直接内部重整固体氧化物燃料电池系统的建模与控制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
燃料电池是一种新兴的、高效率的且清洁的发电装置。从能量转换角度考虑,燃料电池与普通的一次电源和二次电源相同,都是直接将化学能转变为电能的装置。从实际应用来考虑,燃料电池有其独特的性质,其运行所需燃料和氧化剂并非存储在其内部,而是源源不断地由电池外部设备供给。直接内部重整固体氧化物燃料电池(DIR-SOFC)除了具有燃料电池共有的优点(高效率、低污染、低噪声、高能量密度和高可靠性)外,其凭借自身运行温度高、电极催化剂特殊的特点,可以直接利用天然气、煤气或者其它碳氢化合物作为燃料,因此DIR-SOFC无需外部燃料重整器,从而简化了电池系统结构。另外,DIR-SOFC可以与燃气轮机或蒸汽轮机等构成联合发电系统,对电池排出的含有大量未使用燃料和热量的尾气加以再利用,以提高系统总的发电效率(其系统总体效率可以超过80%)和进一步降低对环境的污染。而且,SOFC系统发电容量大,用途更为广泛。
     本课题是国家高技术研究发展计划资助项目(863计划)“中温平板型SOFC模块发电系统的研制”和国家自然科学基金项目“燃料电池-燃气轮机混合动力系统非线性对象的协调控制”课题的一部分。本文以DIR-SOFC发电系统为研究对象,以甲烷蒸汽混合气体作为其燃料,对DIR-SOFC系统的建模、数值模拟、控制策略等问题进行了研究。以甲烷蒸汽重整反应动力学、DIR-SOFC系统机理模型为研究基础,详细地分析讨论了DIR-SOFC系统在不同运行条件下的静态和动态特性。在此基础上,采用基于数据的小波网络(WN)方法(免疫优化WN(IOWN)和自递归WN(SRWN))对DIR-SOFC系统建立了输入输出黑盒模型。根据对DIR-SOFC系统动态特性的分析讨论,设计了适合其的控制方案(包括模糊控制和预测控制),并对不同控制方法的结果进行了比较分析。本文的主要工作包括:
     1.在甲烷蒸汽重整动力学理论的基础上,建立了甲烷蒸汽重整过程中各个反应的动力学模型。依据模型,在MATLAB/SIMULINK仿真环境里,建立了重整反应平衡组成计算模块和反应速度计算模块。基于建立的计算模块,对甲烷蒸汽重整过程进行了热力学计算分析,并对其稳定状态和动态行为进行了仿真,考察了运行温度、压力、S/C等重要参数对重整反应的影响,给出了不同运行条件下,甲烷转化率、反应产物平衡组成(甲烷、氢气、一氧化碳、二氧化碳)、以及重整过程中不同反应进行速度的计算结果。同时,分别对不同条件下的结果进行了对比,并对反应中出现的各种状态进行了分析讨论。
     2.基于甲烷蒸汽重整反应动力学、化学能电能转换原理、质量和能量传递原理建立了DIR-SOFC的机理数学模型。模型中采用了微分方程组来描述DIR-SOFC内部的各种物理和化学过程,为了求得模型方程的解,结合本研究的需要并采用计算流体动力学方法推导了DIR-SOFC模型的二维矩阵形式进而对其进行了数值计算。在MATLAB环境中编写仿真程序(m文件),将其封装成SIMULINK中可调用的子模块,并整合为便于操作和调用的DIR-SOFC模块。针对电池运行中的重要变量和参数(SOLID厚度、燃料气流、空气气流、压力、S/C和电压),考察了它们对交叉流场电池运行状态及性能的影响,给出了由各种输入和参数的阶跃变化引起的电池二维参数分布动态变化过程,并对结果进行了分析和讨论。DIR-SOFC性能研究表明:1)在燃料入口处,DIR-SOFC温度有明显的下降,在达到最低值之后,会沿着阳极流道逐渐上升,在阳极流道中部阴极流道出口附近达到温度的最大值,接着沿流道缓慢下降;2)沿着阴极流道,电池温度逐渐上升,在阴极流道出口附近达到最大值;3)阳极和阴极入口处的电流密度较小,沿着阳极流道电流密度逐渐升高,在温度最高点附近达到电流密度的最大值,接着逐渐下降,而沿着阴极流道,电流密度总的趋势是逐渐增大的,在阳极出口附近,沿着阴极流道方向,电流密度是逐渐减小的,这与阳极出口处燃料消耗殆尽有关;4) DIR-SOFC中甲烷气体浓度沿着阳极流道逐渐减小,氢气的浓度沿着阳极流道先增大然后逐渐减小,水蒸汽的浓度则是先减小而后逐渐增大,氧气的浓度沿着阴极流道逐渐减小,并在电流密度最大处达到其最小值;5)增加SOLID厚度,会降低电池的平均温度、平均电流密度、燃料和氧气的利用率;6)燃料气流量减少20%,会减低电池的平均温度、平均电流密度,增加燃料利用率,减小氧气利用率;7)燃料气流量增加20%,使得平均电流密度增加,但是平均温度下降了,燃料利用率相应减小,氧气利用率会突然增加而后回落;8)空气流量减少20%,会增大电池的平均温度、平均电流密度、燃料利用率和氧气利用率;9)空气流量增加10%,降低了电池的平均温度、平均电流密度、燃料利用率和氧气利用率;10)压力从3bar变为2bar,降低了电池的平均温度、平均电流密度、燃料利用率和氧气利用率;11)压力从3bar变为5bar,增加了电池的平均温度、平均电流密度、燃料利用率和氧气利用率;12) S/C 2.14→1.8,增加了电池的平均温度、平均电流密度、燃料利用率和氧气利用率;13) S/C 2.14→3.0,降低了电池的平均温度、平均电流密度、燃料利用率和氧气利用率;14)单电池电压从0.7V升至0.75V,降低了电池的平均温度、平均电流密度、燃料利用率和氧气利用率。
     3.在WN建模方法基础上采用多目标免疫优化算法(MOIA)对原始WN模型的网络结构和初始状态进行优化,用以达到提高WN模型精度的目的。为了提高模型对DIR-SOFC及其系统的动态行为的学习能力,本文采用改进了的SRWN。为了进一步实现在线模型辨识,采用了带遗忘因子的二次函数作为目标函数,并推导了SRWN中参数的更新公式(包括小波尺度和平移参数的梯度更新公式,以及权重参数的迭代更新公式)。接着,对其参数更新算法的收敛性进行了证明,提出了参数学习速度自适应调整律。仿真结果表明IOWN和SRWN(采用带遗忘因子的目标函数)均能够成功地对DIR-SOFC建模,并能获得较高的精度,其中SRWN具有更好的在线学习能力。
     4.根据质量、能量守恒定律以及经验公式建立了DIR-SOFC发电系统中其它各部件(燃烧室、压气机、透平、热交换器)的模型,并创建了SIMULINK中可调用的子模块。以这些部件模块为基础,构建了190kW级DIR-SOFC发电系统的SIMULINK模型,通过该模型,设置了多种运行条件,进行了仿真实验,获得了DIR-SOFC系统在不同工况下的动态运行特性,分析了各变量对系统性能的影响。基于对DIR-SOFC系统的动态仿真实验,确定了各操纵量(入口燃料和空气流量以及燃烧室添加燃料流量)来控制发电系统的运行状态和输出性能(电堆温度、燃料利用率和系统输出功率)。应用智能控制中具有代表性的模糊控制和预测控制方法设计了针对该DIR-SOFC发电系统的控制策略。在模糊控制算法中采用了改进的非均匀分布模糊变量隶属度函数、T-S模糊规则以及加权平均反模糊方法。在预测控制算法中,采用SRWN模型作为DIR-SOFC系统的预测模型,并对DIR-SOFC系统进行了在线建模和预测仿真实验,结果表明DIR-SOFC系统的SRWN模型具有较好的在线辨识能力和适应性,而且具有较高的预测精度。在控制实验中,为了展示基于SRWN的预测控制方法的优越性,还采用了IOWN模型替换预测控制中的SRWN模型。控制仿真实验结果表明,与模糊控制和基于IOWN的预测控制相比,基于在线更新SRWN模型的预测控制器具有最短的调节时间和平稳的控制过程,能够快速稳定地跟随控制变量设定值,获得了良好的控制精度。
The fuel cell is a kind of new and developing clean power generation equipment with high efficiency. From the viewpoint of the energy conversion, the fuel cell, as well as the primary and the secondary power sources, directly converts the chemical energy into electrical energy. From the viewpoint of the practical application, the fuel cell has unique properties. The fuel and oxidant needed in fuel cell operation are continuously supplied by external devices instead of being stored within fuel cell itself. The direct internal reforming solid oxide fuel cell (DIR-SOFC) not only has the general advantages of fuel cells (high efficiency, low pollution, low noise, high energy density and high reliability), but also has high operating temperature and special electrode catalyst. The DIR-SOFC can thus be directly fueled with the natural gas, coal gas and other hydrocarbons, and does not need any external fuel reformer. Therefore, the SOFC configuration can be simplified. Further, to increase the total efficiency of the power system and reduce pollution to the environment, the DIR-SOFC can be combined with gas and steam turbines to recycle the fuel cell exhaust gas which contains a lot of unused fuel and heat (the overall efficiency can thus be more than 80%). Additionally, the SOFC system has a large power generation capacity and covers a wide range of applications.
     The work is part of the project“Intermediate temperature planar SOFC modularized generation system”supported by the National Hi-Tech Research and Development Program (863) of China and the project“Harmonious nonlinear control of fuel cell-gas turbine hybrid generation system”supported by the National Natural Science Foundation of China. The dissertation takes the DIR-SOFC system fueled with methane-steam gas mixture as the study object to develop the model, numerical simulation technique and control strategy of the power plant. Based on the kinetics of the methane steam-reforming and the mechanism model of the DIR-SOFC system, the steady and dynamic performances of the DIR-SOFC system under different operating conditions are detailedly analyzed and discussed. Based on the above work, the data-driven wavelet network (WN) methods (immune optimized WN (IOWN) and self recurrent WN (SRWN)) are applied to establish the input-output black-box model of the DIR-SOFC system. According to the analysis and discussion of the dynamic performance, the control schemes (fuzzy control and predictive control) suitable for the DIR-SOFC system are designed. The results obtained by different control methods are compared and analyzed. The main contributions and achievements of this dissertation are given below:
     1. The kinetic models of reactions in the methane steam-reforming process are established based on the kinetic theory of the methane steam-reforming. According to the models, the calculation modules of the equilibrium composition and reaction rates for the reforming process are built in MATLAB/SIMULINK simulation environment. The thermodynamic analysis of the reforming reactions and the simulation for the steady and dynamic behavior are performed based on the built calculation modules. The influences of important parameters (operating temperature, pressure, S/C, etc.) on the reforming process are investigated. The methane conversion, product equilibrium composition (methane, hydrogen, carbon monoxide, carbon dioxide) and reaction rates in the reforming process under different conditions are calculated. The simulation results are compared, and the states in reactions are analyzed and discussed.
     2. The mechanism model of the DIR-SOFC is established based on the kinetics of methane steam-reforming, principles of chemical energy-electrical energy conversion, and fundamentals of mass and energy transfer. The simultaneous differential equations are employed to describe the physical and chemical behaviors occurring in the DIR-SOFC. To obtain the solutions of the model equations, the computational fluid dynamics (CFD) method, combined with the need for research, is applied to deduce the two-dimensional matrix form of the DIR-SOFC model equations to perform the numerical calculation. The simulation codes (m files) are programmed in MATLAB, and masked blocks are generated so that they can be invoked in SIMULINK. Then the blocks are integrated together to build DIR-SOFC module which can facilitate manipulating and invoking. The influences of important variables and parameters (SOLID thickness, fuel flow, air flow, pressure, S/C and voltage) on operating states and performances of the cross-flow fuel cell are investigated. Dynamic processes of two-dimensional parameter distributions of fuel cell caused by step changes of inputs and parameters are presented, analyzed and discussed. The research results of DIR-SOFC performances show that: 1) At the fuel inlet, the temperature of DIR-SOFC reduces significantly. After the temperature reaches its minimum, it gradually rises along the anode flow channel and reaches its maximum in the middle of the anode channel near the cathode channel outlet. Then, the temperature gradually decreases along the channel. 2) Along the cathode channel, the cell temperature gradually rises and reaches its maximum near the cathode channel outlet. 3) At the anode and cathode inlet, the current density is relatively low. Along the anode channel, the current density gradually increases and reaches its maximum near the maximum-temperature point. Then, it gradually decreases. Along the cathode channel, the general trend of the current density is gradually increasing. Near the anode outlet, along the cathode channel, the current density gradually reduces because the fuel is almost consumed near this position. 4) Along the anode channel in the DIR-SOFC, the methane concentration gradually decreases, the hydrogen concentration first increases and then decreases, while the steam concentration first decreases and then increases. Along the cathode channel, the oxygen concentration gradually reduces and reaches its minimum near the maximum-current density point. 5) The increased SOLID thickness decreases the cell mean temperature, mean current density, fuel and oxygen utilizations. 6) The fuel flow rate decreased by 20% results in the decrease in cell mean temperature and mean current density. The fuel utilization accordingly rises and the oxygen utilization reduces. 7) The fuel flow rate increased by 20% results in the increase in mean current density, while the mean temperature reduces. The fuel utilization accordingly reduces, while the oxygen utilization gradually decreases following the sudden increase. 8) The air flow rate decreased by 20% results in the increase in cell mean temperature, mean current density, fuel and oxygen utilizations. 9) The air flow rate increased by 10% results in the decrease in cell mean temperature, mean current density, fuel and oxygen utilizations. 10) The pressure changed from 3bar to 2bar results in the decrease in cell mean temperature, mean current density, fuel and oxygen utilizations. 11) The pressure changed from 3bar to 5bar results in the increase in cell mean temperature, mean current density, fuel and oxygen utilizations. 12) S/C 2.14→1.8 results in the increase in cell mean temperature, mean current density, fuel and oxygen utilizations. 13) S/C 2.14→3.0 results in the decrease in cell mean temperature, mean current density, fuel and oxygen utilizations. 14) The cell voltage changed from 0.7V to 0.75V results in the decrease in cell mean temperature, mean current density, fuel and oxygen utilizations.
     3. Based on the WN modeling method, the multiobjective optimization immune algorithm (MOIA) is employed to optimize the network structure and initial state of the original WN to improve the accuracy of the WN model. In order to enhance the capability of model in learning from dynamic behavior of the DIR-SOFC and system, the improved SRWN is used. To implement the on-line model identification, the quadratic function with forgetting factor is taken as the objective function, and parameter updating formulas for the SRWN are deduced (including the updating formulas for dilation and translation parameters and iterative updating formulas for weights). Then, the convergence of the parameter updating algorithm is proved, and the adaptive law for the learning rates of parameters is proposed. Simulation results show that the IOWN and the SRWN (using objective function with forgetting factor) both succeed in modeling DIR-SOFC with relatively high accuracy. Further, the SRWN has better on-line learning ability.
     4. According to the conservation law of mass and energy and empirical formulas, models of components (combustor, compressor, turbine, heat exchanger) of DIR-SOFC system are established. The sub-modules for these component models are constructed in SIMULINK. Based on component modules, a 190kW DIR-SOFC generation system model is also constructed in SIMULINK. Several operating cases are set up to perform simulation experiments via the system model. Dynamic performances of the DIR-SOFC system under different conditions are obtained. Influences of different variables on system performances are analyzed. The manipulated variables (inlet fuel and air flow rates and added fuel flow rate for the combustor) are determined to control operating states and output performance of the generation system (stack temperature, fuel utilization and system output power). The typical intelligent control methods, fuzzy control and predictive control, are employed to design the control strategy for the DIR-SOFC generation system. Improved non-uniform membership functions for fuzzy variables, T-S fuzzy rules and weighted average defuzzification are applied in the fuzzy control algorithm. In the predictive control, the SRWN model is taken as the predictive model for the DIR-SOFC system. The simulation experiments on the DIR-SOFC system for on-line modeling and prediction are performed. The results show better on-line identification ability, adaptability and relatively high predictive accuracy of the SRWN model for the DIR-SOFC system. In order to show the advantage of the SRWN based predictive control method, the IOWN model is used as a substitute for the SRWN model in the predictive control. The simulation experiment results for control show that the SRWN based predictive controller generates smaller overshoot and shorter setting time compared to the fuzzy controller and IOWN based predictive controller. Further, the SRWN based predictive controller can also track the set points of control variables with high precision in a speedy and stable manner.
引文
[1] K. Kordesch and G. Simader, Fuel Cells and Their Applications. New York: VCH, 1996.
    [2] J. Larminie and A. Dicks, Fuel Cell Systems Explained. New York: Wiley, 2000.
    [3] N. Q. Minh and T. Takahashi, Science and Technology of Ceramic Fuel Cells. Amsterdam: Elsevier, 1995.
    [4]衣宝廉,燃料电池——原理技术应用.北京:化学工业出版社, 2003.
    [5] J. Palsson, A. Selimovic, and L. Sjunnesson, "Combined solid oxide fuel cell and gas turbine systems for efficient power and heat generation," Journal of Power Sources, vol. 86, pp. 442-448, 2000.
    [6] A. L. Lee, R. F. Zabransky, and W. J. Huber, "Internal reforming development for solid oxide fuel cells," Industrial & Engineering Chemistry Research, vol. 29, pp. 766-773, 1990.
    [7] H.-K. Park, Y.-R. Lee, M.-H. Kim, G.-Y. Chung, S.-W. Nam, S.-A. Hong, T.-H. Lim, and H.-C. Lim, "Studies of the effects of the reformer in an internal-reforming molten carbonate fuel cell by mathematical modeling," Journal of Power Sources, vol. 104, pp. 140-147, 2002.
    [8] A. L. Dicks, K. D. Pointon, and A. Siddle, "Intrinsic reaction kinetics of methane steam reforming on a nickel/zirconia anode," Journal of Power Sources, vol. 86, pp. 523-530, 2000.
    [9] R. Peters, R. Dahl, U. Klüttgen, C. Palm, and D. Stolten, "Internal reforming of methane in solid oxide fuel cell systems," Journal of Power Sources, vol. 106, pp. 238-244, 2002.
    [10] S. Bebelis, A. Zeritis, C. Tiropani, and S. G. Neophytides, "Intrinsic kinetics of the internal steam reforming of CH4 over a Ni-YSZ-cermet catalyst-electrode," Industrial & Engineering Chemistry Research, vol. 39, pp. 4920-4927, 2000.
    [11] J. Meusinger, E. Riensche, and U. Stimming, "Reforming of natural gas in solid oxide fuel cell systems," Journal of Power Sources, vol. 71, pp. 315-320, 1998.
    [12] A. L. Dicks, "Hydrogen generation from natural gas for the fuel cell systems of tomorrow," Journal of Power Sources, vol. 61, pp. 113-124, 1996.
    [13] E. Achenbach and E. Riensche, "Methane/steam reforming kinetics for solid oxide fuel cells," Journal of Power Sources, vol. 52, pp. 283-288, 1994.
    [14] C. M. Finnerty, N. J. Coe, R. H. Cunningham, and R. M. Ormerod, "Carbon formation on and deactivation of nickel-based/zirconia anodes in solid oxide fuel cells running on methane," Catalysis Today, vol. 46, pp. 137-145, 1998.
    [15] J. R. Rostrup-Nielsen and L. J. Christiansen, "Internal steam reforming in fuel cells and alkali poisoning," Applied Catalysis A: General, vol. 126, pp. 381-390, 1995.
    [16] S. H. Clarke, A. L. Dicks, K. Pointon, T. A. Smith, and A. Swann, "Catalytic aspects of the steam reforming of hydrocarbons in internal reforming fuel cells," Catalysis Today, vol. 38, pp. 411-423, 1997.
    [17] J. R. Rostrup-Nielsen, "Catalytic Steam Reforming," in Catalysis: Science and Technology. vol. 5, J. R. Anderson and M. Boudart, Eds. New York: Springer Verlag, 1984.
    [18] M. V. Twigg, Catalyst Handbook, 2nd ed. London: Manson Publishing, 1996.
    [19] J. Xu and G. F. Froment, "Methane steam reforming, methanation and water-gas shift: I. Intrinsic kinetics," AIChE Journal, vol. 35, pp. 88-96, 1989.
    [20] V. D. Belyaev, T. I. Politova, O. A. Mar'ina, and V. A. Sobyanin, "Internal steam reforming of methaneover Ni-based electrode in solid oxide fuel cells," Applied Catalysis A: General, vol. 133, pp. 47-57, 1995.
    [21] G. F. Froment and K. B. Bischoff, Chemical Reactor Analysis and Design, 2nd ed. New York: Wiley, 1990.
    [22] R. M. Ormerod and G. F. F. a. K. C. Waugh, "Internal reforming in solid oxide fuel cells," in Studies in Surface Science and Catalysis. vol. Volume 122: Elsevier, 1999, pp. 35-46.
    [23] I. Proctor, A. Hopkin, and R. Ormerod, "Development of anodes for direct electrocatalytic oxidation of methane in solid oxide fuel cells," Ionics, vol. 9, pp. 242-247, 2003.
    [24] S. Park, R. J. Gorte, and J. M. Vohs, "Applications of heterogeneous catalysis in the direct oxidation of hydrocarbons in a solid-oxide fuel cell," Applied Catalysis A: General, vol. 200, pp. 55-61, 2000.
    [25] M. Mogensen, N. M. Sammes, and G. A. Tompsett, "Physical, chemical and electrochemical properties of pure and doped ceria," Solid State Ionics, vol. 129, pp. 63-94, 2000.
    [26] T. Tsai and S. A. Barnett, "Effect of Mixed-Conducting Interfacial Layers on Solid Oxide Fuel Cell Anode Performance," Journal of The Electrochemical Society, vol. 145, pp. 1696-1701, 1998.
    [27] V. D. Belyaev, T. I. Politova, and V. A. Sobyanin, "Effect of non-Faradaic electrochemical modification of catalytic activity," Solid State Ionics, vol. 136-137, pp. 721-725, 2000.
    [28] X.-M. Guo, K. Hidajat, and C.-B. Ching, "Simulation of a solid oxide fuel cell for oxidative coupling of methane," Catalysis Today, vol. 50, pp. 109-116, 1999.
    [29] T. Horita, K. Yamaji, N. Sakai, H. Yokokawa, A. Weber, and E. Ivers-Tiffee, "Electrode reaction of La[sub 1 - x]Sr[sub x]CoO[sub 3 - d] cathodes on La[sub 0.8]Sr[sub 0.2]Ga[sub 0.8]Mg[sub 0.2]O[sub 3 - y] electrolyte in solid oxide fuel cells," Journal of The Electrochemical Society, vol. 148, pp. A456-A462, 2001.
    [30] S. P. Jiang and S. P. S. Badwal, "An electrode kinetics study of H2 oxidation on Ni/Y2O3-ZrO2 cermet electrode of the solid oxide fuel cell," Solid State Ionics, vol. 123, pp. 209-224, 1999.
    [31] C. Haynes and W. J. Wepfer, "'Design for power' of a commercial grade tubular solid oxide fuel cell," Energy Conversion and Management, vol. 41, pp. 1123-1139, 2000.
    [32] S. Ahmed, C. McPheeters, and R. Kumar, "Thermal-hydraulic model of a monolithic solid oxide fuel cell," Journal of The Electrochemical Society, vol. 138, pp. 2712-2718, 1991.
    [33] N. F. Bessette II, W. J. Wepfer, and J. Winnick, "A mathematical model of a solid oxide fuel cell," Journal of The Electrochemical Society, vol. 142, pp. 3792-3800, 1995.
    [34] S. G. Neophytides, "The reversed flow operation of a crossflow solid oxide fuel cell monolith," Chemical Engineering Science, vol. 54, pp. 4603-4613, 1999.
    [35] D. J. Hall and R. G. Colclaser, "Transient modeling and simulation of a tubular solid oxide fuel cell," IEEE Transactions on Energy Conversion, vol. 14, pp. 749-753, 1999.
    [36] P. Holtappels, I. C. Vinke, L. G. J. de Haart, and U. Stimming, "Reaction of hydrogen/water mixtures on Nickel-zirconia cermet electrodes: II. AC polarization characteristics," Journal of The Electrochemical Society, vol. 146, pp. 2976-2982, 1999.
    [37] J.-W. Kim, A. V. Virkar, K.-Z. Fung, K. Mehta, and S. C. Singhal, "Polarization effects in intermediate temperature, anode-supported solid oxide fuel cells," Journal of The Electrochemical Society, vol. 146, pp. 69-78, 1999.
    [38] M. Iwata, T. Hikosaka, M. Morita, T. Iwanari, K. Ito, K. Onda, Y. Esaki, Y. Sakaki, and S. Nagata,"Performance analysis of planar-type unit SOFC considering current and temperature distributions," Solid State Ionics, vol. 132, pp. 297-308, 2000.
    [39] K. Ahmed and K. Foger, "Kinetics of internal steam reforming of methane on Ni/YSZ-based anodes for solid oxide fuel cells," Catalysis Today, vol. 63, pp. 479-487, 2000.
    [40] K. Ahmed and K. F?ger, "Approach to equilibrium of the water-gas shift reaction on a Ni/zirconia anode under solid oxide fuel-cell conditions," Journal of Power Sources, vol. 103, pp. 150-153, 2001.
    [41] E. Achenbach, "Three-dimensional and time-dependent simulation of a planar solid oxide fuel cell stack," Journal of Power Sources, vol. 49, pp. 333-348, 1994.
    [42] E. Achenbach, "Response of a solid oxide fuel cell to load change," Journal of Power Sources, vol. 57, pp. 105-109, 1995.
    [43] J. R. Ferguson, J. M. Fiard, and R. Herbin, "Three-dimensional numerical simulation for various geometries of solid oxide fuel cells," Journal of Power Sources, vol. 58, pp. 109-122, 1996.
    [44] A. L. Dicks, "Advances in catalysts for internal reforming in high temperature fuel cells," Journal of Power Sources, vol. 71, pp. 111-122, 1998.
    [45] R. Fellows, "A novel configuration for direct internal reforming stacks," Journal of Power Sources, vol. 71, pp. 281-287, 1998.
    [46] S. P. S. Badwal and K. Foger, "Solid oxide electrolyte fuel cell review," Ceramics International, vol. 22, pp. 257-265, 1996.
    [47] J. P. P. Huijsmans, "Ceramics in solid oxide fuel cells," Current Opinion in Solid State and Materials Science, vol. 5, pp. 317-323, 2001.
    [48] O. Yamamoto, "Solid oxide fuel cells: fundamental aspects and prospects," Electrochimica Acta, vol. 45, pp. 2423-2435, 2000.
    [49] A. V. Virkar, J. Chen, C. W. Tanner, and J.-W. Kim, "The role of electrode microstructure on activation and concentration polarizations in solid oxide fuel cells," Solid State Ionics, vol. 131, pp. 189-198, 2000.
    [50] N. Nakagawa, H. Sagara, and K. Kato, "Catalytic activity of Ni-YSZ-CeO2 anode for the steam reforming of methane in a direct internal-reforming solid oxide fuel cell," Journal of Power Sources, vol. 92, pp. 88-94, 2001.
    [51] E. Ram?r?ez-Cabrera, A. Atkinson, and D. Chadwick, "Catalytic steam reforming of methane over Ce0.9Gd0.1O2-x," Applied Catalysis B: Environmental, vol. 47, pp. 127-131, 2004.
    [52] H. Yakabe, T. Ogiwara, M. Hishinuma, and I. Yasuda, "3-D model calculation for planar SOFC," Journal of Power Sources, vol. 102, pp. 144-154, 2001.
    [53] S. H. Chan, K. A. Khor, and Z. T. Xia, "A complete polarization model of a solid oxide fuel cell and its sensitivity to the change of cell component thickness," Journal of Power Sources, vol. 93, pp. 130-140, 2001.
    [54] K. P. Recknagle, R. E. Williford, L. A. Chick, D. R. Rector, and M. A. Khaleel, "Three-dimensional thermo-fluid electrochemical modeling of planar SOFC stacks," Journal of Power Sources, vol. 113, pp. 109-114, 2003.
    [55] T. Ota, M. Koyama, C.-j. Wen, K. Yamada, and H. Takahashi, "Object-based modeling of SOFC system: dynamic behavior of micro-tube SOFC," Journal of Power Sources, vol. 118, pp. 430-439, 2003.
    [56] S. Nagata, A. Momma, T. Kato, and Y. Kasuga, "Numerical analysis of output characteristics of tubular SOFC with internal reformer," Journal of Power Sources, vol. 101, pp. 60-71, 2001.
    [57] L. Petruzzi, S. Cocchi, and F. Fineschi, "A global thermo-electrochemical model for SOFC systems design and engineering," Journal of Power Sources, vol. 118, pp. 96-107, 2003.
    [58] H. Zhu and R. J. Kee, "A general mathematical model for analyzing the performance of fuel-cell membrane-electrode assemblies," Journal of Power Sources, vol. 117, pp. 61-74, 2003.
    [59] P. Costamagna and K. Honegger, "Modeling of solid oxide heat exchanger integrated stacks and simulation at high fuel utilization," Journal of the Electrochemical Society, vol. 145, pp. 3995-4007, Nov 1998.
    [60] P. Costamagna, A. Selimovic, M. Del Borghi, and G. Agnew, "Electrochemical model of the integrated planar solid oxide fuel cell (IP-SOFC)," Chemical Engineering Journal, vol. 102, pp. 61-69, 2004.
    [61] P. Aguiar, D. Chadwick, and L. Kershenbaum, "Modelling of an indirect internal reforming solid oxide fuel cell," Chemical Engineering Science, vol. 57, pp. 1665-1677, 2002.
    [62] P. Aguiar, C. S. Adjiman, and N. P. Brandon, "Anode-supported intermediate temperature direct internal reforming solid oxide fuel cell. I: model-based steady-state performance," Journal of Power Sources, vol. 138, pp. 120-136, 2004.
    [63] P. Aguiar, C. S. Adjiman, and N. P. Brandon, "Anode-supported intermediate-temperature direct internal reforming solid oxide fuel cell: II. Model-based dynamic performance and control," Journal of Power Sources, vol. 147, pp. 136-147, 2005.
    [64] R. A. George, "Status of tubular SOFC field unit demonstrations," Journal of Power Sources, vol. 86, pp. 134-139, 2000.
    [65] S. E. Veyo, L. A. Shockling, J. T. Dederer, J. E. Gillett, and W. L. Lundberg, "Tubular Solid Oxide Fuel Cell/Gas Turbine Hybrid Cycle Power Systems: Status," Journal of Engineering for Gas Turbines and Power, vol. 124, pp. 845-849, 2002.
    [66] S. E. Veyo, S. D. Vora, K. P. Litzinger, and W. L. Lundberg, "Status of pressurized SOFC/GAS turbine power system development at Siemens Westinghouse," in American Society of Mechanical Engineers, International Gas Turbine Institute, Turbo Expo (Publication) IGTI, Amsterdam, 2002, pp. 823-829.
    [67] M. C. Williams, J. Strakey, and W. Sudoval, "U.S. DOE fossil energy fuel cells program," Journal of Power Sources, vol. 159, pp. 1241-1247, 2006.
    [68] A. Traverso, A. Massardo, R. A. Roberts, J. Brouwer, and S. Samuelsen, "Gas Turbine Assessment for Air Management of Pressurized SOFC/GT Hybrid Systems," Journal of Fuel Cell Science and Technology, vol. 4, pp. 373-383, 2007.
    [69] P. Costamagna, L. Magistri, and A. F. Massardo, "Design and part-load performance of a hybrid system based on a solid oxide fuel cell reactor and a micro gas turbine," Journal of Power Sources, vol. 96, pp. 352-368, 2001.
    [70] O. Grillo, L. Magistri, and A. F. Massardo, "Hybrid systems for distributed power generation based on pressurisation and heat recovering of an existing 100 kW molten carbonate fuel cell," Journal of Power Sources, vol. 115, pp. 252-267, 2003.
    [71] M. L. Ferrari, A. Traverso, L. Magistri, and A. F. Massardo, "Influence of the anodic recirculation transient behaviour on the SOFC hybrid system performance," Journal of Power Sources, vol. 149, pp. 22-32, 2005.
    [72] M. L. Ferrari, E. Liese, D. Tucker, L. Lawson, A. Traverso, and A. F. Massardo, "Transient Modeling of the NETL Hybrid Fuel Cell/Gas Turbine Facility and Experimental Validation," Journal of Engineeringfor Gas Turbines and Power, vol. 129, pp. 1012-1019, 2007.
    [73] L. Magistri, M. Bozzolo, O. Tarnowski, G. Agnew, and A. F. Massardo, "Design and Off-Design Analysis of a MW Hybrid System Based on Rolls-Royce Integrated Planar Solid Oxide Fuel Cells," Journal of Engineering for Gas Turbines and Power, vol. 129, pp. 792-797, 2007.
    [74] M. Shelton, I. Celik, E. Liese, D. Tucker, and L. Lawson, "A transient model of a hybrid fuel cell/gas turbine test facility using Simulink," in Proceedings of the ASME Turbo Expo, Reno-Tahoe, NV, 2005, pp. 213-220.
    [75] M. Shelton, I. Celik, E. Liese, and D. Tucker, "A study in the process modeling of the startup of fuel cell/gas turbine hybrid systems," in Proceedings of the ASME Turbo Expo, Reno-Tahoe, NV, 2005, pp. 201-211.
    [76] D. Tucker, L. Lawson, R. Gemmen, and R. Dennis, "Evaluation of hybrid fuel cell turbine system startup with compressor bleed," in Proceedings of the ASME Turbo Expo, Reno-Tahoe, NV, 2005, pp. 333-341.
    [77] M. Pascenti, L. Magistri, M. L. Ferrari, and A. F. Massardo, "Micro gas turbine based test RIG for hybrid system emulation," in Proceedings of the ASME Turbo Expo, Montreal, Que., 2007, pp. 7-15.
    [78] F. Mueller, F. Jabbari, J. Brouwer, R. Roberts, T. Junker, and H. Ghezel-Ayagh, "Control Design for a Bottoming Solid Oxide Fuel Cell Gas Turbine Hybrid System," Journal of Fuel Cell Science and Technology, vol. 4, pp. 221-230, 2007.
    [79] R. Roberts, J. Brouwer, F. Jabbari, T. Junker, and H. Ghezel-Ayagh, "Control design of an atmospheric solid oxide fuel cell/gas turbine hybrid system: Variable versus fixed speed gas turbine operation," Journal of Power Sources, vol. 161, pp. 484-491, 2006.
    [80] R. A. Roberts, J. Brouwer, E. Liese, and R. S. Gemmen, "Dynamic Simulation of Carbonate Fuel Cell-Gas Turbine Hybrid Systems," Journal of Engineering for Gas Turbines and Power, vol. 128, pp. 294-301, 2006.
    [81] R. A. Roberts, J. Brouwer, E. Liese, and R. S. Gemmen, "Development of controls for dynamic operation of carbonate fuel cell-gas turbine hybrid systems," in Proceedings of the ASME Turbo Expo, Reno-Tahoe, NV, 2005, pp. 325-331.
    [82] F. Calise, M. Dentice d' Accadia, L. Vanoli, and M. R. von Spakovsky, "Full load synthesis/design optimization of a hybrid SOFC-GT power plant," Energy, vol. 32, pp. 446-458, 2007.
    [83] C. J. Steffen Jr, J. E. Freeh, and L. M. Larosiliere, "Solid oxide fuel cell/gas turbine hybrid cycle technology for auxiliary aerospace power," in Proceedings of the ASME Turbo Expo, Reno-Tahoe, NV, 2005, pp. 253-260.
    [84] X. Zhang, J. Li, G. Li, and Z. Feng, "Dynamic modeling of a hybrid system of the solid oxide fuel cell and recuperative gas turbine," Journal of Power Sources, vol. 163, pp. 523-531, 2006.
    [85] C. Stiller, B. Thorud, O. Bolland, R. Kandepu, and L. Imsland, "Control strategy for a solid oxide fuel cell and gas turbine hybrid system," Journal of Power Sources, vol. 158, pp. 303-315, 2006.
    [86] R. Kandepu, L. Imsland, B. A. Foss, C. Stiller, B. Thorud, and O. Bolland, "Modeling and control of a SOFC-GT-based autonomous power system," Energy, vol. 32, pp. 406-417, 2007.
    [87] F. Mueller, J. Brouwer, F. Jabbari, and S. Samuelsen, "Dynamic Simulation of an Integrated Solid Oxide Fuel Cell System Including Current-Based Fuel Flow Control," Journal of Fuel Cell Science and Technology, vol. 3, pp. 144-154, 2006.
    [88] F. Mueller, F. Jabbari, R. Gaynor, and J. Brouwer, "Novel solid oxide fuel cell system controller for rapidload following," Journal of Power Sources, vol. 172, pp. 308-323, 2007.
    [89] T. Kaneko, J. Brouwer, and G. S. Samuelsen, "Power and temperature control of fluctuating biomass gas fueled solid oxide fuel cell and micro gas turbine hybrid system," Journal of Power Sources, vol. 160, pp. 316-325, 2006.
    [90] Y. Inui, N. Ito, T. Nakajima, and A. Urata, "Analytical investigation on cell temperature control method of planar solid oxide fuel cell," Energy Conversion and Management, vol. 47, pp. 2319-2328, 2006.
    [91] J. S. Yang, J. L. Sohn, and S. T. Ro, "Performance characteristics of a solid oxide fuel cell/gas turbine hybrid system with various part-load control modes," Journal of Power Sources, vol. 166, pp. 155-164, 2007.
    [92] J. S. Yang, J. L. Sohn, and S. T. Ro, "Performance characteristics of part-load operations of a solid oxide fuel cell/gas turbine hybrid system using air-bypass valves," Journal of Power Sources, vol. 175, pp. 296-302, 2008.
    [93] W. Burbank Jr, D. D. Witmer, and F. Holcomb, "Model of a novel pressurized solid oxide fuel cell gas turbine hybrid engine," Journal of Power Sources, In Press, Corrected Proof.
    [94] H. Uchida, H. Suzuki, and M. Watanabe, "High-Performance Electrode for Medium-Temperature Solid Oxide Fuel Cells," Journal of The Electrochemical Society, vol. 145, pp. 615-620, 1998.
    [95] R. M. Ormerod, "Solid oxide fuel cells," Chemical Society Reviews, vol. 32, pp. 17 - 28, 2003.
    [96] N. Q. Minh, "Ceramic fuel cells," Journal of the American Ceramic Society, vol. 76, pp. 563-588, 1993.
    [97] P. Vernoux, J. Guindet, and M. Kleitz, "Gradual Internal Methane Reforming in Intermediate-Temperature Solid-Oxide Fuel Cells," Journal of The Electrochemical Society, vol. 145, pp. 3487-3492, 1998.
    [98] G. Pudmich, W. Jungen, and F. Tietz, in Solid oxide fuel cells VI. vol. 99-19 Pennington, NJ: The Electrochemical Society, 1999, pp. 577-582.
    [99] P. Vernoux, M. Guillodo, J. Fouletier, and A. Hammou, "Alternative anode material for gradual methane reforming in solid oxide fuel cells," Solid State Ionics, vol. 135, pp. 425-431, 2000.
    [100] B. C. H. Steele, I. Kelly, H. Middleton, and R. Rudkin, "Oxidation of methane in solid state electrochemical reactors," Solid State Ionics, vol. 28-30, pp. 1547-1552, 1988.
    [101] P. E. Murray, T. Tsai, and S. A. Barnett, "A direct-methane fuel cell with a ceria-based anode," Nature, vol. 400, pp. 649-651, 1999.
    [102] E. P. Murray, M. J. Sever, and S. A. Barnett, "Electrochemical performance of (La,Sr)(Co,Fe)O3-(Ce,Gd)O3 composite cathodes," Solid State Ionics, vol. 148, pp. 27-34, 2002.
    [103] S. Park, R. Craciun, J. M. Vohs, and R. J. Gorte, "Direct Oxidation of Hydrocarbons in a Solid Oxide Fuel Cell: I. Methane Oxidation," Journal of The Electrochemical Society, vol. 146, pp. 3603-3605, 1999.
    [104]汪寿建,天然气综合利用技术.北京:化学工业出版社, 2003.
    [105]刘镜运,合成气工艺技术与设计手册.北京:化学工业出版社, 2002.
    [106]宋世谟等,物理化学.北京:高等教育出版社, 1992.
    [107] K. Hou and R. Hughes, "The kinetics of methane steam reforming over a Ni/α-Al2O catalyst," Chemical Engineering Journal, vol. 82, pp. 311-328, 2001.
    [108] I. M. Bodrov, L. O. Apel'baum, and M. I. Temkin, "Kinetics for the reaction of methane with steam on a nickel surface " Kinetika i Kataliz (Kinetics and Catalysis), vol. 5, pp. 696-705, 1964.
    [109] I. M. Bodrov, L. O. Apel'baum, and M. I. Temkin, "Kinetics of the reaction between methane and water vapor catalyzed by nickel on a porous support," Kinetika i Kataliz vol. 8, pp. 821-828, 1967.
    [110] I. M. Bodrov, L. O. Apel'baum, and M. I. Temkin, "Kinetics of the reaction between methane and water vapor on a nickel surface at 400 to 600.deg. ," Kinetika i Kataliz vol. 9, pp. 1065-1071 1968.
    [111] J. R. Rostrup-Nielsen, "Sulfur-passivated nickel catalysts for carbon-free steam reforming of methane," Journal of Catalysis, vol. 85, pp. 31-43, 1984.
    [112] D. Hart, "A solid start to the millennium?," Chemistry and Industry (London), pp. 344-347, 1998.
    [113] H. S. Spacil, US Patent 3558360, filed October 30, 1964, modified November 2, 1967, granted March 31, 1970.
    [114] J. H. Lee, H. Moon, H. W. Lee, J. Kim, J. D. Kim, and K. H. Yoon, "Quantitative analysis of microstructure and its related electrical property of SOFC anode, Ni-YSZ cermet," Solid State Ionics, vol. 148, pp. 15-26, 2002.
    [115] K. D. Pointon, "Review of work on internal reforming in the solid oxide fuel cell," ETSU report F/01/00121/REP, 1997.
    [116] W. Jiang, R. Fang, J. A. Khan, and R. A. Dougal, "Parameter setting and analysis of a dynamic tubular SOFC model," Journal of Power Sources, vol. 162, pp. 316-326, 2006.
    [117] P. Holtappels, L. G. J. De Haart, U. Stimming, I. C. Vinke, and M. Mogensen, "Reaction of CO/CO2 gas mixtures on Ni–YSZ cermet electrodes," Journal of Applied Electrochemistry, vol. 29, pp. 561-568, 1999.
    [118] M. A. Khaleel, Z. Lin, P. Singh, W. Surdoval, and D. Collin, "A finite element analysis modeling tool for solid oxide fuel cell development: coupled electrochemistry, thermal and flow analysis in MARC," Journal of Power Sources, vol. 130, pp. 136-148, 2004.
    [119] T. Yamamura, H. Tagawa, T. Saito, J. Mizusaki, K. Kamitani, K. Hirano, S. Ehara, T. Tagaki, Y. Hishinuma, H. Sasaki, T. Sogi, Y. Nakamura, and K. Hashimoto, "Solid Oxide Fuel Cells (SOFC-IV)," in The Electrochemical Society Proceedings Series PV 95-1, 2nd ed, M. Dokiya, O. Yamamoto, H. Tagawa, and S. C. Singhal, Eds., 1995, p. 741.
    [120] M. Mogensen and T. Lindegaard, "Solid Oxide Fuel Cells (SOFC-III)," in The Electrochemical Society Poceedings Series PV 93-4, 2nd ed, S. C. Singhal and H. Iwahara, Eds., 1993, p. 484.
    [121] F. Calise, M.D. d'Accadia, A. Palombo, and L. Vanoli, "Simulation and exergy analysis of a hybrid Solid Oxide Fuel Cell (SOFC)-Gas Turbine System," Energy, vol. 31, pp. 3278-3299, 2006.
    [122] R.C. Reid, J.M. Prausnitz, and B.E. Poling, The Properties of Gases and Liquids, 4th ed. New York: McGraw Hill, 1988.
    [123] H. K. Versteeg and W. Malalasekera, An Introduction to Computational Fluid Dynamics: The Finite Volume Method Approach. New York: Longman Scientific & Technical, 1995.
    [124] J. C.-P. Wang and R. Datta, "Application of the Dusty-Gas Model to transport controlled thermal decomposition of solids," Chemical Engineering Communications, vol. 40, pp. 303 - 320, 1986.
    [125] C. K. Ho and S. W. Webb, Gas Transport in Porous Media. Secaucus, NJ: Springer, 2006.
    [126] W. McCabe, J. Smith, and P. Harriott, Unit Operations of Chemical Engineering, 7th ed. New York: McGraw-Hill, 2005.
    [127] F. P. Incropera and D. P. DeWitt, Fundamentals of Heat and Mass Transfer, 3rd ed. Singapore: Wiley, 1990.
    [128] P. Wesseling, Principles of Computational Fluid Dynamics, 1st ed. New York: Springer, 2000.
    [129] J. Arriagada, P. Olausson, and A. Selimovic, "Artificial neural network simulator for SOFC performance prediction," Journal of Power Sources, vol. 112, pp. 54-60, 2002.
    [130] C. Shen, G.-Y. Cao, X.-J. Zhu, and X.-J. Sun, "Nonlinear modeling and adaptive fuzzy control of MCFC stack," Journal of Process Control, vol. 12, pp. 831-839, 2002.
    [131] F. Jurado, "A method for the identification of solid oxide fuel cells using a Hammerstein model," Journal of Power Sources, vol. 154, pp. 145-152, 2006.
    [132] F. Jurado, "Predictive control of solid oxide fuel cells using fuzzy Hammerstein models," Journal of Power Sources, vol. 158, pp. 245-253, 2006.
    [133] E. Entchev and L. Yang, "Application of adaptive neuro-fuzzy inference system techniques and artificial neural networks to predict solid oxide fuel cell performance in residential microgeneration installation," Journal of Power Sources, vol. 170, pp. 122-129, 2007.
    [134] J. Milewski and K. Swirski, "Modelling the SOFC behaviours by artificial neural network," International Journal of Hydrogen Energy, vol. 34, pp. 5546-5553, 2009.
    [135] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, "Learning Internal Representation by Error Propagation," in Parallel Distributed Processing, D. E. Rumelhart and J. L. McClelland, Eds. Cambridge, MA: MIT press, 1986.
    [136] R. Arisawa and J. Watada, "Enhanced back-propagation learning and its application to business evaluation," in Proceeding of IEEE International Conference on Neural Networks, 1994, pp. 155-160.
    [137] L. C. Agba and J. H. Tucker, "An enhanced backpropagation training algorithm," in Proceeding of IEEE International Conference on Neural Networks, 1995, pp. 2816-2820.
    [138] Q. Zhang and A. Benveniste, "Wavelet networks," IEEE Transactions on Neural Networks, vol. 3, pp. 889-898, 1992.
    [139] Q. Zhang, "Using wavelet network in nonparametric estimation," IEEE Transactions on Neural Networks, vol. 8, pp. 227-236, 1997.
    [140] Y. Oussar, I. Rivals, L. Personnaz, and G. Dreyfus, "Training wavelet networks for nonlinear dynamic input-output modeling," Neurocomputing, vol. 20, pp. 173-188, 1998.
    [141] C. K. Chui, An Introduction to Wavelets. New York: Academic Press, 1992.
    [142] S. Mallat, A Wavelet Tour of Signal Processing, 2nd ed. San Diego: Academic Press, 1999.
    [143] L. Cao, Y. Hong, H. Fang, and G. He, "Predicting chaotic time series with wavelet networks," Physica D: Nonlinear Phenomena, vol. 85, pp. 225-238, 1995.
    [144] S. Yao, C. J. Wei, and Z. Y. He, "Evolving wavelet neural networks for function approximation," Electronics Letters, vol. 32, p. 360, 1996.
    [145] R. Tabaraki, T. Khayamian, and A. A. Ensafi, "Wavelet neural network modeling in QSPR for prediction of solubility of 25 anthraquinone dyes at different temperatures and pressures in supercritical carbon dioxide," Journal of Molecular Graphics and Modelling, vol. 25, pp. 46-54, 2006.
    [146] J. M. Gutiérrez, A. Gutés, F. Céspedes, M. del Valle, and R. Mu?oz, "Wavelet neural networks to resolve the overlapping signal in the voltammetric determination of phenolic compounds," Talanta, vol. 76, pp. 373-381, 2008.
    [147] G. B. Arfken and H. J. Weber, Mathematical Methods for Physicists, 5th ed. San Diego: Harcourt/Academic Press, 2001.
    [148] F.-J. Lin, P.-H. Shen, and Y.-S. Kung, "Adaptive wavelet neural network control for linear synchronous motor servo drive," IEEE Transactions on Magnetics, vol. 41, pp. 4401-4412, 2005.
    [149] T. Q. Huynh and R. Setiono, "Effective neural network pruning using cross-validation," in 2005 IEEEInternational Joint Conference on Neural Networks, Montreal, Canada, 2005, pp. 972-977.
    [150] C. M. Fonseca and P. J. Fleming, "An overview of evolutionary algorithms in multiobjective optimization," Evolutionary Computation, vol. 3, pp. 1-16, 1995.
    [151] E. Zitzler and L. Thiele, "Multiobjective evolutionary algorithms: a comparative case study and the strength Pareto approach," IEEE Transactions on Evolutionary Computation, vol. 3, pp. 257-271, 1999.
    [152] D. DasGupta, Artficial Immune Systems and Their Applications. New York: Springer-Verlag, 1998.
    [153] L. N. de Castro and F. J. Von Zuben, "Learning and optimization using the clonal selection principle," IEEE Transactions on Evolutionary Computation, vol. 6, pp. 239-251, 2002.
    [154] L. N. de Castro and F. J. Von Zuben, "Artificial Immune Systems: Part I - Basic Theory and Applications," Technical Report–RT DCA 01/99, 1999.
    [155] L. N. de Castro and F. J. Von Zuben, "Artificial Immune Systems: Part II - A Survey of Applications," Technical Report - RT DCA 02/00, 2000.
    [156] C. A. Coello Coello and N. Cruz Cortes, "An approach to solve multiobjective optimization problems based on an artificial immune system," in First International Conference on Artificial Immune Systems (ICARIS), Canterbury, UK, 2002, pp. 212-221.
    [157] K. C. Tan, T. H. Lee, and E. F. Khor, "Evolutionary algorithms with dynamic population size and local exploration for multiobjective optimization," IEEE Transactions on Evolutionary Computation,, vol. 5, pp. 565-588, 2001.
    [158] D. R. Thompson and G. L. Bilbro, "Sample-sort simulated annealing," IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, vol. 35, pp. 625-632, 2005.
    [159] S. J. Yoo, J. B. Park, and Y. H. Choi, "Indirect adaptive control of nonlinear dynamic systems using self recurrent wavelet neural networks via adaptive learning rates," Information Sciences, vol. 177, pp. 3074-3098, 2007.
    [160] T. Yabuta and T. Yamada, "Learning control using neural networks," in IEEE International Conference on Robotics and Automation, 1991, pp. 740-745.
    [161]郭正榘,燃气轮机自动控制系统设计.北京:机械工业出版社, 1986.
    [162] A. Traverso, A. F. Massardo, and R. Scarpellini, "Externally Fired micro-Gas Turbine: Modelling and experimental performance," Applied Thermal Engineering, vol. 26, pp. 1935-1941, 2006.
    [163] D. Brewer, "HSR/EPM combustor materials development program," Materials Science and Engineering A, vol. 261, pp. 284-291, 1999.
    [164] J. Kurzke, Compressor and Turbine Maps for Gas Turbine Performance Computer Programs - Component Map Collection vol. 2. Dachau, Germany, 2004.
    [165] C. Stiller, "Design, operation, and control modeling of SOFC/GT hybrid system." PhD Norway: Norwegian University of Science and Technology, 2006, p. 132.
    [166]陈启梅, "MCFC/GT混合动力系统非线性特性的协调控制研究."博士上海:上海交通大学, 2007.
    [167]李士勇,模糊控制·神经控制和智能控制论.哈尔滨:哈尔滨工业大学出版社, 1996.
    [168]李少远,智能控制.北京:机械工业出版社, 2005.
    [169] T. Takagi and M. Sugeno, "Fuzzy identification of Systems and its applications to modeling and control," IEEE Transactions on Systems, Man and Cybernetics, vol. 15, pp. 116-132, 1985.
    [170]李少远,复杂系统的模糊预测控制及其应用.北京:科学出版社, 2003.
    [171]席裕庚,预测控制.北京:国防工业出版社, 1993.
    [172]邵惠鹤,工业过程高级控制.上海:上海交通大学出版社, 1997.
    [173] J. Richalet, A. Rault, J. L. Testud, and J. Papon, "Model predictive heuristic control : Applications to industrial processes," Automatica, vol. 14, pp. 413-428, 1978.
    [174] R. Rouhani and R. K. Mehra, "Model algorithmic control (MAC); basic theoretical properties," Automatica, vol. 18, pp. 401-414, 1982.
    [175] C. R. Cutler and B. L. Ramaker, "Dynamic Matrix Control - A Computer Control Algorithm," in Joint Automatic Control Conference San Francisco, CA, 1980.
    [176] D. W. Clarke, C. Mohtadi, and P. S. Tuffs, "Generalized predictive control--Part I. The basic algorithm," Automatica, vol. 23, pp. 137-148, 1987.
    [177] D. W. Clarke, C. Mohtadi, and P. S. Tuffs, "Generalized predictive control--Part II Extensions and interpretations," Automatica, vol. 23, pp. 149-160, 1987.
    [178] D. W. Clarke, "Application of generalized predictive control to industrial processes," IEEE Control Systems Magazine, vol. 8, pp. 49-55, 1988.
    [179] D. W. Clarke and C. Mohtadi, "Properties of generalized predictive control," Automatica, vol. 25, pp. 859-875, 1989.
    [180] F. Allg?wer and A. Zheng, Nonlinear Model Predictive Control. New York: Springer, 2000.
    [181] D. Clarke, "Advances in Model-Based Predictive Control," Oxford: Oxford Science Publications, 1994.
    [182] S. J. Norquay, A. Palazoglu, and J. A. Romagnoli, "Application of Wiener model predictive control (WMPC) to a pH neutralization experiment," IEEE Transactions on Control Systems Technology,, vol. 7, pp. 437-445, 1999.
    [183] H. Al-Duwaish and W. Naeem, "Nonlinear model predictive control of Hammerstein and Wiener models using genetic algorithms," in IEEE International Conference on Control Applications, Mexico City, Mexico, 2001.
    [184] Y. Tan and R. De Keyser, "Neural Networks Based Adaptive Predictive Control," in Proceedings of Advances in Model-Based Predictive Control Conference, D. Clarke, Ed. Oxford, England, 1994.
    [185] S. J. Yoo, Y. H. Choi, and J. B. Park, "Generalized predictive control based on self-recurrent wavelet neural network for stable path tracking of mobile robots: adaptive learning rates approach," IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 53, pp. 1381-1394, 2006.
    [186] M. Karrari and O. P. Malik, "Identification of synchronous generators using adaptive wavelet networks," International Journal of Electrical Power & Energy Systems, vol. 27, pp. 113-120, 2005.
    [187] C. L. Lin, N. C. Shieh, and P. C. Tung, "Robust wavelet neuro control for linear brushless motors," IEEE Transactions on Aerospace and Electronic Systems, vol. 38, pp. 918-932, 2002.
    [188] R.-J. Wai, "Robust control for nonlinear motor-mechanism coupling system using wavelet neural network," IEEE Transactions on Systems, Man, and Cybernetics, Part B-Cybernetics, vol. 33, pp. 489-497, 2003.
    [189] C.-H. Lin and C.-H. Wang, "Adaptive wavelet networks for power-quality detection and discrimination in a power system," IEEE Transactions on Power Delivery, vol. 21, pp. 1106-1113, 2006.
    [190] C. C. Ku and K. Y. Lee, "Diagonal recurrent neural networks for dynamic systems control," IEEE Transactions on Neural Networks, vol. 6, pp. 144-156, 1995.
    [191] Y.-H. Kim and S.-S. Kim, "An electrical modeling and fuzzy logic control of a fuel cell generation system," IEEE Transactions on Energy Conversion, vol. 14, pp. 239-244, 1999.
    [192] J. O. Schumacher, P. Gemmar, M. Denne, M. Zedda, and M. Stueber, "Control of miniature proton exchange membrane fuel cells based on fuzzy logic," Journal of Power Sources, vol. 129, pp. 143-151, 2004.