DG, Johnsen SA, Subramaniam M. Mutual antagonism of estrogen receptors alpha and beta and their preferred interactions with steroid receptor coactivators in human osteoblastic cell lines [J]. J Endocrinol, 2003, 176: 349–357.
    [45] Tomkinson A., Reeve J, Shaw RW. The death of osteocytes via apoptosis accompanies estrogen withdrawal in human bone [J]. J Clin Endocrinol Metab, 1997: 82: 3128–3135.
    [46] Pitsillides AA, Rawlinson SCF, Suswillo RFL. Mechanical strain-induced NO production by bone cells: a possible role in adaptive bone (re)modeling [J], FASEB J, 1995: 9: 1614–1622.
    [47] Dang ZC, Van Bezooijen RL, Karperien M. Exposure of KS483 cells to estrogen enhances osteogenesis and inhibits adipogenesis [J], J Bone Miner Res, 2002, 17: 394–405.
    [48] McCarthy TL, Chang WZ, Liu Y. Runx2 integrates estrogen activity in osteoblasts [J]. J Biol Chem, 2003, 278: 43121–43129.
    [49] Tilakaratne A, Soory M, Ranasinghe AW, et al. Effects of hormonal contraceptives on the periodontium, in a population of rural Sri-Lankan women [J]. J Clin Periodontol,2000, 27(10): 753- 757.
    [50] Machtei EE, Mahler D, Sanduri H, et al. The effect of menstrual cycle on periodontal health [J]. J Periodontol, 2004, 75(3): 408- 412.
    [51] Taichman LS, Eklund SA. Oral contraceptives and periodontal diseases: rethinking the association based upon analysis of National Health and Nutrition Examination Survey data [J]. J Periodontol, 2005, 76(8):1374- 1385.
    [52] Tezal M, Wactawski-Wende J, Grossi SG, et al. The relationship between bone mineral density and periodontitis in postmenopausal women [J]. J Periodontol, 2000, 71(9): 1492- 1498.
    [53] Pilgram TK, Hildebolt CF, Dotson M, et al. Relationships between clinical attachment level and spine and hip bone mineral density: data from healthy postmenopausal women [J]. J Periodontol, 2002 Mar;73(3): 298-301.
    [54] Civitelli R, Pilgram TK, Dotson M, et al. Alveolar and postcranial bone density in postmenopausal women receiving hormone/estrogen replacement therapy: a randomized, double-blind, placebo-controlled trial [J]. Arch Int Med, 2002, 162(12): 1409-1415.
    [55] Jensen EV, Jacobsen HI. Basic guides to the mechanism of estrogen action [J]. Rec Prog Horm Res, 1962, 18: 387-414.
    [56] Green S, Walter P, Kumer V, et al. Human oestrogen receptor cDNA: sequence, expression and homology to v-erb-A [J]. Nature, 1986, 320:134-139.
    [57] Greene GL, Gilna P, Waterfield M, et al. Sequence and wxpression of human wstrogen receptor complementary DNA [J]. Science, 1986, 231:1150-1154.
    [58] Kuiper GG, Enmark E, Pelto-Huikko M, et al. Cloning of a novel receptor expressed in rat prostate and ovary [J]. Proc Natl Acad Sci USA, 1996, 93: 5925-5930.
    [59] 关美萍. 雌激素和雌激素受体基因变态性与骨代谢异常的关系[J]. 国外医学内分泌分册,2000,,20(6):299-301.
    [60] Mcdonell DP, Clemm DL, Hermann T, et al. Analysis of estrogen receptor function in vitro reveals three distinct classed of antiestrogens [J]. Mol Endocrinol, 1995, 9: 659-669.
    [61] Pail F. Bibudhendra S. Metal replacement in Zinc Finger and its Effect on DNA Binding [J]. Encironmental health perspectives, 1994, 102 (Supplement 3): 195-198.
    [62] Vanacker JM, Ettersson K, Gustafsson JA, et al. Transcriptional targets shared by estrogen receptor-related receptors (ERRs) and estrogen receptor (ER) alpha, but not by ERbeta [J]. EMBO J, 1999, 18: 4270-4279.
    [63] Zhang W, Sandra A, Cheng G, et al. Update on estrogen signaling [J]. FEBS Letters, 2003, 546: 17-24.
    [64] 孙桂英,金志军,杨云纺. 雌激素受体的变异及其临床意义[J]. 国外医学妇产科分册,1999,26(3):159-161.
    [65] 谢启文. 现代神经内分泌学[M]. 上海:上海医科大学出版社,1999,372-378.
    [66] 陈瑶. 雌激素的心脏保护机制及其受体的研究[J]. 国外医学妇产科分册,2001,28(1):32-34.
    [67] Onoe Y, Miyaura C, Ohta H, et al. Expression of estrogen receptorβin rat bone [J] . Endocrinology, 1997, 138(10): 4509-4512.
    [68] Davis V L, Chan CC, Schoen TJ, et al. An estrogen receptor repressor induces cataract formation in transgenic mice [J] . Proc Natl Acad Sci USA, 2002, 99(14): 9427-9432.
    [69] Peach K, Webb P, George G, et al. Differential ligand activation of estrogen receptors ER α and ER β at AP1 sites [J ]. Science, 1997, 277: 1508-1511.
    [70] 桂黎明,王建六,魏丽惠. 雌激素受体与细胞信号传导通路[J]. 国内医学分子生物学分册,2001,23(2):103-105.
    [71] Taylor AP, Osorio L, Craig R, et al. Tumor2specific regulation of angiogentic growth factors and their receptors during recovery from cytotoxictherapy [J]. Clin Canc Res, 2002, 8(4): 1213 -1222.
    [72] Weigel NL. Steroid hormone receptors and their regulation by phosphorylation [J]. Biochem J, 1996, 319: 657-667.
    [73] Hong H, Darimont BD, Ma H, et al. An additional region of coactivator GRIP1 required for interaction with the hormone-binding domains of a subset of nuclear receptors [J]. J Biol Chem, 1999, 274:3496-3502.
    [74] Zwijsen RM, Buckle RS, Hijmans M, et al. Ligand2independent recruitment of steroid receptor coactivators to estrogen receptor by cyclin D1 [J]. Genes Dev, 1998, 12: 3488–3498.
    [75] Vittek J, Hernandez MR, Wenk EJ, et al. Specific estrogen receptors in human gingival [J]. J Clin Endocrinol Metab, 1982, 54(3): 608-612.
    [76] Yih WY, Richardson L, Kratochvil FJ, et al. Expression of estrogen receptors in desquamative gingivitis [J]. J Periodontol, 2000, 71(3): 482- 487.
    [77] 屠嫩斐,李哲光,游士奇,等. 性激素类避孕药物对牙周组织影响的实验观察[J]. 中华口腔医学杂志,1995,30:3492-3511.
    [78] Valimaa H, Savolainen S, Soukka T, et al. Estrogen receptor-beta is the predominant estrogen receptor subtype in human oral epithelium and salivary glands [J]. JEndocrinol, 2004, 180(1): 55-62.
    [79] Watt FM, Hogan BL. Out of Eden. Stem cells and their niches [J]. Science, 2000, 287(5457): 1427-1430.
    [80] Gronthos S, Mankani M, Brahim J, et al. Postnatal human dental pulp stem cells (DPSCs) in vitro and in vivo [J]. Proc Natl Acad Sci USA, 2000, 97(25): 13625- 13630.
    [81] Binaco P, Robey PG. Stem cells in tissue engineering [J]. ature, 2001, 414: 118-122.
    [82] 冯雪, 陈富林, 任卫红等. 体外培养牙周膜成纤维细胞矿化能力的实验研究[J]. 华西口腔医学杂志,1998,16(4):294-296.
    [83] Harada H, Toyono T, Toyoshima K, et al. FGF10 maintains stem cell compartment in developing mouse incisors [J]. Development, 2002, 129(6): 1533-1541.
    [84] Bartold PM, McCulloch CA, Narayanan AS, et al. Tissue engineering: a new paradigm for periodontal regeneration based on molecular and cell biology [J]. Periodontol 2000,. 2000: 24: 253–269.
    [85] Bartold PM, Narayanan AS. Periodontal regeneration: In Biology of the periodontal connective tissues [M], Chapter 11. Chicago: Quintessence Publishing, 1998.
    [86] Becker W, Becker BE. Periodontal regeneration: a contemporary evaluation [J]. Periodontol 2000, 1999, 19: 104–114.
    [87] Karring T, Nyman S, Gottlow J, Laurell L, et al. Development of the biological concept of guided tissue regenerationanimal and human studies [J]. Periodontol 2000, 1993, 1: 26–35.
    [88] Giannobile WV, Lee CS, Tomala MP, et al. Platelet-derived growth factor (PDGF) gene delivery for application in periodontal tissue engineering[J]. J Periodontol, 2001, 72: 815–823.
    [89] Howell TH, Fiorellini JP, Paquette DW, et al. A phase I ? II clinical trial to evaluate a combination of recombinant human plateletderived growth factor-BB and recombinant insulin-like growth factor in patients with periodontal disease [J]. J Periodontol, 1997, 68: 1186–1193.
    [90] Jin QM, Anusaksathien O, Webb SA, et al. Gene therapy of bone morphogenetic protein for periodontal tissue engineering [J]. J Periodontol, 2003, 74: 202–213.
    [91] Rutherford RB, Ryan ME, Kennedy JE, et al. Platelet-derived growth factor and dexamethasone combined with a collagen matrix induce regeneration of the periodontium in monkeys [J]. J Clin Periodontol, 1993, 20: 537–544.
    [92] McCulloch CA, Nemeth E, Lowenberg B, et al. Paravascular cells in endosteal spacesof alveolar bone contribute to periodontal ligament cell populations [J]. Anat Rec, 1987, 219: 233–242.
    [93] Lekic P, McCulloch CA. Periodontal ligament cell population: the central role of fibroblasts in creating a unique tissue [J]. Anat Rec, 1996, 245: 327–341.
    [94] McCulloch CA. Progenitor cell populations in the periodontal ligament of mice [J]. Anat Rec, 1985, 211: 258–262.
    [95] McCulloch CA. Origins and functions of cells essential for periodontal repair: the role of fibroblasts in tissue homeostasis [J]. Oral Dis, 1995, 1: 271–278.
    [96] Ivanovski S, Haase HR, Bartold PM. Expression of bone matrix protein mRNAs by primary and cloned cultures of the regenerative phenotype of human periodontal fibroblasts[J]. J Dent Res, 2001, 80: 1665–1671.
    [97] Castro-Malaspina H, Gay RE, Resnick G, et al. Characterization of human bone marrow fibroblast colonyforming cells (CFU-F) and their progeny [J]. Blood, 1980, 56: 289–301.
    [98] Castro-Malaspina H, Rabellino EM, Yen A, et al. Human megakaryocyte stimulation of proliferation of bone marrow fibroblasts [J]. Blood, 1981, 57: 781–787.
    [99] 高秦,刘宏伟,金岩,等. 人牙周膜干细胞的体外分离、纯化及初步鉴定[J]. 实用口腔医学杂志[J]. 2006,22(1):34-37.
    [100] Burns JS, Abdallah BM, Guldberg P, et al. Tumorigenic heterogeneity in cancer stem cells evolved from long-term cultures of telomeraseimmortalized human mesenchymal stem cells [J]. Cancer Res, 2005, 65: 3126–3135.
    [101] Gronthos S, Zannettino AC, Hay SJ, et al. Molecular and cellular characterization of highly purified stromal stem cells derived from human bone marrow [J]. J Cell Sci, 2003, 116: 1827–1835.
    [102] Arceo N, Saulk JJ, Moehring J, et al. Human periodontal cells initiate mineral like nodules in vitro [J]. J Periodontol, 1991, 62: 499–503.
    [103] D’Errico JA, Ouyang H, Berry JE, et al. Immortalized cementoblasts and periodontal ligament cells in culture [J]. Bone, 1999, 25: 39–47.
    [104] Gronthos S, Zannettino AC, Graves SE, et al. Differential cell surface expression of the STRO-1 and alkaline phosphatase antigens on discrete developmental stages in primary cultures of human bone cells [J]. J Bone Miner Res, 1999, 14: 47–56.
    [105] Moule AJ, Li H, Bartold PM. Donor variability in the proliferation of human dental pulp fibroblasts [J]. Aust Dent, J 1995, 40: 110–114.
    [106] Xiao Y, Qian H, Young WG, et al. Tissue engineering for bone regeneration usingdifferentiated alveolar bone cells in collagen scaffolds [J]. Tissue Eng, 2003, 9: 147-152.
    [107] Gronthos S, Graves SE, Ohta S, et al. The STRO-1+ fraction of adult human bone marrow contains the osteogenic precursors [J]. Blood, 1994, 84: 4164–4173.
    [108] 张玉峰,程祥荣,施斌,等. 诱导成体人牙周韧带干细胞向软骨细胞分化的实验研究[J]. 中华口腔医学杂志,2006,41(4):216-219.
    [109] Owen ME, Cave J, Joyner CJ. Clonal analysis in vitro of osteogenic differentiation of marrow CFU-F [J]. J Cell Sci, 1987, 87: 731–738.
    [110] Quinones CR, Caffesse RG. Current status of guided tissue regeneration [J]. Periodontol 2000, 1995, 9: 55–68.
    [111] Ripamonti U, Reddi AH. Tissue engineering, morphogenesis, and regeneration of the periodontal tissues by bone morphogenetic proteins [J]. Crit Rev Oral Biol Med, 1997, 8: 154–163.
    [112] Bosshardt DD, Zalzal S, McKee MD, et al. Developmental appearance and distribution of bone sialoprotein and osteopontin in human and rat cementum [J]. Anat Rec, 1988, 250: 13–33.
    [113] Persidis A. Tissue engineering [J]. Nature Biotechnol, 1999, 17: 508–510.
    [114] 陈希哲,林云锋,乔鞠,等.人体脂肪基质细胞分离培养及其成骨潜能[J].实用口腔医学杂志,2004,20(1):114-118.
    [115] Beyer Nardi N, da Silva Meirelles L. Mesenchymal stem cells: isolation, in vitro expansion and characterization[J]. Handbook of experimental pharmacology 2006;(174): 249-82.
    [116] Gronthos S, Brahim J, Li W, et al. Stem cell properties of human dental pulp stem cells [J]. J Dent Res, 2002, 81(8): 531-535.
    [117] Harada H, Kettunen P, Jung HS, et al. Location of putative stem cells in dental epithelium and their association with Notch and FGF signaling [J]. J Cell Biol, 199,147(1): 105-120.
    [118] Harada H, Toyono T, Toyoshima K, et al. FGF10 maintains stem cell population during mouse incisor development [J]. Connect Tissue Res, 2002, 43(2-3): 201-204.
    [119] Cochran DL, Jones A, Heijl L, et al. Periodontal regeneration with a combination of enamel matrix proteins and autogenous bone grafting [J]. J Periodonto, 2003, 74(9): 1269-1281.
    [120] Chen SC, Marino V, Gronthos S, et al. Location of putative stem cells in human periodontal ligament [J]. J Periodont Res, 2006, 547–553.
    [121] Gay IC, Chen S, MacDougall M: Isolation and characterization of multipotent human periodontal ligament stem cells [J]. Orthod Craniofacial Res 10, 2007; 149–160.
    [122] Fuchs E, Segre JA. Stem cells: a new lease on life [J]. Cell, 2000, 100(1): 143-155.
    [123] 张宏伟,郑玉梅. 免疫磁珠性质及其应用[J]. 国外医学免疫学分册. 2000,23(1): 5-8.
    [124] JP, Goulden NJ, Oakhill A, et al. Quantitative analysis of chimerism after allogeneic bone marrow transplantation using immunomagnetic selection and fluorescent microsatellite PCR [J]. Leukemia 2003, 17(1): 247-251.
    [125] Shi S, Robey PG, Gronthos S. Comparison of human dental pulp and bone marrow stromal stem cells by cDNA microarray analysis [J]. Bone, 2001, 29(6): 532-539.
    [126] Batouli S, Miura M, Brahim J, et al. Comparison of stem-cell-mediated osteogenesis and dentinogenesis [J]. J Dent Res, 2003, 82(12): 976-981.
    [127] Bartold PM, Songtao S, Stan G. Stem cells and periodontal regeneration [J]. Periodontology 2000, 2006, 40: 164-172.
    [128] Friedenstein AJ. Precursor cells of mechanocytes [J]. Int Rev Cytol, 1976, 47: 327–359.
    [129] Friedenstein AJ, Ivanov-Smolenski AA, Chajlakjan RK, et al. Origin of bone marrow stromal mechanocytes inradiochimeras and heterotopic transplants [J]. Exp Hematol, 1978, 6: 440–444.
    [130] Dunnwald M, Chinnathambi S, Alexandrunas D, et al. Mouse epidermal stem cells proceed through the cell cycle [J]. J Cell Physiol, 2003, 195(2): 194-201.
    [131] 陈燕花,陈振兵,康皓. 三磷酸腺苷对小鼠肌源性干细胞增殖和细胞周期的影响[J]. 中华实验外科杂志,2006,23(2): 170-172.
    [132] 陈晓岚,黄仁彬,莫艳秀. 恒磁场对人脐血间充质干细胞增殖及细胞周期的影响[J]. 中国临床康复. 2006,10(25): 14-16.
    [133] Nagatomo K, Komaki M, Sekiya I, et al. Stem cell properties of human periodontal ligament cells [J]. J Periodont Res 2006, 41; 303–310.
    [134] Morishita M, Yamamura T, Bachchu AH, et al. Estradiol enhances the production of mineralized nodules by human periodontal ligament cells [J]. Arch Oral Biol, 1999, 44(9): 781- 783.
    [135] Jonsson D, Andersson G, Ekblad E, et al. Immunocytochemical demonstration of estrogen receptor beta in human periodontal ligament cells [J]. Arch Oral Biol, 2004, 49(1): 85-88.
    [136] Lee KC, Jessop H, Suswillo R, et al. The adaptive response of bone to mechanicalloading in female transgenic mice is deficient in the absence of oestrogen receptor-alpha and -beta [J]. J Endocrinol, 2004 Aug, 182(2): 193-201.
    [137] Lanyon L, Armstrong V, Ong D, et al. Is estrogen receptor alpha key to controlling bones' resistance to fracture? [J]. The Journal of endocrinology 2004, 182(2): 183-91.
    [138] Sodek J. A new approach to assessing collagen turnover by using a microassay. A highly efficient and rapid turnover of collagen in rat periodontal tissues [J]. Biochem J, 1976, 160: 243–246.
    [139] Komm BS, Terpening CM, Benz DJ, et al. Estrogen binding, receptor mRNA, and biologic response in osteoblast-like osteosarcoma cells [J]. Science, 1988, 241(4861): 81-84.
    [140] Pensler JM, Radosevich JA, Higbee R, et al. Osteoclasts isolated from membranous bone in children exhibit nuclear estrogen and progesterone receptors [J]. Journal of bone and mineral research: the official journal of the American Society for Bone and Mineral Research, 1990, 5(8): 797-802.
    [141] Shevde NK. Estrogen modulates the recruitment of myelopoietic cell progenitors in rat through a stromal cell-independent mechanism involving apoptosis [J]. Blood, 1996, 87: 2683.
    [142] Krege J ,Hodgin J ,Couse J ,et al. Generation and reproductive phenotypes of mice laking estrogen receptor β [J] . Proc Natl Acad Sci, USA, 1998, 95: 15677-15682.
    [143] Hurst AG, Goad DW,Mohan M. Independent downstream gene expression profiles in the presence of estrogen receptor alpha or beta [J]. Archs oral Biol, 2001,7(3):127-130
    [144] 宋扬,冯英明. 雌激素受体α与β表达的研究进展及其在疾病预后判断中的作用[J]. 中国临床康复,2004,8(35): 8054-8056.
    [145] Hall JM, Mcdonnell DP. ER β-modulation of ER α transcription activity [J]. Endocrinology, 1999,140: 5566-5578
    [146] Zhou S , Zilberman Y, Wassermann K, et al. Estrogen modulates estrogen receptor alpha and beta expression ,osteogenic activity, and apoptosis in mesenchymal stem cells (MSCs) of osteoporotic mice [J]. J Cell Biochem Suppl, 2001, Suppl 36: 144-55.
    [147] 黄曼婷,刘勇,林守清,邱贵兴. 17β-雌二醇调控骨外膜来源成骨样细胞雌激素受体及相关受体α基因表达[J]. 中华骨科杂志,2006,26(9):618-621.
    [148] 廖二元, 苏欣, 罗湘杭. 17β- 雌二醇对MG63 细胞和正常人成骨细胞雌激素受体β表达的上调作用[J]. 中华内分泌代谢杂志,2003, 19: 240- 241.
    [149] Bodine PVN, Henderson RA, Green J, et al . Estrogen rerceptorαis developmentallyregulated during osteoblast differentiation and contributes toselective responsiveness of gene expression [J] . Endocrinology, 1998, 139(4) :2048 – 2057.
    [150] 岑洪,林茂芳,黄河,蔡真. 雌激素受体α和β在间充质干细胞体外成骨、成脂肪分化中的表达变化[J].广西医科大学学报,2005,22(6):883-885.
    [151] 金作林,丁寅,李潇,等. 骨质疏松大鼠雌激素治疗后牙周组织中骨形成蛋白的分布[J]. 牙体牙髓牙周病学杂志, 2000, 10: 204-206.
    [152] Morishita M, Yamamura T, Bachchu MA, et al. The effects of oestrogen on osteocalcin production by human periodontal ligament cells [J]. Arch Oral Biol, 1998, 43(4):329- 333.
    [153] Morishita M, Yamamura T, Shimazu A, et al. Estradiol enhances the production of mineralized nodules by human periodontal ligament cells [J]. J Clin Periodontol, 1999, 26(11):748- 751.
    [154] Jonsson D, Wahlin A, Idvall I, et al. Differential effects of estrogen on DNA synthesis in human periodontal ligament and breast cancer cells [J]. J Periodontal Res, 2005, 40(5):401- 406.
    [155] Nojima N, KobayashiM, Shionome M, et al. Fibroblastic cells derived from bovine periodontal ligaments have the phenotypes of osteoblasts [ J ]. J Periodont Res, 1990, 25 (3): 179 – 185.
    [156] 王春先,周磊,周东风,刘志强,蔡海燕.雌激素对大鼠骨髓基质细胞增殖和分化的影响[J]. 口腔颌面修复学杂志.2005,6(4):246-248.
    [157] Plant A, Tobias JH. Characterisation of the temporal sequence of osteoblast gene expression during Estrogen-induced osteogenesis in female mice [J]. J Cell Biochem, 2001, 82(4):683-691.
    [158] Maccarinelli G, Sibilia V, Torsello A, et al. Ghrelin regulates proliferation and differentiation of osteoblastic cells [J]. J Endocrinol, 2005, 184(1):249-256.
    [159] Byers BA, Garcia AJ. Exogenous Runx2 expression enhances in vitro osteoblastic differentiation and mineralization in primary bone marrow stromal cells [J]. Tissue Eng, 2004, 10(11-12): 1623-1632.