基于液滴蒸发过程的空气加热器低频不稳定燃烧研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文基于推进剂液滴蒸发过程对压力振荡的动态响应特性可能是液体火箭发动机低频不稳定燃烧的主要激励因素,对液体火箭发动机的低频不稳定燃烧进行了数值仿真、理论分析和试验研究。主要研究内容及结果如下:
     (1)应用分子动力学模拟方法,从微观层次上对蒸发过程进行了数值模拟,重点研究了蒸发相变过程与气液界面特性对环境压力变化的动态响应特性。研究首次发现,气液界面厚度随环境压力和温度增大而增大,在环境压力快速下降的过程中,气化速率会明显增大。
     (2)建立了动态压力环境下的液滴蒸发试验台,开展了液滴蒸发速率对低频压力振荡动态响应特性的试验研究。试验结果表明,液滴蒸发速率对低频压力振荡具有快速响应能力,产生与压力振荡频率相同的振荡,但是蒸发速率的变化与环境压力的变化相位不同,蒸发速率的最大值出现在压力下降过程的后半阶段。
     (3)提出了饱和蒸气边界层的概念,建立了低频压力振荡环境下静止液滴蒸发的准稳态模型;提出了折算饱和蒸气边界层的概念,建立了低频压力振荡环境下运动液滴的准稳态蒸发模型。通过求解模型方程,系统地研究了液滴蒸发过程对压力振荡的动态响应特性。计算结果显示,压力振荡的幅值和频率、平均压力、环境温度以及液滴运动速度对蒸发速率的动态响应特性有很大影响。
     (4)提出了基于液滴蒸发过程的混合-化学反应不变时滞理论,建立了空气加热器工作过程的系统动力学模型。对空气/氧气/酒精三组元燃烧空气加热器的低频不稳定燃烧进行了数值仿真研究,系统地考察了推进剂质量混合比、酒精喷注压降、氧气和酒精供应系统对低频不稳定燃烧的影响。研究结果表明,蒸发速率对压力振荡的动态响应特性是激励低频燃烧振荡的主要因素。
     (5)对空气/氧气/酒精三组元空气加热器的低频不稳定燃烧进行了大量试验研究,考察了推进剂质量混合比、酒精喷注压降、氧气和酒精供应系统对低频不稳定燃烧的影响,并提出了低频不稳定燃烧的抑制措施,试验结果验证了本文提出的液滴蒸发过程对压力振荡响应特性是低频不稳定燃烧的主要激励因素这一结论的合理性。
In the present thesis, the low-frequency combustion instability in liquid rocket engine is investigated with numerical simulations,theoretical analyses and experimental studies. The dynamic response characteristics of droplet evaporation to pressure oscillation are considered as the key exciting factor for low-frequency combustion instability. The main research contents and results are outlined as follows:
     (1) Evaporation process is simulated at micro-level with molecular dynamics simulation. The study is focused on the dynamic response of evaporation process and gas-liquid interface to pressure variation. The studies show that the thickness of gas-liquid interface is directly proportional to ambient pressure and temperature, and the evaporation rate increases clearly with the rapid drop of ambient pressure.
     (2) A test-facility is constructed for studying the dynamic response characteristics of droplet evaporation to low-frequency pressure oscillation. The results indicate that droplet evaporation rate can respond rapidly to low-frequency pressure oscillation, and owns the same frequency but different phase of pressure oscillation, and the maximum value of droplet evaporation rate appears in the latter period of pressure decline.
     (3) The concepts of saturation vapor boundary layer and converted saturation vapor boundary layer are put forward, and the quasi-steady model of droplet evaporation is established respectively under static and convection environment with the low-frequency pressure oscillation. By solving the model equations, a systematic study of the dynamic response characteristics of the droplet evaporation process to pressure oscillation is carried out. The results show that the amplitude, frequency, average pressure of pressure oscillation, ambient temperature and droplet velocity have significant impacts on the dynamic response characteristics of droplet evaporation rate.
     (4) Based on the time lag of combustion and droplet evapreationis, the dynamics model is established for a rocket-based air heater system. The numerical simulations are performed for the low-frequency combustion instablilities of the air/oxygen/alcohol tripropellant air heater. The effects of propellant mixture ratio, injection pressure drop, and the propellent supply pipe system on the low-frequency combustion instability are studied. The results show that the dynamic response characteristic of droplet evaporation to pressure oscillation is a major factor to inspire combustion instability.
     (5) Experiments are performed to study the low-frequency combustion instability in the air/oxygen/alcohol tripropellant air heater. The effects of propellant mixture ratio, injection pressure drop and the dynamic characteristics of the supply pipe system on the low-frequency combustion instability are studied, and the results of experiment prove that the dynamc response characteristic of droplet evaporation rate to pressure oscillation is the major exciting facor of low-requency combustion instability.
引文
[1] D. T.哈杰,F. H.里尔登等著,朱宁昌,张宝炯译.液体推进剂火箭发动机不稳定燃烧[M].北京:国防工业出版社,1980
    [2] V.杨, W. E.安德松主编,张宝炯,洪鑫,陈杰译.液体火箭发动机不稳定燃烧[M].北京:科学出版社,2001
    [3]黄玉辉.液体火箭发动机燃烧稳定性理论、数值模拟和实验研究[D].博士学位论文,国防科技大学研究生院,2001,4
    [4] J.C. Oefelein, and V. Yang. Comprehensive review of liquid-propellant combustion instabilities in F-1 engines. J. of Propulsion and Power, 1993, 9(5) :657-677.
    [5] R.J. Priem, and D.C. Guentert. Combustion instability limits determined by a nonlinear theory and a one-dimensional model. NASA, Rept. TN D-1409, 1962.10
    [6] R.J. Priem. Theoretical and experimental models of unstable rocket combustors. 9th Symposium(Int.) on Combustion, Combustion Inst., Pittsburgh, PA, 1963
    [7] M.F. Heidmann, and P.R. Wieber. Analysis of n-heptane vaporization in unstable combustor with traveling transverse oscillations. NASA TN D-3424,1965.11
    [8] M.F. Heidmann, and P.R. Wieber. Analysis of frequency response characteristics of propellant vaporization. NASA TN D-3749,1966
    [9] W.C. Strahle. A theoretical study of unsteady droplet burning: transients and periodic solutions. Ph.D Dissertation, Princeton Univ., Dept. of Aeronautical Engineering, Princeton, NJ, Dec.1963
    [10] W.C. Strahle. Periodic Solutions to a convective droplet burning problem: the stagnation point. 10th Symposium(Int.) on Combusion,Combustion Inst., Pittsburgh, PA, 1964:1315-1325
    [11] W.C. Strahle. Unsteady reacting boundary layer on a vaporizing flat plate. AIAA J., 1965,5(3):957
    [12] A. Williams. Combustion of droplets of liquid fuels: a review. Combustion and Flame, 1973, 21: 1-31
    [13] G.L. Hubbard, V.E. Denny, and A.F. Mills. Droplet evaporation: effect of transients and variable properties. Int. J. of Heat and Mass Transfer, 1975. 18: 103-1008
    [14] C.K. Law. Recent advances in droplet vaporization and combustion. Prog. Energy Combust. Sci., 1982, 8: 171-201
    [15] A.Y. Tong, and W.A. Sirignano. Oscillatory vaporization of fuel droplets inan unstable combustor. J. of Propul. And Pow. 1989,5(3):257-261
    [16] V. Yang, C.C. Hsiao, and J.S. Shuen. Pressure-coupled vaporization and combustion responses of liquid fuel droplets in high-pressure environments. 27th AIAA/SAE/ASME/ASEE Joint Propulsion Conf. AIAA Paper 91-2310
    [17] K. Molavi. Acoustic oscillation in dump combustor configurations. Ph.D. Dissertation, Dept. Mechanical Engineering, Univ. of California, Irvine, CA, April 1990
    [18] G.Y. Lee, S.Y. Kim and W.S. Yoon. Oscillatory vaporization and acoustic response of droplet at high pressure[J]. Int. Communications in Heat and Mass Transfer. 2008, (35):1302-1306
    [19] W.J. Sheu, and N.C. Liou. Effect of temporal variation of pressure on vaporization of liquid droplets[J]. Int. J. of Heat and Mass Transfer. 1999(42):4043-4054
    [20] J.P. Delplanque and W.A. Sirignano. Stability influence of transcritical LOX droplet vaporization in an idealized rocket combustor. AIAA-93-0231
    [21] S.Y. Kim, and W.S. Yoon. Responses of droplet evaporation to high-pressure oscillations. AIAA 2004-1161
    [22] C.H. Chiang, M.S. Raju, and W.A. Sirignano. Numerical analysis of convecting vaporizing fuel droplet with variable properties[J]. Int. J. of Heat and Mass Transfer. 1992, 35(5):1307-1324
    [23] M. Saito, M. Hoshikawa and M. Sato. Enhancement of evaporation/combustion rate coefficient of a single fuel droplet by acoustic oscillation[J]. Fuel. 1996, 75(6):669-674
    [24] R.I. Sujith, G.A. Waldherr, and J.I. Jagoda et al. Experimental investigation of the evaporation of droplets in axial acoustic fields. AIAA 1995-0495
    [25]刘卫东,周进,王振国.振荡环境下推进剂液滴亚临界蒸发响应特性[J].航空动力学报, 2001,16(1):52-54
    [26]王中伟,庄逢辰.高压不稳定环境中的燃料液滴蒸发[J].推进技术,1994,(4):54-57
    [27]章晓梅,夏允庆,单洪彬等.低频振荡燃烧研究综述[J].推进技术,1996,17(1):47-53
    [28]张蒙正.液体火箭发动机燃烧稳定性试验研究简述[J].火箭推进,2005,31(6):12-18
    [29]刘国球主编.液体火箭发动机原理[M].北京:宇航出版社. 1993.6
    [30]曹泰岳编著.火箭发动机动力学[M].长沙:国防科技大学出版社,2004.8
    [31]刘卫东.液体火箭发动机不稳定燃烧数值分析模型研究[D].博士学位论文,长沙:国防科技大学研究生院,1996
    [32]聂万胜,庄逢辰.推进剂初始温度影响液体火箭发动机燃烧稳定性的数值模拟[J].导弹与航天运载技术,2000,(4):32-37
    [33]刘卫东,王振国,周进,庄逢辰.液体火箭发动机径向不稳定燃烧数值分析模型[J].推进技术,1997,18(6):4-8
    [34]刘卫东,王振国,周进,庄逢辰.液体火箭发动机切向不稳定燃烧数值分析模型[J].推进技术,1998,19(1):16-20
    [35]赵文涛,周进,王振国,庄逢辰.液体火箭发动机不稳定燃烧分析模型[J].推进技术,1995,2:11-16
    [36]孙敬良,张宝炯.液氧-煤油火箭发动机的不稳定燃烧问题[J].推进技术,1995,3:34-42
    [37]张宝炯.中小推力可贮存推进技火箭发动机的不稳定燃烧问题[J].上海航天, 1994,1:11-16
    [38] F.E.C. Culick. Combustion instabilities in propulsion systems[M]. Unsteady Combustion, Kluwer Academic Publishers, 1996:173-241.
    [39] M. Barrere et al. Rocket propulsion[M]. Elsevier Publishing Co., New York, 1960
    [40] C.C. Ross and P.P.Datner. Combustion instability in liquid propellant rocket motors-a survey[Z]. Selected combustion problems, Butterworths Sci. Pub., London, 1954 : 352-401
    [41] E.G. Jackson. Studies of pump discharge pressure oscillations[R]. Rocketdyne Rept. No.R-6693-2,1966
    [42] K.R. McManus, J.Magill, and M.F.Miller. Combustion instability suppression in liquid-fueled combustors[R]. AIAA-98-0642
    [43] M.F. Heidmann, D.E. Sokolowski and L.A. Diehl. Study of chugging instability with liquid Oxygen and Gaseous-Hydrogen combustors[R]. NASA TN D-4005, 1967
    [44] J. Oefelein and V. Yang. Comprehensive review of liquid-propellant combustion instabilities in F-1 engine [J]. J. of Propulsion and Power, 1993, 9(5) :657-677.
    [45] M. Cazalens, and T. Poinsot. Combustion instability problems analysis for high-pressure jet engine cores[J]. J. of Propulsion and Power,2008,24(4):770-778
    [46] S.K. Aggarwal, A.Tong, W.A.Sirignano. A coMParison of vaporization models for spray calculations[R]. AIAA J. 1984,22(10):1448-1457
    [47]范洁川等编著.流动显示与测量[M].北京:机械工业出版社,1997
    [48]马友光,汪晓红,成弘等.气泡传质过程近界面非稳态特性及热力学研究[J].化学工程. 2000, 28(3): 6~9
    [49]刘朝,张新铭,谭宁等.汽液界面厚度和分维数[J].工程热物理学报. 2004, 25(4): 562~564.
    [50]王德明.应用分形理论及分子动力学模拟方法对气液界面现象的研究[D].博士学位论文,重庆大学研究生院, 2004
    [51] L.N. Long, M.M.Micci, B.C.Wong. Molecular dynamics simulation of droplet evaporation[J]. Comput. Phys. Commun. 1996,96:167-172
    [52] T.L. Kaltz, L.N.Long, M.M.Micci. Supercritical vaporization of liquid oxygen droplets using molecular simulations[J]. Combust. Sci. Tech. 1998,136:279-301.
    [53] J.H. Walther, P.J. Koumoutsakos. Molecular dynamics simulation of nanodroplet evaporation[J]. Int. J. Heat Transfer2001,123:741-748
    [54] S.K. Aggarwal, G.Chen,,T.A. Jackson, G.L.Switzer. Vaporization behavior of pure and multicomponent fuel droplets in a hot air stream[J]. Int. J. Heat Mass Transfer, 1991,34(10): 2669-2673
    [55] L.Consolini, S.K. Aggarwal, S. Murad. A molecular dynamics simulation of droplet evaporation[J]. Int. J. of Heat Mass Transfer,2003,( 46):3179-3188
    [56]童景山编著.流体的热物理性质[M].北京:中国石化出版社,1996
    [57]苏凌宇.负压环境下燃料液滴蒸发过程的试验和理论研究[D].硕士学位论文,国防科技大学研究生院, 2005
    [58]庄逢辰.液体火箭发动机喷雾燃烧的理论、模型及应用[M].长沙:国防科技大学出版社, 1995
    [59] T. Ytrehus. Molecular-flow effects in evaporation and condensation at interfaces[J]. Multiphase Science and Tech., 1997,9(3):205-325
    [60]沈自求.界面汽化热阱增强传热原理及其应用[M].吉林大学出版社, 2000
    [61] T.K. Sherwood, R.L. Pigford, O.R. Welty. Mass Transfer. McGraw Hill,1978
    [62] J.R. Maa. Evaporation coefficient of liquids. Ind Eng Chem Fund,1967
    [63] R. Marek, and J. Straub. Analysis of the evaporation coefficient and the condensation coefficient of water[J]. Int. J. of Heat and Mass Transfer, 2001,44:39-53
    [64] Guang-Sheng Zhu, R.D. Reitz. A model for high-pressure vaporization of droplets of complex liquid mixtures using continuous thermodynamics[J]. Int. J. of Heat and Transfer, 2002, 45:495-507
    [65] Di-Bao Wang, Fei-Bin Hsiao, Cheng-Hsin Chuang et al. Algorithm optimization in molecular dynamics simulation[J]. Computer Physics Communications, 2007, 177:551-559
    [66]李宋,吴文权,程云章.不稳定浓度场的非线性特征实验研究[C].中国工程热物理学会,2005年学术会议
    [67] G. Ordonneau and F. Le’vy. Low frequency oscillation phenomena during VULCAIN shutdown transient[R]. AIAA 2001-3543
    [68] F. Zhuang, W. Nie, W. Zhao,W. Liu. Liquid rocket combustion instability analysis methodology-methods and representative examples[R]. AIAA 98-3690
    [69] W. Liu, Z. Wang, J. Zhou, F.C. Zhuang. Numerical simulation of unsteady flow in liquid propellant rocket engine with PISO algorithm[R]. AIAA 96-3124
    [70]洪鑫.博士学位论文,上海航天局801研究所,1998
    [71] S. Nagaraja, K. Kedia, R.I. Sujith. Characterizing energy growth during combustion instabilities: Singularvalues or eigenvalues?[R]. Proceedings of the combustion institute 2009,32:2933-2940
    [72] J.R. Szuch, and L.M. Wenzel. Experimental verification of a double-dead-time model describing chugging in liquid-bipropellant rocket engines[C]. Fourth ICRPG Combution Conference, CPIA Pub., 1(162 ), 1967:175-184
    [73] R.J. Fontaine, R.S. Levine, and L.P. Combs. Secondary non destructive instability in medium size liquid fuel rocket engine[C]. Advances in Tactical Rocket Propulsion, AGARD Conference Proceedings No.1 1968:383-402
    [74]王永寿.无喷管火箭发动机低频振荡燃烧理论分析[J].飞行导弹2002(4):24-28
    [75]刘景华,谭建国等.过氧化氢发动机中的低频振荡[J].国防科技大学学报, 2007, 29(5):41-44
    [76]汪洪波,王振国,孙明波.预燃烧室低频不稳定燃烧仿真研究[J].火箭推进, 2007,33(5):22-26
    [77]李祥晟,丰镇平.燃料空气供给条件对热声不稳定燃烧影响的研究[J].工程热物理学报. 2007, 28(4):708-710
    [78]杜新,汪亮. H2O2–PE固液火箭发动机低频不稳定燃烧研究[J].固体火箭技术. 2004,27(1):24-27
    [79]黎军,盛宏至,魏小林等.狭长圆柱型燃烧室内的不稳定燃烧[J].燃烧科学与技术. 2003, 9(2):161-164
    [80]杨杰,钱志博,张进军等.水下三组元动力系统燃烧稳定性实验研究[J].船舶工程. 2007,29(2):26-29
    [81] S.G. Meisenholder and L.L. Bickford.“POGO”analysis of the Saturn propulsion system[R]. Aerojet-General Rept. AMDR 9635-037,1967
    [82] F.H. Reardon and R.E. Waugh. Feed system effects on combustion instability[R]. Aerojet-General Rept. TCR 9645-002,1963
    [83] R.E. Waugh and F.H. Reardon. Feed system effects on combustion instability[C]. Bulletin of the Fifth Liquid Propulsion Symposium, CPIA Pub., 1963,2(37) :843-862
    [84] K. Miller, J. Sisco, N. Nugent, and W. Anderson. Combusiton instability with a single-swirl injector[J]. J. of Propulsion and Power. 2007,23(5):1102-1112
    [85] M. Linck, and A.K. Gupta. Passive control of forced combustion instability in a swirl-stabilized spray combustor. J. of Propulsion and Power. 2007,23(5):1113-1122
    [86]王遵敬,陈民,过增元.蒸发与凝结现象的分子动力学研究[J].西安交通大学学报. 2001, 35(1): 1126-1130
    [87] R.C. Steele, L.K. Cowell, and S. M. Cannon et al. Passive control of combustion instability in lean premixed combustors[J]. J. of Engineering for Gas Turbines and Power, 2000,122(3):
    [88] V. Bazarov. Liquid flow pulsation damping in feed lines and injectors of liquid rocket engines[C]. Paper IAF—93.S2.468, presented at the 44-th Congress of International Astronautical Federation, Graz, Austria, 1993.
    [89] N.C. Jordan. Dynamic response of superheated liquid droplets in steady supersonic airflow[R]. APR-25, 2006
    [90] S. Sumardiono, and J. Fischer. Molecular simulations of droplet evaporation processes: Adiabatic pressure jump evaporation. Int. J. of Heat and Mass Transfer, 2006, 49: 1148-1161
    [91] S.S. Sazhin, W.A. Abdelghaffar, and P.A. Krustitskii et al. New approaches to numerical modelling of droplet transient heating and evaporation. Int. J. of Heat and Mass Transfer, 2005, 48: 4215-4228
    [92] R.A. James, C.J. Pursell, L.F. Phillips. Pressure independence of the Onsager heat of transport for a gas-liquid interface at high pressure. Chemicla Physics Letters, 2006, 429: 153-156
    [93] N.A. Zolovkin, A.G. Petrov, and N.S. Khabeyev. The problem of interface heat exchange between a gas bubble and a liquid. J. Appl. Maths Mechs, 1995, 59(1): 155-157
    [94] C. Picard, L. Davoust. Transient aging of a liquid-gas interface stretched by standing waves: On the interplay of chemical kinetics. J. of Colloid and Interface Science, 2008, 327: 412-425
    [95] S.P. Das, E.J. Hopfinger. Mass transfer enhancement by gravity waves at a liquid-vapor interface. Int. J. of Heat and Mass Transfer, 2008, journal homepage:www.elsevier.com/locate/ijhmt
    [96] R.J. Priem, and M.F. Heidmann. Propellant vaporization as a design criterion for rocket-engine combustion chambers. NASA TR-67, 1960
    [97] Y. Neumeier, A. Nabi, and B.T. Zinn. Investigation of the open loop performance of active control system utilizing a fuel injector actuator[C]. AIAA 96-2757
    [98] Y. Neumeier, and B.T. Zinn. Active control of combustion instability with real time observation of unstable combustor modes[R]. AIAA 96-0758
    [99] K.T. Padmanabhan, C.T. Bowman, and J.D. Powell. An adaptive optimal combustion control strategy[J]. Combustion and Flame, 1995(100):101-110
    [100] B.T. Zinn, and Y. Neumeier. An overview of active control of combustion instabilities[R]. AIAA 97-0461
    [101] Xiaoping Hu, Jin Zhou, Zhengguo Wang and Liangsheng Zhong. Experimental studies on atomization and flux distributions of gas-liquid coaxial injectors[R]. AIAA 96-3023
    [102] E. Gutmark, P.T. Parr. Use of chemiluninescence and neural networks in active combustion control[C]. 23rd Symposium(International) on Combustion, 1990
    [103] F. Richecoer, S. Ducruix, P. Scouflaire, S. Candel. Experimental investigation of high-frequency combustion instabilities in liquid rocket engine. Acta Astronautica , 2008, (62):18-27
    [104] F. Richecoeur, S. Ducruix, P. Scouflaire, S.Candel. High frequency transverse acoustic coupling in a multiple injector cryogenic combustor[J]. J. of Prop. And Power , 2006,22(4): 790-799
    [105] T. Schuller, D. Durox, S. Candel. Self-induced combustion oscillations of laminar premixed flames stabilized on annular burner[J]. Combustion and flame , 2003,135(3):525-537
    [106] S.S. Sazhin. Advanced models of fuel droplet heating and evaporation[J]. Pro. in Energy and Combustion Sci., 2006, 32:162-214
    [107] S.J. Cook, and P. Clancy. Nonequilibrium molecular dynamic simulation of rapit melting and solidification. Int. J. of Thermophysics, 1989, 10(2):459-468
    [108] H.A. Dwyer. Unsteady vaporization and ignition of a three-dimensional droplet array. Combustion and Flame, 2000, 121:181-194
    [109] I.N. Shishkova, S.S. Sazhin. A numerical algorithm for kinetic modeling of evaporation processes. J. of Computational Physics, 2006, 218:635-653
    [110] C. Maqua, G. Castanet, and F. Lemoine. Bicomponet droplets evaporation: Temperature measurements and modelling. Fuel, 2008,87:2932-2942
    [111] A.P. Kryukov, V. Yu. Levashov, S.S. Sazhin. Evaporation of diesel fuel droplets: kinetic versus hydrodynamic models. Int. J. of Heat and Mass Transfer, 2004, 47:2541-2549
    [112] E.W.C. Lim, S.H. Koh, L.K. Lim et al. Experimental and computational studies of liquid aerosol evaporation. Aerosol Science, 2008, 39: 618-634
    [113] F. Richecoeur, S. Ducruix, P. Scouflaire, S. Candel. Experimentalinvestigation of high-frequecy combustion instabilities in liquied rocket engine. Acta Astronautica, 2008, 62: 18-27
    [114] CHEN Guangwen, YUE Jun, and YUAN Quan. Gas-liquid microeaction technology: recent developments and future challenges. Chineses J. of Chemical Engineering, 2008,16(5): 663-669
    [115] I. Calmet, and J. Magnaudet. High-Schmidt number mass transfer through turbulent gas-liquid interfaces. Int. J. of Heat and Fluid Flow, 1998, 19: 522-532
    [116] F. Girard, M. Antoni, S. Faure, and A. Steinchen. Influence of heating temperature and relative humidity in the evaporation of pinned droplets. Colloids and Surfaces A: Physicochem. Eng. Aspects, 2008, 323: 36-49
    [117] C. Maqua, G. Castanet, and F. Grisch et al. Monodisperse droplet heating and evaporation experimental study and modelling. Int. J. of Heat and Mass Transfer, 2008, 51:3932-3945
    [118] L. Crocco, S. Cheng, Theory of combustion instability in liquid propellant rocket motors, Butterworths Scientific Pulications,1956
    [119] M. de la Cruz Garcia, E. Mastorakos, and A.P. Dowling. Investigations on self-excited oscillations in a kerosene spray flame. Combustion and flame.156(2009) 374-384
    [120]杨立军,富庆飞.喷嘴供应系统到燃烧室压力振荡传递幅频特性的影响[J].航空动力学报, 23(2)(2008)602-607
    [121] R.J. Sornek, R. Dobashi, T. Hirano, combustion and flame 120(2000)479-491
    [122] C. Pera, J. Reveillon, Proc. Combust. Inst. 31(2007) 2283-2290
    [123] N. Patel, M. Kirtas, V. Sankaran, S. Menon, Proc. Combustion inst. 2007,31:2327-2334
    [124] R. Balachandran, A.P. Dowling, E. Mastorakos, Flow Turb. Combust. , 2008, 80: 455-487
    [125] V.R. Dushin, A.V. Kulchiskiy, V.A. Nerchenko, et al. Mathematical simulation for non-equilibrium droplet evaporation. Acta Astronautica , 2008, 63 : 1360-1371
    [126] A.V. Kulchitskiy, N.N. Smirnov. Accounting for non-equilibrium effects at evaporation of a solution droplet. J. of Engineering Thermophysics , 2000, 10(4):
    [127] N.N. Smirnov, A.V. Kulchitskiy. Non-equilibrium effects in liquid fuel droplets combustion. Proceedings of the 51st IAF Congress, Rio de Janeiro, 2000IAF-00-J.4.09
    [128] L.A. Melton. Fluorescent diagnostics and fundamental droplet processes. AIAA 96-0464
    [129] K.L. Chung. Dynamics of droplet collision and flamefront motion. AFOSRF49620-03-1-0136
    [130] M. Rocker. Modeling of nonacoustic combustion instability in simulations of hybrid motor tests. NASA/TP-2000-209905
    [131] T.A. Boardman, D.K. Hawkisn, et al. Nonacoustic feedsystem coupled combustion instability in hybrid rocket motors. Presentation at the hybrid rocket technical committee combustion instability workshop, 31st AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, 1995
    [132] R.L. Carpenter, T.A.Boardman,S.E.Calflin et al. Hybrid Propulsion Technology for launch vehicle boosters: a program status update. AIAA 95-2688,1995
    [133]孙荣权,傅莉,郭易,李伟.旋转式连续换向阀.液压与气动, 2001(3):36-37
    [134] K. Miller, J. Sisco, N. Nugent and W. Anderson. Combustion instability with a single-element swirl injector. J. of Propulsion and Power. 2007,23(5):
    [135] G.B. Matthews. Combustion instability in liquid propellant rocket motors. Technical report: Determination of combustion time lag parameters in a liquid bipropellant rocket motor. Princeton University Aero. Eng. Rept. No. 372, March 1957
    [136] W. Juran and B.E. Swick. The effect of dissolved gas on the stability of pressure-fed rockets. Fourth ICRPG combustion conference, CPIA Pub. 1967, 1(162):93
    [137] [英]J.M.比埃尔,N.A.切给尔著.燃烧空气动力学[M].北京:科学出版社, 1979
    [138]郑丽.大流量减压器的特性研究及内部流场动态仿真[D].硕士学位论文,长沙:国防科技大学研究生院, 2007.12
    [139]张利平.液压阀原理、使用与维修[M].北京:化学工业出版社,2005.
    [140]常伟,傅戈雁,王献超,彭善飞.高频大流量旋转换向阀设计研究[J].新技术新工艺,2008 (3):53
    [141]孟庆鑫,王茁等.一种水下作业工具用手动开关换向阀的研制[J].船舶工程,2008(3):57-59
    [142]耿辉.超声速燃烧室中凹腔上游横向喷注燃料的流动、混合与燃烧特性研究[D].博士学位论文,国防科技大学研究生院, 2007.4
    [143]张森,张正亮等编著. MATLAB仿真技术与实例应用教程[M].北京:机械工业出版社,2004.1
    [144]吴湘祺编著.信号、系统与信号处理(上)[M].北京:电子工业出版社. 2000.11
    [145]党宏社.信号与系统实验(MATLAB版)[M].西安:西安电子科技大学出版社. 2007.1
    [146]张志涌等编著.精通MATLAB6.5版[M].北京:北京航空航天大学出版社. 2003.3
    [147] J.Y. Lee, E. Lubarsky and B.T. Zinn. The dependence of combustion instability upon liquid fuel spray properties[R]. AIAA.-2002-4107
    [148] R. Heising, E. Lubarsky, M. Neumaier, et al. Periodic liquid fuel sprays combustion processes and their damping of combustion instabilities[R]. AIAA 2000-1024
    [149] J.M. Cohen, J.R. Hibshman, W. Proscia, et al. Experimental replication of an aeroengine combustion instability[R]. NASA/TM-2000-210250
    [150] F. Mashayek. Dynamics of evaporating drops. Part II: free oscillations[J]. Int. J. of Heat and Mass Transfer. 2001, 44: 1527-1541
    [151] J.D. Baum, J.N. Levine, and R.L. Lovine. Pulsed instabilities in rocket motors: a coMParison between predictions and experiments[J]. Journal of Propulsion and Power, 1988, 4( 4) : 308-316
    [152] G.A. Flandro. Energy balance analysis of nonlinear combustion instability[J]. Journal of Propulsion and Power, 1985, 1(3):210-221
    [153] W. K. Van Moorhem. An investigation of the origin of the flow turning effect in combustion instability[R]. 17th JANNAF Combustion Conference, September 1980.
    [154] D.L. Gysling, G.S. Copeland, et al. Combustion system damping augmentation with Helmholtz resonators[J]. ASME J. of Engineering for Gas Turbines and Power. 2000, (122):269-274
    [155] A. Saxena, and A. Frendi. Effect of equivalence ratio on combustion instabilities[R]. AIAA 2004-2931
    [156] E. Gutmark, K.J. Wilson, T.P. Parr, and K.C. Schadow. Feedback control of multi-mode combustion instability[R]. AIAA-92-0778
    [157] A. Philippe and P. Tchepidjian. Prediction of Longitidinal combustion instabilities in axisymmetrical propellant grains[R]. AIAA-84-1358
    [158] F.S. Blomshield. Lessons learned in solid rocket combustion instability[R]. ADA466858
    [159]李大鹏,黄玉辉,沈赤兵,王振国.三组元液体火箭发动机不稳定燃烧试验研究[C].
    [160] R.J. Jensen, H.C. Dodson, and S.E. Claflin. LOX/Hydrocarbon combustion istability investigation. NASA CR-182249, 1989.7
    [161] J.M. Wicker, M.W. Yoon, and V. Yang. Linear and nonlinear pressure oscillations in baffled combustion chambers[J]. J. of Sound and Vibration, 1995,184:141-172
    [162] F.E.C. Culick. A note on Raylengh’s criterion[J]. Combustion Science andTechnology, 1987, 56:159-166
    [163] R.M. Jenkins. Cold-flow study of low frequency pressure instability in hybrid rocket motors[R]. NASA-PO H-13048D, 1997
    [164] F.E.C. Culick. Measurements and modeling of combustion dynamics for control of combustion instabilities. ARRL-SR-AR-TR-05-009, 2004
    [165] T.J. Conrad, A. Bibik, and J.-Y. Lee et al. Control of combustion instabilities by fuel spray modification using smart fuel injector. AIAA 2003-4937
    [166] F.S. Blomshield. Historical perspective of combustion instability in motors: Case studies. AIAA 2001-3875
    [167]赵海亮,由长福,徐旭常等.燃气流量低频脉动下的火焰结构特征[J].清华大学学报(自然科学版),2004,44(8):1071-1074
    [168]程勉,高为炳.时滞系统的变结构控制及其在火箭发动机燃烧过程镇定中应用的理论基础[J].自动化学报,1995,21(6):649-657
    [169]王峻晔,舒萍萍,吴东棣.压力振荡过程固体推进剂瞬态燃速对压力变化响应的滞后[J].航空动力学报,1996,11(1):75-78
    [170]刘昆,张育林.液体火箭发动机燃烧室的一种分区模型[J].航空动力学报,2002,17(1):135-139
    [171]谢惠民,郭文军,李芷沅,黄汉全.汽油机不稳定燃烧边缘的稳定控制[J].湖南大学学报,2000,27(2):34-37
    [172]沈赤兵,吕志信,陈启智.燃烧时滞对小推力高室压动力系统响应特性的影响[J].航空动力学报,1997,12(1):61-65
    [173]沈赤兵,吴建军,王克昌,陈启智.内部干扰因素对液体火箭发动机性能影响的仿真[J].中国空间科学技术,1999,(1):38-44
    [174] G. Kopasakis. Systems characterization of combustor instabilities with controls desigh emphasis. AIAA-2004-0638
    [175] D.E. Paxson. An experimental investigation of unsteady thrust augmentation using a speaker-driven jet. AIAA 2004-92
    [176] M.de la C. Garcia, E. Mastorakos, and A.P. Dowling. Investigations on self-exited oscillations in a kerosene spray flame[J]. Combustion and Flame, 2009, 156: 374-384
    [177] C.A. Dorao, M. Fernandino, L.E. Patruno et al. Macroscopic description of droplet-film interaction for gas-liquid systems[J]. Appl. Math. Modelling, 2008
    [178] S.P. Das, and E.J. Hopfinger. Mass transfer enhancement by gravity waves at a liquid-vapour interface[J]. Int. J. of Heat and Mass Transfer. 2008, journal homepage:www.eisevier.com/locate/ijhmt
    [179] V.R. Dushin, A.V. Kulchitskiy, and V.A. Nerchenko et al. Mathematical simulation for non-equiibrium droplet evaporation[J]. Acta Astronautica, 2008, 63:1360-1371
    [180] S.S. Sazhin, T. Kristyadi, W.A. Abdelghaffar, M.R. Heikal. Models for fuel droplet heating and evaporation: coMParative analysis[J]. Fuel, 2006, 85: 1613-1630
    [181]谭建国.三组元液体火箭发动机系统设计与动态特性研究[D].长沙:国防科技大学研究生院. 2003,10
    [182] D.C. Rapaport. The art of molecular dynamics simulation (the 2nd Edition)[M]. Cambridge University Press, 2004
    [183]王德明.应用分形理论及分子动力学模拟方法对气液界面现象的研究[D].重庆:重庆大学研究生院,2004.4:105-107