野生大豆和栽培大豆耐盐机理及遗传研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
评价、筛选并利用现有的野生种质资源来提高作物耐盐性,对开发利用盐碱土具有极其重要的意义。本研究以Lee68、南农1138-2、南农88-31、苏协1号、Jackson、中子黄豆乙等6个栽培大豆(Glycine max.L)品种和N23232、N23234、N23227、BB52(采集于山东省垦利县黄河入海口的盐碱滩涂)、JWS(采集于江苏省射阳县洋马乡的沿海滩涂)等5个野生大豆(G.soja.L)种群为材料,对各生育期耐盐性进行了鉴定;研究了NaCl胁迫对大豆茎叶表面腺体发育进程、分布密度及泌盐功能的影响;比较研究了NaCl胁迫下Cl~-和Na~+对野生和栽培大豆种子萌发、幼苗生长以及根系质子泵活性和叶片多胺含量的影响;研究了野生和栽培大豆对NaCl和Cl~-耐性的遗传规律。实验结果表明:
     NaCl胁迫下,野生大豆种子相对发芽指数为:BB52,JWS>N23232,N2234和N23227;出苗速率为:JWS>BB52>N23234,N23227>N23232;幼苗正常率为:JWS>BB52>N23227>N23232>N23234;全生育期耐盐性为:BB52=JWS>N23232。栽培大豆种子相对发芽指数为:Lee68,Jackson和南农88-31>中子黄豆乙和南农1138-2>苏协1号;出苗速率为:中子黄豆乙>Lee68>Jackson和苏协1号>南农88-31>南农1138-2;幼苗正常率为:南农1138-2>Jackson>中子黄豆乙和南农88-31>Lee68和苏协1号;苗期耐盐性为:Lee68和南农1138-2>南农88-31>苏协1号和Jackson>中子黄豆乙;全生育期耐盐性为:Lee68和南农1138-2>中子黄豆乙。上述结果表明,野生大豆各生育期耐盐性表现基本一致;栽培大豆苗期与全生育期耐盐性表现一致,而其他生育期与全生育期耐盐性表现不一致。
     扫描电镜观察表明,球形“腺体”着生于植株茎杆及叶片远轴面(下表面)和近轴面(上表面)上,主要分布于远轴面尖部以及气孔和叶脉附近,与茎杆和叶片同步发育,并受NaCl胁迫的促进。但不为盐生野大豆BB52所特有。利用电子探针结合叶片漂洗研究表明,NaCl胁迫下,“腺体”表面矿质元素组成以Si为主,Na~+和Cl~-含量很低,无泌盐能力。
     在种子萌发期和苗期,在等渗等浓度的单Cl~-、单Na~+和NaCl处理下,分别以相对发芽指数及植株受害程度为指标评价了NaCl胁迫下Na~+和Cl~-对野生和栽培大豆的胁迫作用,结果表明,栽培大豆对Cl~-敏感、对Na~+耐性强;野生大豆对Cl~-耐性强、对Na~+敏感。
     在苗期,利用等渗的150mmol/L单Cl~-、单Na~+和NaCl处理并研究其对根系质膜
    
    罗庆云南京农业大学博士学位论文:野生大豆和栽培大豆耐盐机理及遗传研究
    H+一ATPase和液泡膜H十一PPas。、H气ATPase活性和叶片多胺组分的影响.结果表明,
    野生大豆根系质膜H九ATPase和液泡膜H+一PPase、H+一ATPase活性在胁迫ld时受激而
    明显高于对照,2d后下降到对照水平以下,其后又缓慢上升,BB52活性高于N23232;
    单Cl一处理下的液泡膜H气PPase活性明显高于单Na+及NaCI处理。
     单Cl一处理下的野生大豆叶片高氛酸可溶性结合态多胺的相对含量显著高于单Na+
    和NaCI处理;同一处理下,BB52叶片高氛酸可溶性结合态多胺相对含量较N23232
    高。单Na+处理下的耐盐栽培大豆叶片高氛酸可溶性结合态多胺相对含量显著高于单
    Cl一和NaCI处理。因此,游离态和高氛酸不溶性结合态多胺向高氛酸可溶性结合态多
    胺的转化可能与大豆耐盐性增强有关。
     以野生和栽培大豆及栽培大豆间配制的5个杂交组合的PI、PZ、FI、F:和凡3世代
    为材料,牙.J用多世代联合分离分析方法分析了野生和栽培大豆对Cl‘和NaCI耐性的遗
    传规律。实验结果表明,栽培大豆的Cl一耐性受一对主基因控制,同时存在微效基因
    效应;野生大豆的Cl一耐性受与栽培大豆不同的基因控制,其与栽培大豆杂交后代的
    a一耐性高于栽培大豆间的杂交后代。Lee68xN23227组合对NaCI的耐性遗传符合一对
    加性主基因+加胜一显性多基因模型.中子黄豆乙xBB52和栽培大豆间杂交组合南农
    88一31‘Jackson和南农1 1 38一2x南农88一31对NaCI的耐性遗传符合加性一显性一上位性多
    基因遗传模型。
Evaluation, selection and utilization of wild germ plasm to enhance salt tolerance of plants by breeding is very important to the exploitation of saline soil. 6 species of soybean cultivars (Glycine max L.)-Lee68, Nannong 1138-2, Nannong 88-31, No.1 of Suxie, Jackson and Zhongzi Huangdou-Yi and 5 populations of wild soybean (G soja L.)-N23232, N23234, N23227, BB52 (collected from the setuary of the Yellow Rive in Kenli County, Shandong Province) and JWS (collected from the beach in Sheyang County, Jiangsu Province) were used as plant materials in this research. At the first, evaluated for their ability of salt tolerance at various stages of growth and development were evaluated; At the second, effects of NaCl stress on the development and salt secretion of glands on surface of stems and leaves in G max as well as G soja were investigated. At the third, stress effects of Na+ and Cl- caused by NaCl on seed germination, seedlings growth, H+-ATPase activities of plasma membrane, H+-ATPase and H+-PPase activities
     of tonoplast of the roots and contents of polyamines of the leaves in G max and G soja were compared. Finally, inheritance of NaCl and Cl" tolerance in G max and G soja were investigated. Result showed that:
    Under NaCl stress, among the 5 G soja populations, seed relative germination index were BB52, JWS>N23232, N23234 and N23227, seed emergence rate were JWS>BB52> N23227>N23232>N23234, salt tolerance at whole development stage were JWS, BB52>N23232. Among the 6 G max cultivars, under NaCl stress, seed relative germination index were Lee68, Jackson, Nannong 88-31>Zhongzi Huangdou-Yi, Nannongll38-2> No.1 of Suxie, seed emergence rate were Zhongzi Huangdou-Yi> Lee68> Jackson, No.l of Suxie>Nannong88-31> Nannongl 138-2, salt tolerance of seedlings were Lee68, Nannong 1138-2>Nannong 88-31> No.l of Suxie, Jackson> Zhongzi Huangdou-Yi, salt tolerance at whole development stage were Lee68, Nannong 1138-2> Zhongzi Huangdou-Yi. These results indicated that salt tolerance of G soja populations at various stages were performance consistence but inconformity for G max cultivars; and the salt tolerance at
    
    
    seedling stage were performance consistence with those of the whole development stage for G max cultivars.
    The results observed with scanning electron microscope showed that, the globe "glands" were born in surface of stems and the adaxial/abaxial surface of leaves, and mainly attached to the epidermal cells in abaxial surface of leaf apex, near and on the main/later vein and guard cells of stoma. And their development progress was synchronizing with the leaf and stem it attached and their density was promoted by NaCl stress. By the way, the globe "glands" were not monopolist by the seedlings of BB52, and were founded in seedlings of other populations of G. soja and cultivar of G max. The results studied with electro-probe (X-ray microanalysis) and leaf rinsing showed that, under NaCl stress, chemical element constitute in the globe "gland" surface regarding Si as the lord, contents of Na+ and Cl- were very low. The globe "gland" couldn't secrete salt.
    At seedling emergence stage and seedling stage, the relative germination index and salt injury suffered under isoosmotic stress of Cl-, Na+ and NaCl at equal concentration were used to evaluate and compare the stress effects of Cl" and Na+ on G max cultivars and G soja populations under NaCl stress. Results showed that, cultivars of G max were more sensitive to stress effect from Cl" than that from Na+; however, populations of G. soja were more sensitive to stress effect from Na^ than that from Cl".
    In the period of seedling, content of polyamines in leaves as well as activities of I-T-ATPase of plasma membrane and activities of H+-PPase and H+-ATPase of toloplast in roots of G soja populations were mensurated under isoosmotic stress of 150 mmol/ L Cl-, Na+ and NaCl. Results showed that, the activities of plasma membrane H+-ATPase, toloplast H+-PPase and H+-ATPase increased after stress for 1 day; after stress for 2 days, their activities decreased to the levels
引文
1.常汝镇,陈一舞,邵桂花,万超文.盐对大豆农艺性状及籽粒品质的影响[J].大豆科学,1994,13(2):101~105
    2.陈硕,陈珈,王学臣.玉米根尖细胞液泡膜结合的蛋白激酶的存在及其性质[J].植物学报,2002.44(6):661~666
    3.陈云昭,王玉国.在盐胁迫下获得的大豆愈伤组织及再生植株的生化反应[J].大豆科学,1992,11(1):70~73
    4.盖钧镒,章元明,王健康.植物数量性状遗传体系[M].科学出版社(第一版).2003
    5.龚明,丁念诚,刘友良,等.盐胁迫下大麦和小麦叶片脂质过氧化与超微结构变化的关系[J].植物学报,1989,31(3):32~36
    6.龚明.刘友良,丁念诚,贺子义.大麦不同生育期的耐盐性差异[J].西北植物学报,1994,14(1):1~7
    7.郭蓓,邱丽娟,邵桂花.大豆耐盐基因的PCR标记[J].中国农业科学,2000,33(1):10~11
    8.何龙飞.小麦铝毒害和钙缓解作用的机理(博士学位论文).南京农业大学,1999
    9.李莹.野生大豆资源的利用[M].见:李莹等著,大豆遗传资源研究论文集.太原:山西科学技术出版社,1991,pp 138~147.
    10.李文滨,扬庆凯,王金陵.大豆品种与种间杂交后代农艺性状遗传的比较研究[J].大豆科学,1986,5(4):265~276.
    11.林鸿宣.应用分子标记检测水稻耐盐性的QTL[J].中国水稻科学,1998,12(2):72~78.
    12.刘友良,汪良驹.植物对盐胁迫的反应和耐盐性[A].见:余叔文,汤章城主编.植物生理与分子生物学(第二版)[C],北京:科学出版社,1998,pp 752~769.
    13.刘宛.大麦体内CT分布与耐盐性及其硝酸盐的调节作用(硕士学位论文).南京农业大学,1991
    14.刘祖祺,张石城主编,植物抗性生理学[M].,北京,中国农业出版社,1993,pp 278
    15.陆静梅,刘友良,胡波,等.中国野生大豆盐腺的发现[J].科学通报,1998,43(19):2047~2078
    16.罗庆云,於丙军,刘友良.大豆苗期耐盐性鉴定指标的检验[J].大豆科学,2001,20(3):177~182
    17.马淑时,王伟.大豆品种资源的抗盐碱性研究[J].吉林农业科学,1994,4:69~71
    18.毛才良,刘友良.盐胁迫大麦苗体内Na~+、K~+分配与叶片耐盐量[J].南京农业大学学报,1990,13(23):32~35
    19.毛达如主编.植株营养研究方法[M].北京.北京农业大学出版社,1994,pp 17
    20.毛知耘,李家康,何光安,底同立主编.中国含氯化肥[M].北京:中国农业出版社,2001,1~83.
    21.任继周,朱兴运主编.河西走廊盐渍地的生物改良与优化生产模式[M].北京科学出版社,
    
    1998,pp 99~101
    22.邵桂花,常汝镇,陈一舞,等.大豆耐盐性遗传的研究[J].作物学报,1994,20(6):721~726.
    23.邵桂花,常汝镇,陈一舞.大豆耐盐性研究进展[J].大豆科学,1993,12(3):244~248
    24.邵桂花,万超文,李舒凡.大豆萌发期耐盐生理初步研究[J].作物杂志,1994b,(6).25~27
    25.邵桂花.大豆耐盐性遗传研究[J].作物学报,1994,20(6):721~726.
    26.盛连喜,马逊风,王志平.松嫩平原盐碱化土地的修复与调控研究[J].东北师大学报(自然科学版),2002,34(1):30~35.
    27.孙寰,赵丽梅,黄梅.大豆质-核互作不育系研究[J].科学通报,1993,38(16):1535~1536.
    28.王宝山,赵可夫.小麦叶片中Na、K提取方法的比较[J].植物生理学通讯,1995,31(1):50~52.
    29.王洪亮,张承烈,陈国仓.不同生态型芦苇叶片中多胺浓度和精氨酸脱羧酶活性的季节变化[J].植物学报,1993,35(12):936~942
    30.王金陵,孟庆喜,扬庆凯,等.回交对克服栽培大豆与野生和半野生大豆杂交后代蔓生倒伏性的效应[J].大豆科学,1986,5(3):181~187.
    31.王遵亲,祝寿泉,俞仁培,等.中国盐渍土[M].北京:科学出版社,1993,pp 1~211
    32.吴春芳,徐修龙,徐洪琦.滩涂耐盐大豆品种的筛选和利用[J].江苏农业科学,1999,2:29~31
    33.徐云岭,余叔文.植物适应盐逆境过程中的能量消耗[J].植物生理学通讯,1990(6):70~73
    34.杨光宇,郑惠玉.克服种间杂种蔓生、小粒等不良性状技术的初步研究[J].大豆科学,1993,16(3):259~263.
    35.杨晓英.江苏海滩野大豆耐盐性鉴定与耐盐机理的研究(硕士论文).南京农业大学,2001
    36.於丙军,罗庆云,曹爱忠,等.栽培大豆和野生大豆耐盐性及离子效应的比较[J].植物资源与环境学报,2001,10(1):25~29.
    37.於丙军,罗庆云,刘友良.NaCl胁迫下野生和栽培大豆幼苗体内离子的再转运[J].植物生理与分子生物学学报,2003,29(1):39~44
    38.翟凤林,曹鸣庆,等编译.植物的耐盐性及其改良[M].北京:农业出版社,1989,pp 168~176
    39.张士功,高吉寅,宋景芝.水杨酸和阿斯匹林对盐胁迫下小麦种子萌发的作用[J].植物生理学通讯,1999,35(1):29~32
    40.张宪政主编.作物生理研究法[M].北京:农业出版社,1990,pp 142~143.
    41.章元明,盖钧镒.利用P_1、F_1、P_2、F_2和F_(2:3)家系五世代联合分离分析的拓展[J].生物数学学报,2002,17(3):363~368
    42.赵福庚.盐胁迫下植物体内多胺和脯氨酸代谢及其相互关系的研究(博士学位论文).南京农业大学,2000
    43.赵可夫,李法曾主编.中国盐生植物[M].北京:科学出版社,1999.
    44.赵可夫.植物的抗盐性和抗盐机理[J].曲阜师范学院学报,1984,专刊:pp 125~133
    
    
    45.郑少玲,严小龙.盐胁迫下不同水稻基因型根内Na~+和CT的分布情况比较[J].1996,17(4):24~28
    46.周鸿彬,蒋虎祥,窦润禄.大米草盐腺的形态结构[J].植物学报,1982,24(2):115~118
    47.庄炳昌主编.中国野生大豆生物学研究[M].北京:科学出版社,1999.
    48. Abel GH. Salt tolerance of soybean varieties during germination and later growth [J]. Crop Sci, 1964, 4:157~161.
    49. Abel GH. Inheritance of the capacity for chloride inclusion and chloride exclusion in soybeans[J]. Crop Sci., 1969, 9:697~689
    50. Andrews SIB, Mazurkiewicz J.E, Kikk R.G..The distribution of intracellular ion in the avian salt gland [J]. J. Cell Bio., 1983, 96:1389~1399
    51. Arisz WH, Camphus IT, Heikens S, Tooren V. The secretion of the glands of Limonium latifolius Ktze [J]. Acta Botanica NewLandica, 1955,4:323~328
    52. Atkinson MR, Findlau GP, Hope AB, et al. Salt regulation in the mangroves Rhizophora mucronata Lam. And Aegilitis annulata R.Br [J]. Aust. J. Biol. Sci., 1967, 20:589~599
    53. Balsamo RA, Thomson WW. Ultrastructural features associated with secretion in the salt glands of Frankenia grandifolia (Franke-niaceae) and Avicennia germinans (Avicenniaceae) [J]. AmerJ.Bot., 1993, 80(11):1276~1283.
    54. Benarides M P, Marconi P L, Gallego S M. Relationship between antioxidant defence systems and salt tolerance in solanum tuberosum [J]. Aust. J. Plant Physiol., 2000,27:273~278.
    55. Berry WL. Characteristics of salt secreted by Tamarix aphylla [J]. Can. J.Bot.,1970, 45:1774~1775
    56. Boon PI, Allay WG. Assessment of leaf-washing techniques for measuring salt secretion in Avicennia marina (Forsk.) Viehr [J]. Aust.J.Plant Physiol., 1981,9:725~734
    57. Broyer T C, et al. Chlorine A micronitrient element for higer plants [J]. Plant physiol. 1954, (29): 526~532
    58. Dieudonné S, Forero ME, Llano I. Two different conductances contribute to the anion currents in Coffea arabica protoplasts [J]. J. Mem. Bio., 1997, 159:83~94
    59. Drennan PM, Berjak P, Pammenter NW. Ion grandients and adenasine triphatase localization in the salt glands of Avicennia marina (forsskal) Vierh [J]. South Afri. J. Bot., 1992,58(6):486~490
    60. Drolet G. Radical scavenging properties of polyamines [J]. Phytoche., 1986, 25:367~400
    61. Dschida WJ, Platt-Aloia KA, Thomson WW. Epidermal peels of Avicennia germinans (L.) Steam: Auseful system to study the function of salt glands [J]. Ann. Bot., 1992,70:501~509
    62. Dupont FM. Salt-induced changes in ion transport: regulation of primary pumps and secondary transports. In: Cook DT, Clarkson DT (eds). Transport and Receptor Protein of Plant Membranes
    
    [M]. Plenum Press, New York, 1992, pp 91-100.
    63. Durand M, Lacan D. Sodium partitioning within the shoot of soybean [J]. Physiol Plant, 1994, 91: 65-71.
    64. Elsamad HMA, Shaddad MAK. Salt tolerance of soybean cultivars [J]. Biol. Plant., 1997, 39(2) : 263-269
    65. Elsayed H, Kirkwood RC. Solute accumulation in soybean (Glycine max. L.) cells adapted to NaCl salinity [J]. Phyton Hor., 1992, 31(2) : 233-249
    66. Evens PT, Malmberg RL. Do polyamine have roles in plant development [M]. Ann. Rev. Plant Physiol. Plant Mol. Bio, 1989,40:235-269
    67. Flores HE, Galston AW. Osmotic stress-induced polyamine accumulation in cereal leaves. I. Physiological parameters of the response [J]. Plant Physiol., 1984, 75: 10-109
    68. Flores HE, Galston AW. Polyamines and plant stress: Activation of putrescine biosynthesis by osmotic shock [J]. Science, 1982, 217:1259-1260
    69. Foolad MR, et al. Mapping QTL sconferring salt tolerance during germination in tomato by selective genotyping [J]. Mol. Bre., 1997,3(4) :269-277.
    70. Francois LE, Salinity effects on four sunflower hybrids [J]. Agron. J., 1996(88) : 215-219
    71. Frett JJ, Pill WG, Morneau DCA comparison of priming agents for tomato and asparagus seeds [J]. Hon. Sci. 1991,26: 9, 1158-1159;
    72. Galston AW, Sawhney RK. Polyamines in plant physiology [J]. Plant Physiol., 1990, 94: 406-410
    73. Garcia A, Senadhira, Flowers TJ, Yeo AR. The effect of selection for sodium transport and for agronomic characteristic upon salt resistance in rice (Oryza sativa L.) [J]. Theor. Appl. Genet, 1995, (90) : 1106-1111
    74. George HA, Arnold JM. Salt tolerance of soybean varieties (Glycine max. L. Merrill) during germination and later growth [J]. Crop Sci., 1996,4:157-160
    75. Gosset DR, Millhollon EP, Lucas MC. Antioxidant response to NaCl in salt-saltance and salt-sensitive cultivars of cotton [J]. Crop Sci., 1994, 34:706-714.
    76. Grattan SR, Mass EV. Interactive effects of salinity and substrate phosphate on soybean [J]. Agron. J., 1984, 76:668-676
    77. Greenway H, Munns R. Mechanisms of salt tolerance in nonhalophytes [J]. Ann. Rev. of Plant Physiol. 1980, 31:149-190
    78. Greenway H, Thomas DA. Plant response to saline substrate. V. Chloride regulation in the individual organs of Hordeum vulgare during treatment with sodium chloride. Aust. J. Bio. Sci., 1965, 18: 505-524.
    
    
    79. Hewitt EJ, Smith TA. Plant mineral nutrition [M]. Norwich: English Universities Press. 1974.
    80. Hill AE, Hill BS.The Limonium salt gland: A biophysical and structural study [M]. Int. Rev. Cytol., 1973,35:299-319
    81. Hill AE, Hill BS. 1976 Mineral ions. In: Luttge V, Pitman MG (eds) Transport in plants. II. Encyclopedia of Plant Physiology [M]. NS, Vol 2B.Springer-Verlag,Berlin P225-243
    82. HU ZA, Wang HX. Salt tolerance of wild soybean (Glycine soja.) in natural populations evaluted by a new method [J]. Soybean Gen. New., 1997,24:79-80
    83. Huang CY, ChenYM. Role of glutathione reductase and related enzymes in salt-tolerant mechanism of soybean plants grown under salt-stress condition [J]. Taiwania, 1995,40(1) : 21-34
    84. Ish-Shalom-Gordon N, Dubinsky Z. Possible modes of salt secretion in Avicennia marna in the sinai [J] Plant Cell, 1990,31(1) : 27-32
    85. King IP, et al. Characterization of Thinopyrumbessarabicum chromosomesegments in wheat using random ampli-fied polymorphic DNAs (RAPDs) and genomic in situhybridization [J]. Theor. Appl. Genet., 1993,86(8) : 895-900.
    86. Kingsbury RW, Epstein E. Salt sensitivity in wheat [J]. Plant Physiol., 1986, 80: 651-654
    87. Krackhardt M, Guerrier G Effect of osmotic and ionic stresses on proline and organic acid contents during imbibition and germination of soybean seeds [J]. J. Plant Physiol., 1995, 146, 725-730
    88. Lacan D, Durand M. Na+-K+ Exchange at the Xylem/Symplast Boundary [J]. Plant Physiol.. 1996. 110:705-711.
    89. Lacand D, Durand M. Na+ and K+ transport in excised soybean roots [J]. Physiol. Plant, 1995, 93: 132-138.
    90. Lauchli A, Wieneke J. Studies on growth and distribution of Na+, K+ and Cl-in soybean varieties differing in salt tolerance [J]. Z Pflanzenernaehr Bodenkd, 1979,142:3-13.
    91. Lessani H, Marschner H. Relation between salt tolerance and long-distance transport of sodium and chloride in various crop species. Austr. J. Plant Physiol., 1978, 5: 27-37.
    92. Levy Y, Shalhevet J. Ranking the salt tolerance of citrus rootstocks by juice analysis [J]. Sci. Hor, 1990,45:89-98.
    93. Luttge U. Structure and function of plant glands [M]. Ann. Rev. Plant Physiol, 1971, 21:23-24
    94. Lutts S, Kinet JM, Bouharmont J. NaCl induced senescence in leaves of rice (Oryza sativa L.) cultivars differing in salinity resistance [J]. Ann. Bot. 1996(78) : 389-398
    95. ManoY, et al. Mapping quantitative traitloci for salt toleranceat germination and the seedling stageinbarley (HordeumvulgareL.)[J]. Euphytica. 1997,94 (3) : 263-272.
    96. Marcum kB, Murdoch CL. Salt glands in the Zoysieae [J]. Ann. Bot, 1990, 66,17-21
    
    
    97. MateyVE. Chloride cells: A structural basis of ion exchange processes in the gills of teleost fishes [J]. Cytol, 1986, 28:5-22
    98. Mitchell P. Chemiosmotic coupling in oxidation and phyotosynthetic phosphorylation [J]. Biol. Rev. Cam. Philos. Soc., 1966,41:455-540
    99. Moftah AE, Michel BE. The effect of sodium chloride on solute potential and proline accumulation in soybean leaves [J]. Plant Physiol., 1987, 83(2) : 238-240
    100. Moya JL, Primo-Millo E, Talon M. Morphological factors determining salt tolerance in citrus seedlings: the shoot to root ratio modulates passive root uptake of chlorid ions and their accumulation in leaves. Plant, Cell and Env., 1999,22: 1425-1433.
    101 . Nakamura Y, Kasamo K, Shimosato N, et al. Stimulation of the extrusion of protons and H+-ATPase activities with the decline in pyrophosphatase activity of the tonoplast in intact mung bean roots under high-Nad stress and its relation to external levels of Ca2+ ions [J]. Plant Cell Physiol., 1992, 33(2) : 139-149
    102. Natochin YV. Physiological determinations underlying the principle of structural parallelism (identity) [J]. Ibid, 1986,28:276-284
    103. Niu X, Bressan RA, Hasegawa PM, Pardo JM. Ion homeostasis in NaCl stress enviroments [J]. Plant Physiol., 1995, 109:735-742
    104. Pantalone V R, et al. Chloride tolerance in soybean and perennial Glycine accessions [J]. Euphytica, 1997,97:235-239
    105. Pantalone VR, Kenworthy WJ. Salt tolerance in glycine max and perennial glycine [J]. Soybean Gen. New., 1989,16:145-146
    106. Pitman MG Transport across plant roots. Qua. Rev. Bio., 1982, 15: 481-554.
    107. Pollack G Waisel Y. Salt secretion in Aeluropus litoralis (Willd.) Parl [J]. Ann. Bot, 1970,34:879-888
    108. Pollack G, Waisel Y. Ecophysiology of salt secretion in Aeluropus litoralis (Gramineae) [J]. Physiol. Plant., 1979,47:177-184
    109. Ponnamperuma EN. In: Staples RC, Toenniessen GH (eds). Salinity Tolerance in Plants [M]. John Wiley, New York 1984, P255
    110. Ramadan T. Ecophysiology of salt excretion in the xero-halophyte Reaumuria hirtella [J]. New Phytol. 1998, 139(2) : 273-281
    111. Scholander PF, Hammel HT, Hemmingsen EA, et al. Salt balance in mangroves [J]. Plant Physiol., 1962,37:722-729
    112. Scott BIH, Gulline H, Pallaghy CK. The electrochemical state of cells of broad bean roots. I.
    
    Investigations of elongating roots of young seedlings [J]. Aust. J.Bio. Sci., 1968, 21: 185-200.
    113. Shimony C, Fahu A, Reinhold L. Ultrastructure and ion gradients in the salt glands of Avicennia marina [J]. New Phytol., 1973,72:27-36
    114. Skerrett M, Tyerman SD. A channel that allows inwardly directed fluxes of anions in protoplasts derived from wheat roots [J]. Planta, 1994, 192: 295-305.
    115. Slocum RD, Kaur-Sawhney R, Galston AW. The physiology and biochemistry of polyamines in plants [J]. Arch. Bioch. Biophys, 1984, 235: 283-303
    116. Smith, TA. Arginine decarboxylase of oat seedlings [J]. Phytoche., 1979, 18: 1447-1452
    117. Smith, TA. Polyamines [M]. Ann. Rev. Plant Physiol., 1985,36: 117-143
    118. Srivastava AK, etal. Relationship between chloride accumulation in leaf and cation-exchange capactity of root of Citrus species [J]. Indian J. Agr. Sci., 1998, 68(1) : 39-41
    119. Storey R. Salt tolerance, ion relations and the effect of root medium on the response of citrus to salinity. Aust. J. Plant Physiol., 1995, 22: 101-114.
    120. Stumpf DK, Prisco JT, Weeks JR, Lindley VA, O'Leary JW. Salinity and Salicornia bigelovii Torr. Seedling establishment Water relations [J]. J. Exp. Bot. 1986, 37: 160-169
    121. Termaat A, Munns R. Use of concentrated macronutrient solutions to separate osmotic from NaCl-specifioc effects on plant growth [J].Aust. J. Plant Physiol., 1986, 13, 509-522
    122. Thomson WW, Liu LL. Ultrastructural features of the salt gland of Tamarix aphylla [J]. Planta, 1976,73:201-220
    123. Thomson WW. The structure and function of salt glands [M]. In: Poljakoff-Mayber AA, Gale J (eds). Plants in Salins Evironments, Heidelberg, New York, Springer-Verlag, Berlin 1975. 118-121
    124. Thomson WW, Faraday CD, Oross JW. Salt glands. In: Baker DA, hall JL, (eds). Solute transport in plant cells and tissues [M]. Longman Scientific and Technical, Essex, 1988, pp 498-537.
    125. Vassilyev AE, Stepanova AA. The Ultrastructure of Ion-secreting and Non-secreting Salt glands of Limonium Platyphyllum [J]. J. Exp. Bot., 1990, 41(222) : 41-46
    126. Wahid A, Rao AR, Rasul E. Germination of seeds and propagules under salt stress [M]. In: Peessarakli M (eds). Handbook of Plant and Corp Stress, Marcel Dekker, 1999, New York, pp. 153-167
    127. Wahid A, Rao AR, Rasul E. Identification of salt tolerance traits in sugarcane lines [J]. Field Crops Res., 1997(54) : 9-17
    128. Waisel Y, Eshel A, Agami M. Salt balance of leaves of the mangrove Avicennia marina [J]. Physiol. Plant, 1986,67:67-72
    129. Waisel Y. The glands of Tamarix aphylla: a system for Salt recretion or for carbon concentration? [J].
    
    Physiol. Plant, 1991. 83:506-510
    130. Wang ST, Steffens GL. Effect of paclobutrasol on water stress-induced ethylene biosynthesis and polyamine accumunation in apple seedling leaves [J]. Phytoche., 1985, 2185-2190
    131. Whit PJ, Broadley MR. Chloride in soils and its uptake and movement within the plant: A review [J]. Ann. Bot., 2001, 88:967-988
    132. Wilcox J R. Soybeans: improvement, production, and uses [M]. pp. xv-xvi, 2nd ed. Agronomy 16, Madison. WI, 1987
    133. www. 2002118. com/oldsoy/xml.cfm? id=8290
    134. Xu G, Magen H, Tarchitzky J, Kafkafi U. Advances in chloride nutrition [J]. Adv. in Agron., 2000, 68:96-150.
    135. Yang J, Blanchar R W. Differentiating chloride susceptibility in soybean cultivars [J]. Agron. J. 1993,85:880-885
    136. Zhu JK. Plant salt tolerance. TRENDS in plant Sci. [J]. 2001,6(2) : 66-71