活性污泥工艺降解壬基酚聚氧乙烯醚的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
壬基酚聚氧乙烯醚(Nonylphenol Ethoxylates, NPnEO,n为聚合度)由壬基酚和环氧乙烷加合而成,其表面活性主要来自于壬基酚的疏水性和对位取代长链上乙氧基重复单元的亲水性,是目前全球商用第二大类的非离子表面活性剂,因其具有性质稳定、耐酸碱等特征,广泛应用于工业(如纺织、塑料、造纸等)、农业和日常生活(家用洗化用品)。它进入水体环境后可经生物降解去除亲水的乙氧基部分,形成中间代谢产物壬基酚。与母体化合物相比,壬基酚具有难降解特性及疏水性、脂溶性和生物累积性。对生物体表现出雌激素活性,干扰体内正常激素的作用,属环境内分泌干扰物质(Endocrine Disrupting Chemicals, EDCs)。
     本研究采用A/O工艺,利用活性污泥法降解NPnEO,实验过程中定期改变运行参数,并在每次参数改变前检测各项水质指标,评价A/O工艺对壬基酚聚氧乙烯醚的处理效果,优化运行工艺参数,达到实验运行工艺参数最优化的效果。实验过程中,在原水中逐步增加NPnEO浓度,随着活性污泥对NPnEO的逐步适应,污泥性状逐步趋于稳定。NPnEO浓度的逐渐增大对各项水质指标也造成了影响,随着NPnEO浓度的增大,COD、TN的去除率都有所下降,伴随着NPnEO浓度逐步稳定之后,各项水质指标也逐渐稳定。A/O工艺中的活性污泥经过短期驯化既可对NPnEO有良好的降解效果,但是NPnEO浓度的大幅度变化会导致去除率的明显下降。实验表明,利用A/O工艺处理NPnEO,NPnEO会发生最终生物降解,苯环结构被破坏,并在活性污泥吸附的共同作用下,对其降解产物也具有有良好的处理效果。
     本研究还利用了正相高效液相色谱法分离检测处理水中壬基酚聚氧乙烯醚及其生物降解产物,分析微生物对NPnEO降解效果。建立了一种以正相高效液相色谱等强度洗脱分离检测壬基酚和短链壬基酚聚氧乙烯醚的新方法。
     本研究的实验指标是NPnEO的降解率,根据初始分析,利用活性污泥法降解NPnEO,影响其降解率的主要运行参数是温度、溶解氧、水力停留时间、污泥龄。每个因素分别取5个水平做实验,建立正交表,利用正交实验优化系统关键运行参数。
Nonylphenol Ethoxylates are accomplished by Nonyl Phenol and Ethylene Oxide. Surface activity mainly comes from the sparse ability in swimming in nonylphenol and hydrophily of an Repeating element in Second oxygen base on contrapuntal go ahead replacing long-chain. Because it has some stability characteristics such as Acid proof alkali, Applied to industry broadly such as Spinning and weaving, Spinning and weaving, making plastic and paper, and agriculture and daily life such as clearing melt articles using family. After entering the wave environment, it may dislodge second oxygen base part loving water after living things degradation, and form centre supersession outcome. Compared with mother's body compound, Nonylphenol have property characteristics such as difficult degradation, the sparse ability in swimming, The grease dissolves nature and bioaccumulation. It shows estrogen activity to the living things body,the grease dissolves nature, was of Endocrine Disrupting Chemicals,EDCs.
     In the experiment, A/O process is considered. It works under optimal conditions. And micro-biological degradation of NPnEO by A/O process is evaluated. In the same time, NPnEO degradation flora is cultured and analysed. The experimental results show that the state of activated sludge will be affected with increase of NPnEO in raw water. But with the adaption of activated sludge, the state will gradually be improved and indicators of the state of activated sludge will be more stable. When the density of NPnEO becomes higher, various indicators of water quality will also be impacted. Removal rate of COD and TN will drop. With the concentration of NPnEO being stable, removal rate of COD will rebound and removal rate of TN will also be stable. Removal of NPnEO by A/O process is obvious after a short-term acclimation. But change of concentration of NPnEO will lead to substantial change of removal rate. During the course, ultimate micro-biological degradation of NPnEO will happen and the structure of benzene ring will be destroyed. Both ultimate micro-biological degradation and adsorption of activated sludge lead to satisfying removal rate.
     In this study, modern molecular biology techniques are used such as PCR and DGGE to analysis structural changes of microbial flora in the process. It is found that with concentration changes of NPnEO in raw water structure of microbial flora will change too. The number of bands in DGGE will decrease. Dice coefficient of both of the two pools will be smaller. However, with the stability of concentration of NPnEO, dice coefficient of the two pools will increase. The structure of microbial flora will be relatively stable. And ultimately we get the microbial flora that adapt for degradation of NPnEO and its intermediate products.
引文
1. 张寿金,黄巍.中国水资源的可持续利用研究[J],中国人口资源与环境,1999,9(2):21-25.
    2. 王先甲,胡振鹏.水资源持续利用的支持条件与法则[J], 自然资源学报,2001,16(1):9-12.
    3. 郭培章,宋群,主编.中外节水技术与政策案例研究网[M], 北京:中国计划出版社,2003,100-104.
    4. 徐祖信,编著.河流污染治理技术与实践[M], 北京:中国水利水电出版社,2003,516-520.
    5. 丛广治,白羽,陈立学等.大连开发区污水厂的生物除磷实践[J],中国给水排水,2004,20(1):74-77.
    6. 荣宏伟,陈志强,吕炳南.有机碳源对生物除磷的影响[J], 南京理工大学学报,2004,28(4):440-443.
    7. 谢有奎,颜强.污泥负荷对污水生物去除氮、磷和有机物的影响[J],重庆建筑大学学报,2004,26(3):63-65.
    8. 李勇,黄勇,潘杨.泥龄对生物除磷效率影响的分析[J],苏州城建环保学院学报,2001,14(1):16-18.
    9. 罗希权,罗毅,王澄华等.表面活性剂产品手册[M], 北京:中国轻工业出版社,1997,1-177.
    10.马兴杰,邵兵,胡建英等.壬基酚聚氧乙烯醚在污水处理过程中的迁移转化行为[J],环境科学,2002,23(5):80-84.
    11.王学川,邱白玉.表面活性剂的毒性问题[J], 日用化学品科技,2005,28(26):22-26.
    12.吴伟,翟建宏,陈家长,胡庚东.壬基酚聚氧乙烯醚及其降解产物对水生生物的毒理效应[J],湛江海洋大学学报,2003,23(4):39-44.
    13.陈樑,忻茜.环境激素对人类健康的危害及其作用机制[J],生命的化学,2005,25(6):506-508.
    14.徐德立.环境激素及其作用机理[J],生物学教学,2006,31(5):13-14.
    15.吴伟,吴滟,瞿建宏.壬基酚聚氧乙烯醚降解前后的激素效应和诱变活性[J],中国环境科学,2003,23(5):470-474.
    16.王学川,邱白玉.表面活性剂的毒性问题[J],日用化学品科学,2005,28(6):22-26.
    17.吴伟,瞿建宏,陈家长,胡庚东.壬基酚聚氧乙烯醚及其降解产物对水生生物的毒理效应[J],湛江海洋大学学报,2003,22(4):39-44.
    18.孙培艳,李正炎,王鑫平,崔文林,傅明珠.黄河入海口壬基酚污染分布特征[J], 海岸工程,2007,26(3):17-22.
    19.侯绍刚,徐建,汪磊,孙红文,戴树桂,刘昕宇.黄河(兰州段)水环境中壬基酚及壬基酚聚氧乙烯醚污染的初步研究[J], 环境化学,2005,24(3):250-254.
    20.侯绍刚,孙红文.NPnEO在中国北方四城市污水处理厂的污染研究[J],环境科学研究,2006,19(3):61-66.
    21.程沧沧,林俊杰,周菊香,万昆,胡德文.光催化降解壬基酚聚氧乙烯醚的研究[J],工业用水与废水,2005,36(3):30-32.
    22.郝瑞霞,梁鹏,周玉文.城市污水处理过程中壬基酚的迁移转化途径研究[J],中国给水排水,2007,23(1):105-108.
    23.周鸿,王占生等.壬基酚聚氧乙烯醚(NPnEO)在净水厂中的监测[J],给水排水,2006,32:47-51.
    24.赵建亮,张高勇,秦勇,赵郁梅.壬基酚聚氧乙烯醚好氧生物降解性的研究[J],精细化工,2006,23(4):350-355.
    25.马兴杰,邵兵,胡建英,杨敏.壬基酚聚氧乙烯醚在污水处理过程中的迁移转化行为[J],环境科学,2002,23(5):80-83.
    26.吴伟,瞿建宏,陈家长,胡庚东.水体中的微生物对壬基酚聚氧乙烯醚的生物降解[J],安全与环境学报,2003,3(3):17-21.
    27. Vader J S, Ginkel C G, Sperling F.M.GM, et al. Degradation of ethinyl estradiol by nitrifying activated sludge[J], Chemosphere,2000,41(8):1239-1243.
    28. Tom Tanghe, Greet Devriese, Willy Verstraete. Nonylphenol degradation in lab scale activated sludge units is temperature dependent[J], Water Research,1998,32(10):2889-2896.
    29. OKAYASU Y, KOMORI K, et al. Nonylphenol Formation from Nonylphenol Ethoxylates in Activated Sludge Process[J], Journal of Japan Society on Water Environment,2005,28(11):671-676.
    30. Jonkers N, Knepper T P, De Voogt P. Aerobic biodegradation studies of nonylphenol ethoxylates in river water using liquid chromatography-electrospray Tandem MassSpectrometry[J], Environmental Science&Technology,2001,35(2):335-340.
    31. Manzano M A, Perales J A, Sales D, et al. Effect of concentration on the biodegradation of a nonylphenol polyethoxylate in river water[J], Bulletin of environmental contamination and toxicology, 1998,61(3):489-496.
    32. Talmage S S. Environmental and human safety of major surfactants:alcohol ethoxylates and alkylphenol ethoxylates[M], Boca Raton:Lewis Publishers,1994,251-260.
    33. Baggi, G, et al. Biodegradation of alkylphenol polyethoxylates in the Oil Industry and Microbial Ecosystems[M], London:Hetdeb,1978,129-136.
    34. Ahel M.et al. Behavior of alkylphenol polythoxylate surfactants in the aquatic environmental: Occurrence and transformation in sewage treatment[J], Water Research,1994,28:1131-1142.
    35. Swisher RD. Surfacant biodegradation surfactant science series[M], New York:Marchel Dekker Inc, 1987.
    36. Swisher R D. Surfactant Biodegradation, Second Edition[M], New York:Marcel Dekker Inc, 1987,18:256-288.
    37. Jonkers N, Knepper T P, De Voogt P. Aerobic biodegradation studies of nonylphenol ethoxylates in river water using liquid chromatography-electrospray Tandem Mass Spectrometry[J], Environmental Science&Technology,2001,35(2):335-340.
    38. Perales J A, Manzano M A, Quiroga J M. Biodegradation kinetics of LAS in river water[J], International Biodeterioration&Biodegradation,1999,43(2):155-160.
    39.陈燕飞.微生物在好氧活性污泥法处理水污染中的作用[J],科技情报开发与科技,2007,17(7):182-194.
    40.李培睿,杨天佑,李宗义,秦广雍,霍裕平.活性污泥凝絮体的形成过程研究[J], 河南师范大学学报(自然科学版),2007,35(1):150-152.
    41.丁来保,施英乔,李萍,房桂干.活性污泥法工艺污泥膨胀的主要原因及控制研究[J],江苏造纸,2006,3:44-48.
    42.李冰璟,刘绍根,倪丙杰,王育来,徐得潜.活性污泥生物吸附性能的研究[J],安徽建筑工业学院学报(自然科学版),2006,14(4):77-80.
    43.李军,杨秀山,彭永臻.微生物与水处理工程[M],北京:化学工业出版社,2002.
    44.黄志国.A/O系统在城市和工业污水处理中的运用[J],福建环境,1995,21(4):12-13.
    45.韩相奎等.《生化需氧量与化学需氧量》[M],长春:吉林科学技术出版社,1989.
    46.王红斌,卢建杭,刘维屏.焦化厂A/O出水中的有机污染物分析[J],环境污染与防治,2001,23(3):140-142.
    47.朱靖,张坚强,章晓沸.A/O工艺处理废塑料碱洗废水[J],A/O工艺处理废塑料碱洗废水,2006年,2:23-26.
    48.梅丽,杨平,尚书勇.一体式A/O反应器处理高浓度有机废水实验研究[J],化工科技市场,2005年,2:38-41.
    49.徐压同,戚蓓静,顾祖宜,任大新,李正明,虞寿枢.国外A/O系统脱氮的进展[J],41-44.
    50.沈炜,陈季华.A/O生物脱氮工艺的设计计算[J],芜湖联合大学学报,1998,4:38-42.
    51.刘晓林,邵凯.A/O系统脱氮处理[J],化工给排水设计,1992,4:1-5.
    52.朱珂,郭静,刘学欣等.厌氧序批式反应器的特征与应用[J],工业水处理,2005,2:16-19.
    53.傅钢,董滨,周增炎等.倒置A2O工艺的设计特点与运行参数[J],中国给水排水,2004,9:34-35.
    54.彭永臻,王晓莲,王淑莹.A/O脱氮工艺影响因素及其控制策略的研究[J],哈尔滨工业大学学报,2005,37(8):1053-1057.
    55.王恩生,于清江,王丽艳.A/O处理生活污水的探讨与应用[J],北方环境,2003年,2:55-58.
    56.魏琛.浅议影响污水生物除磷的因素[J],重庆环境科学,2002,24(2): 85-87.
    57.徐亚同,谢冰.活性污泥的培养、驯化和生物膜挂膜[J],上海化工,2007,32(1):33-35.
    58.李冰,马兰,岳文青等.A/O系统中活性污泥组成细菌的分离与鉴定[J],北工科技,2003,11(4):21-23.
    59. Katherine H. Langforda, Mark D. Scrimshawa, Jason W. Birkettb, John N. Lestera. egradation of nonylphenolic surfactants in activated sludge batch tests[J], Water Research,2005,39:870-876.
    60. Manuel A. Manzano, Jose A. Perales, Diego Sales, Jose M. Quiroga. The effect of temperature on the biodegradation of a nonylphenol polyethoxylate in river water[J]. Water Research,1999,33(11): 2593-2600.
    61. Tom Tanghe, Greet Devriese, Willy Verstraete. Nonylphenol degradation in lab scale activated sludge units is temperature dependen[J], Water Research,1998,32(10),2889-2896.
    62.楼少华,王涛,邓荣森等.实际运行中高粘性污泥膨胀及其控制[J],中国给水排水,2004,20(2):101-103.
    63.周玮,吴明.污泥膨胀的控制与预防[J],给水与排水,2004,1:49-50.
    64.周伟.基于PCR-DGGE方法的集约化土壤细菌遗传多样性分析(D),河南郑州大学,2007.
    65.付琳琳.应用PCR-DGGE技术分析泡菜中乳酸菌的多样性(D),江西南昌大学,2005.