半导体发光器件的负电容与高速调制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
半导体发光二极管和半导体激光器是两种极为重要的发光器件,它们不但在电子仪表显示、照明、大规模集成电路、光存储、光通信等方面有着广泛的应用,在研究领域也一直以来倍受人们的关注。本文对半导体发光二极管的负电容和激光二极管的高速调制进行了较为深入细致的研究,其中的主要工作和取得的一些成果可以概括如下:
    
    (1)、通过实验证明采用我们发展的正向交流小信号法来检测二极管的正向交流电特性是一种准确的方法,由此得到的正向电容谱的灵敏度极高,可以在分析器件结构和内在物理机制等方面提供很大帮助,是对现有的高度成熟的反向电容谱技术一个很好的补充。
    (2)、采用基于并联和串联模式的交流小信号法对半导体发光二极管的正向交流电特性进行了检测,测试结果表明半导体发光二极管中普遍存在着负电容。进一步的发光特性实验表明,半导体发光二极管中的负电容与强复合发光过程有着紧密的关联。
    (3)、依据正向交流小信号实验和发光特性实验,我们对发光二极管的负电容进行了物理机制上的定性解释,并首次尝试了从微观输运机制上去定量解释。
    (4)、详细研究了半导体激光器的本征和寄生频率调制响应特性,并对影响半导体激光器的本征和寄生频率调制响应的主要因素作了系统的探讨。
    (5)、首次提出了一个全新的利用负电容来补偿半导体激光器芯片寄生电容的设想,并对此设想在技术上的可行性进行了探讨。
    (6)、提出了一个新的研究方向,即当整个器件的总电容为负值的时候,半导体激光器在交流小信号测试下的频率调制响应特性会出现什么样的现象。这是一个目前不为人们所知的在研究方面的空白。
    
    总之,由于半导体发光二极管的负电容可能会对器件的频率特性、开关特性以及其它一些特性产生影响,因此,在定量的层次上去正确认识发光二极管的负
    
    
    电容,不论在理论上还是在实际应用中都具有重要的意义。此外,我们提出的利用负电容补偿半导体激光器件寄生电容的设想一旦在技术上被证明可行的话,那其价值将是颇为可观的,因为它不但能使人们在如何减小寄生电容这一问题上的研究思路大为拓宽,甚至有可能对整个高速半导体激光器产业的发展产生积极的影响。
Semiconductor light-emitting diodes (LEDs) and laser diodes (LDs) are two very important light-emitting devices due to their wide application in many fields, such as display, lighting, integrate circuit, light-storage, light-communication, etc. It is so important for LEDs and LDs that the studies related to their electrical and optical characterization have been a very intresting subject in the past and today. In this paper, negative capacitance of LEDs and high-speed modulation of LDs are studied at the same time, and our work and achievement can be summarized as follows:
    
    (1). The experiments verified that the forward ac small signal method developed by us could be an accurate method to measure the ac electrical characteristics of semiconductor diodes. The forward capacitance-voltage spectrum with a very high sensitivity, obtained by the forward ac small signal measurement method, could offer much help to analyze the microscopic transport mechanism of a semiconductor diode, and thus is a good complementarity to the current highly-mature reverse capacitance-voltage spectrum.
    (2). We tested the electrical characteristics of LEDs using the forward ac small signal method based the series and parallel modes, and the experimental results show that there are negative capacitance in most semiconductor LEDs. The further electroluminescence experimental result shows that negative capacitance of LEDs is related to the radiative recombination of the injected carries.
    (3). On the basis of the experiment of both forward ac small signal and electroluminescence, we made a qualitative explanation to the negative capacitance of LEDs from physics mechanism, and we also try to make a quantitative explanation to the negative capacitance of LEDs from microscopic transport mechanism and have acquired some progress at the quantitative explanation.
    (4). We made a detail study to the characteristics of the intrinsic and parasitic
    
    
    frequency modulation response of LDs, and finished a systemic discussion to the main factors affecting the characteristics of the intrinsic and parasitic frequency modulation response.
    (5). For the first time we put forward a novel idea to compensate the parasitic capacitance of LDs by using a negative capacitance. Besides, we also discuss the idea’s feasibility in practice.
    (6). A new study subject was put forward, which is that what the frequency response of LDs would be when the whole capacitance of LDs is negative. The new subject is worth to investigate because it possibly hides much important information.
    
    In a word, the quantitative explanation to the negative capacitance of LEDs has a very important significance both in theoretical field and in practical application, for negative capacitance of LEDs could possibly cause some effect on modulation, pulse and switch circuits. Besides, if it is to prove feasible in practice, the novel idea to compensate the parasitic capacitance of LDs by using a negative capacitance is rather valuable, for it not only could widen people’s study thought about how to minish the parasitic capacitance of LDs, but also could probably cause a positive influence on the development of the whole industry of high-speed semiconductor lasers.
引文
[1] 王永捷,曾志斌,朱传云等,高速半导体发光二极管的研究,河北工业大学学报,to be published
    [2] C. D. Lien, F. C. T. So, and M. A. Nicolet, An improved forward I-V method for nonideal Schottky diodes with high series resistance, IEEE Trans. Electron Devices, 1984, ED-31(10): 1502-1503
    [3] K. Sato and Y. Yasumura, Study of forward I-V plot for Schottky diodes with high series resistance, J. Appl. Phys., 1985, 58(9): 3655-3657
    [4] S. K. Cheung and N. W. Cheung, Extraction of Schottky diode parameters from forward current-voltage characteristics, Appl. Phys. Lett., 1986, 49(2): 85-87
    [5] J. H. Werner, Schottky barrier and pn-junction I/V plots–small signal evaluation, Appl. Phys. A, 1988, 47(4): 291-300
    [6] V. Aubry and F. Meyer, Schottky diodes with high series resistance: limitationsof forward I-V methods, J. Appl. Phys., 1994, 76(12): 7973-7984
    [7] M. Lyakas, R. Zaharia, and M. Eizenberg, Analysis of nonideal Schottky and p-n junction diodes-extraction of parameters from I-V plots, J. Appl. Phys., 1995, 78(9): 5481-5189
    [8] A. Kaminski, J. J. Marchand, and A. Laugier, I-V methods to extract junction parameters with special emphasis on low series resistance, Solid-state Electron, 1999, 43(3): 741-745
    [9] V. Mikhelashvili, G. Eisenstein, and R. Uzdin, Extraction of Schottky diode parameters with a bias dependent barrier height, Solid-state Electron, 2001, 45(1): 143-148
    [10] A. M. Goodman, Metal-semiconductor barrier height measurement, J. Appl. Phys., 1963, 34(2): 329-338
    [11] T. J. Faith, R. S. Irven, S. K. Plante, et al., Contact resistance: Al and Al-Si to diffused N+ and P+ silicon, J. Vac. Sci. Techol., 1983, Al(2): 443-448
    [12] D. V. Lang, Deep-level transient spectroscopy: A new method to characterize
    
    
    traps in semiconductors, J. Appl. Phys., 1974, 45(7): 3023-3032
    [13] C. D. Wang, C. Y. Zhu, G. Y. Zhang, et al., Accurate electrical characterization of forward AC behavior of real semiconductor diode: giant negative capacitance and nonlinear interfacial layer, IEEE Trans. Electron Devices, 2003, 50(4): 1145-1148
    [14] 王存达,曾志斌,张国义等,一种精确检测半导体二极管正向电特性的新方法,半导体学报,2003,24(12):1307-1311
    [15] R. Vogel and P. J. Walsh, Negative capacitance in amorphous semiconductor chalcogenide thin films, Appl. Phys. Lett.,1969, 14(7): 216-218
    [16] H. K. Rockstad, Ionization model for negative capacitance in low-mobility semiconductors such as amorphous chalcogenides, J. Appl. Phys., 1971, 42(3): 1159-1166
    [17] J. Allison and V. R. Dave, Frequency dependence of negative-capacitance effects observed in amorphous semiconductor thin-film devices, Electron. Lett., 1971, 7(24): 706-707
    [18] V. A. Brodovoi and N. Z. Derikot, Investigation of the impedance of GaAs: Cu in strong electric fields, Sov. Phys. Semicond., 1973, 7(4): 459-461
    [19] G. A. Egiazaryan and V. I. Stafeev, Some properties of S-type dioes made of semiinsulating gallium arsenide, Sov. Phys. Semicond., 1975, 9(3): 334-336
    [20] A. S. Deshevoi and L. S. Gasanov, Solid-state inductance of amorphous and compensated semiconductors, Sov. Phys. Semicond., 1977, 11(10): 1168-1170
    [21] T. Noguchi, M. Kitagawa, and I. Taniguchi, Negative capacitance of silicon diode with deep level traps, Jpn. J. Appl. Phys., 1980, 19(7): 1423-1424
    [22] F. Sandoval, C. Lopez and E. Munoz, Forward-bias impedance of GaAs1-xPx LED’S, Solid-State Electronics, 1982, 25(5): 355-357
    [23] V. N. Alimpiev and I. R. Guralnik, Negative capacitance of a photosensitive semiconductor, Sov. Phys. Semicond., 1984, 18(4): 420-422
    [24] G. Blatter and F. Greuter, Electrical breakdown at semiconductor grain boundaries, Phys. Rev. B, 1986, 34(12): 8555-8572
    [25] A. K. Jonscher, C. Pickup, and S. Zaidi, Dielectric spectroscopy of
    
    
    semi-insulating gallium arsenide, Semicond. Sci. Technol., 1986, 1(1): 71-92
    [26] S.-T. Fu and M. B. Das, Backgate-induced characteristics of ion-implanted GaAs MESFET's, IEEE Trans. Electron Devices, 1987, 34(6): 1245-1252
    [27] A. K. Jonscher and M. N. Robinson, Dielectric spectroscopy of silicon barrier devices, Solid-State Electron., 1988, 31(8): 1277-1288
    [28] J. Werner, Origin of the excess capacitance at intimate Schottky contacts, Phys. Rev. Lett.,1988, 60(1): 53-56
    [29] X. Wu and E. S. Yang, Interface capacitance in metal-semiconductor junctions, J. Appl. Phys.,1989, 65(9): 3560-3567
    [30] L. He and T. Dingyuan, Capacitance-voltage characteristics of p-n junction of the narrow band-gap semiconductors Hg1-xCdxTe, Chinese Journal of Semiconductor, 1988, 9(1): 60-66
    [31] X. Wu, H. L. Ebans and E. S. Yang, Negative capacitance at metal-semiconductor interfaces, J. Appl. Phys., 1990, 68(6): 2845-2848
    [32] C. H. Champness and W. R. Clark, Anomalous inductive effect in selenium Schottky diodes, Appl. Phys. Lett., 1990, 56(12): 1104-1106
    [33] R. Merlin and D. A. Kessler, Photoexcited quantum wells: Nonlinear screening, bistability, and negative differential capacitance, Phys. Rev. B, 1990, 41(14): 9953-9957
    [34] Chen and F. Jansen, Negative differential capacitance of amorphous silicon films, J. Appl. Phys., 1990, 67(12): 7383-7387
    [35] M. Beale, Anomalous reactance behaviour during the impedance analysis of time-varying dielectric systems, Philosophical Magazine B, 1990, 65(1): 65-77
    [36] W. R. Clark and C. H. Champness, Anomalous inductive effect in Schottky junctions, Can. J. Phys., 1991, 69(3/4): 311-316
    [37] P. Muret, D. Elguennouni, M. Missous, et al., Admittance of Al/GaAs Schottky contacts under forward bias as a function of interface preparation conditions, Appl. Phys. Lett., 1991, 58(2): 155-157
    [38] M. J. Morant and B. Y. Majlis, A silicon negative resistance, negative capacitance device, Proc. IEEE Int. Conf. Semiconductor Electronics, 1992
    
    [39] M. Beale and P. Mackay, The origins and characteristics of negative capacitance in metal-insulator-metal devices, Philos. Mag. B, 1992, 65(1): 47-64
    [40] M. Beale, Anomalous reactance behavior during the impedance analysis of time-varying dielectric systems, Philos. Mag. B, 1992, 65(1): 65-77
    [41] A. P. Boltaev, Negative capacitance in Ni-TiO2-p-Si heterostructures, Russian Microelectron., 1995, 24: 255-258
    [42] T. Christen and M. Buttiker, Low frequency admittance of a quantum point contact, Phys. Rev. Lett., 1996, 77(1): 143-146
    [43] S. Ezhilvalavan and T. R. N. Kutty, High-frequency capacitance resonance of ZnO-based varistor ceramics, Appl. Phys. Lett., 1996, 69(23): 3540-3542
    [44] V. Robkopf, P. Auer, E. Gornik, et al., An instrumental solution to the phenomenon of negative capacitances in semiconductors, Solid-State Electronics, 1996, 40(3): 333-336
    [45] M. Ershov, H. C. Liu, L. Li, et al., Unusual capacitance behavior of quantum well infrared photodetectors, Appl. Phys. Lett., 1997, 70(14): 1828-1830
    [46] K. Misiakos, D. Tsamakis and E. Tsoi, Measurement and modeling of the anomalous dynamic response of high resistivity diodes at cryogenic temperatures, Solid-State Electron., 1997, 41(8): 1099-1103
    [47] I. Omura, H. Ohashi and W. Fichtner, IGBT negative gate capacitance and related instability effects, IEEE Electron Device Lett., 1997, 18(12): 622-624
    [48] J. Claude and M. Peko, Effect of negative capacitance on high-temperature dielectric measurements at relatively low frequency, Appl. Phys. Lett., 1997, 71(25): 3730-3732
    [49] M. Ershov, H. C. Liu, Li L, et al., Negative capacitance effect in semiconductor devices, IEEE Trans. Electron Devices, 1998, 45(10): 2196-2206
    [50] N. C. Chen, P. Y. Wang, and J. F. Chen, Low frequency negative capacitance behavior of molecular beam epitaxial GaAs n-low temperature-i-p structure with low temperature layer grown at a low temperature, Appl. Phys. Lett., 1998, 72(9): 1081-1083
    [51] B. K. Jones, J. Santana, and M. McPherson, Ohmic I-V characteristics in
    
    
    semi-insulating semiconductor diodes, Solid State Communications, 1998, 105(9): 547-549
    [52] B. K. Jones and J. M. McPherson, Negative Capacitance Effects in Semiconductor Diodes, Solid State Communications, 1998, 107(2): 47-50
    [53] Z. Xu and C. H. Champness, Effect of CdO interlayer on electrical characteristics in Se-Bi diodes, Applied Surface Science, 1998, 123-124(1): 485-489
    [54] A. G. U. Perera, W. Z. Shen, and M. E. Shov, Negative capacitance of GaAs homojunction far-infrared detectors, Appl. Phys. Lett., 1999, 74(21): 3167-3169
    [55] F. Lemmi and N. M. Johnson, Negative capacitance in forward biased hydrogenated amorphous silicon p+-i-n+ diodes, Appl. Phys. Lett., 1999, 74(2): 251-253
    [56] A. J. Chiguito, Y. A. Pusep, S. Mergulhao, et al., Capacitance-voltage profile in a structure with negative differential capacitance caused by the presence of InAs/GaAs self-assembled quantum dots, Phys. Rev. B, 2000, 61(8): 5499-5504
    [57] M. Matsumura and Y. Hirose, Negative-Capacitance effect in forward-biased Metal Oxide Semiconductor Tunnel Diodes (MOSTD), Jpn. J. Appl. Phys., 2000, Part 2, 39(2B): L123-L125
    [58] W. Z. Shen and A. G. U. Perera, Effect of interface states on negative capacitance characteristics In GaAs homojunction far-infrared detectors, Appl. Phys. A, 2001, 72(1): 107-111
    [59] 曾志斌,朱传云,王存达等,GaN蓝光发光二极管中的负电容现象的研究,光电子.激光,to be published
    [60] 余金中,半导体光电子技术,北京:化学工业出版社,2003,第一章
    [61] J. Loehr, W. Siskaninetz, J. Wiemeri, et al., Optical communication system for avionics, IEEE AES System Magazine, 1998, April: 9-12
    [62] R. S. Tuckey and D. J. Pope, Microwave circuit models of semiconductor injection lasers, IEEE Trans. Microwave Theory Tech., 1983, MTT-31(3): 289-294
    [63] R. S. Tuckey and I. P. Kaminow, High-frequency characteristics of directly modulated InGaAsP ridge waveguide and buried heterostructure lasers, IEEE J.
    
    
    Lightwave Technol., 1984, LT-2(4): 385-393
    [64] R. S. Tuckey, High-speed modulation of semiconductor laser, IEEE J. Lightwave Technol., 1985, LT-3(6): 1180-1192
    [65] M. Meada, K. Nagano, M. Tanaka, et al., Buried-heterostructure laser packaging for wideband optical transmission system, IEEE Transaction on communications, 1978, COM-26(7): 1076-1081
    [66] H.Kuwahara, Y.Daido, and H. Furuta, Measurement of impedance of DH semiconductor lasers, Proceedings of the IEEE, 1977, 65(9):1412-1413
    [67] J. M. Dumant, Y. Guillausseau, and M. Monerie, Small signal modulation of DH laser diodes: effect of the junction capacitance, Optics Communications, 1980, 33(2): 188-192
    [68] L. Figueroa, C. W. Slayman, and H. W. Yen, High-frequency characteristics of GaAlAs injection laser, IEEE J. Quantum Electron., 1982, QE-18(10): 1718-1727
    [69] K. Y. Lau and A. Yariv, Ultra-high speed semiconductor lasers, IEEE J. Quantum Electron., 1985, QE-21(2): 121-138
    [70] B. W. Hakki, F. Bosch, S. Lumish, et al., 1.3-um BH laser performance at microwave frequencies, IEEE J. Lightwave Technol., 1985, LT-3(6): 1193-1201
    [71] J. E. Bowers, B. R. Hemenway, A. H. Gnauck, et al., High-speed InGaAsP constricted-mesa lasers, IEEE J. Quantum Electron., 1986, QE-22(6): 833-844
    [72] K. Kamite, M. Yano, T. Tanahashi, et al., Analysis of the parasitic effective capacitance of buried-heterostructure lasers, Electron. Lett., 1986, 22(8): 407-409
    [73] R. Olshansky, V. Lanzisera, C. B. Su, et al., Frequency response of an InGaAsP vapor phase regrown buried heterostructure laser with 18 GHz bandwidth, Appl. Phys. Lett, 1986, 49(3): 128-130
    [74] J. E. Bowers, High speed semiconductor laser design and performance, Solid-st. Electron., 1987, 30(1): 1-11
    [75] K. J. Vahala and M. A. Newkirk, Parasitic-free modulation of semiconductor lasers, IEEE J. Quantum Electron., 1989, 25(6): 1393-1399
    
    [76] A. A. Desalles, InGaAsP DC-PHB semiconductor laser diode frequency response model, IEEE Trans. Microwave Theory Tech., 1990, 38(5): 677-679
    [77] E. Meland, R. Holmstrom, J. Schlafer, et al., Extremely high-frequency (24 GHz) InGaAsP diode lasers with excellent modulation efficiency, Electron. Lett., 1990, 26(21): 1827-1829
    [78] S. Weisser, J. D. Ralston, E. C. Larkins, et al., Efficient high-speed direct modulation in p-doped In0.35GaAs0.65/GaAs multiquantum well lasers, Electron. Lett., 1992, 28(23): 2141-2143
    [79] R. T. Huang, D. Wolf, W. H. Cheng, et al., High-speed, low-threshold InGaAsP semi-insulating buried crescent lasers with 22 GHz bandwidth, IEEE Photon. Technol. Lett., 1992, 4(4): 293-295
    [80] M. Ettenberg, M. G. Harvey, and D. R. Patterson, Linear, high-speed, high-power strained quantum-well LED’s, IEEE Photon. Technol. Lett., 1992, 4(1): 27-28
    [81] 肖建伟,衣茂斌,高鼎三,高速掩埋半导体激光器设计与实验,半导体学报,1993,14(10):619-625
    [82] B. J. Thibeault, J. W. Scott, M. G. Peters, et al., Integrable InGaAs/GaAs vertical-cavity surface-emitting lasers, Electron. Lett., 1993, 29(25): 2197-2199
    [83] D. A. Tauber, R. Spickermann, R. Nagarajan, et al., Inherent bandwidth limits in semiconductor lasers due to distributed microwave effects, Appl. Phys. Lett, 1994, 64(13): 1610-1612
    [84] J. A. Lehman, R. A. Morgan, M. K. Hibbs-brenner, et al., High-frequency modulation characteristics of hybrid dielectric/AlGaAs mirror singlemode VCSELs, Electron. Lett., 1995, 31(15): 1251-1252
    [85] 张正线,李植棠,徐杰等,实用化宽带半导体激光器组件的研制及其特性的研究,中国激光,1996,23(2):117-122
    [86] S. Weisser, E. C. Larkins, K. Czotscher, et al., Damping-limited modulation bandwidths up to 40 GHz in undoped short-cavity InGaAs-GaAs multiple-quantum-well lasers, IEEE Photon. Technol. Lett., 1996, 8(5): 608-610
    [87] B. J. Thibeault, K. Bertilsson, E. R. Hegblom, et al., High-speed characteristics of low-optical loss oxide-apertured vertical-cavity lasers, IEEE Photon. Technol.
    
    
    Lett., 1997, 9(1): 11-13
    [88] A. K. Dutta, H. Kosaka, K. Kurihara, et al., High-speed VCSEL of modulation bandwidth over 7.0 GHz and its application to 100 m PCF datalink, IEEE J. Lightwave Technol., 1998, 16(5): 870-875
    [89] B. J. Zhang, M. B. Yi, J. F. Song, et al., High-speed InGaAsP/InP selective proton bormbarded buried crescent lasers with optical field attenuation regions, Electron. Lett., 1998, 34(1): 88-90
    [90] Y. Matsui, H. Murai, S. Arahira, et al., Enhanced modulation bandwidth for strain-compensated InGaAlAs-InGaAsP MQW lasers, IEEE J. Quantum Electron., 1998, 34(10): 1970-1978
    [91] B. Lu, E. Vail, J. S. Osinski, et al., High-speed low-parasitic low-divergence 635 nm singlemode lasers, Electron. Lett., 1998, 34(18): 1750-1751
    [92] F. H. Peters and M. H. Macdougal, High-speed high-temperature operation of vertical-cavity surface-emitting lasers, IEEE Photon. Technol. Lett., 2001, 13(7): 645-647
    [93] C. H. Chang, L. Chrostowski, and J. Chang-Hasnain, Parasitics and design considerations on oxide-implant VCSELs, IEEE Photon. Technol. Lett., 2001, 13(12): 1274-1276
    [94] K. A. Black, E. S. Bjorlin, J. Piprek, et al., Small-signal frequency response of long-wavelength vertical-cavity lasers, IEEE Photon. Technol. Lett., 2001, 13(10): 1049-1051
    [95] M. L. Majewski, J. Barton, L. A. Colden, et al., Direct intensity modulation in sampled-grating DBR lasers, IEEE Photon. Technol. Lett., 2002, 14(6): 747-749
    [96] D. Hofstetter, M. Beck, T. Aellen, et al., High-frequency modulation of a quantum-cascade laser using a monolithically integrated intracavity modulator, IEEE Photon. Technol. Lett., 2003, 15(8): 1044-1046
    [97] 江剑平,半导体激光器,北京:电子工业出版社,2000:第4章
    [98] A. Karlsson, R. Schatz, and G. Bjork, On the modulation bandwidth of semiconductor microcavity lasers, IEEE Photon. Technol. Lett., 1994, 6(11): 1312-1314
    
    [99] P. Acedo, H. Lamela, G. Carpintero, et al., High bandwidth small signal modulation response of two laterally mode-locked diode lasers, IEEE Photon. Technol. Lett., 2002, 14(8): 1055-1057
    [100] 李乐,半导体二极管正向电特性的检测,[硕士学位论文],天津,天津大学,2003
    [101] S. M. Sze, Physics of semiconductor Devices, Wiley, New York, 1981, Chap. 2
    [102] Henry Kressel and J. K. Buther, Semiconductor lasers and heterojunction LEDs, Academic Press, 1977, Chap. 2
    [103] 朱传云,半导体发光二极管中的负电容现象,[硕士学位论文],天津,天津大学,2003
    [104] S. L. Chuang, Physics of optoelectronic devices, Wiley, New York, 1995, Chap. 11.
    [105] S. Kolve, B. Delacressonniere, and J. L. Gautier, Using a negative capacitance to increase the tuning range of a varactor diode in MMIC technology, IEEE Trans. Microwave Theory Tech., 2001, 49(12): 2425-2430
    [106] Zeng Zhibin, Zhu Chuanyun, Wang Cunda, et al., A novel method to minish the parasitic capacitance in semiconductor laser, IEEE Photonics Technology Letters, to be Submitted