莲野生居群遗传多样性评价及高密度遗传连锁图谱的构建
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
遗传连锁图谱是系统进行基因组学和数量性状位点研究的基础。莲集观赏、食用及药用功能于一身,具有极高的经济价值,但在莲的分子遗传连锁图谱研究方面,至今未见相关研究成果发表。基于以上研究背景,本文利用SSR分子标记对来源于中国、泰国和美国的莲野生居群进行了遗传多样性及进化关系分析;根据莲居群遗传多样性分析的结果,选择具有较高DNA序列多态性且遗传背景差异较大的中国莲种质‘中国古代莲’和美洲黄莲种质‘AL1’作为亲本,并利用RAD-seq技术快速检测亲本及其F1分离群体的SNP基因分型,首次构建了莲的高密度遗传连锁图谱。
     1莲野生居群遗传多样性评价
     1.1莲属植物物种水平上的遗传多样性较高(I=0.95、He=0.50和PIC=0.46),可能与该物种具有的独特进化历史有关。但其居群水平上的遗传多样性却相对较低(I=0.26、He=0.20和PIC=-0.14),其原因可能是:一、适生生境遭到破坏,导致莲野生居群的分布范围及种群数量大大缩减乃至部分消失;二、由于人为干扰导致了莲生存生境的片段化和居群分布的间断化。同时生境片断化后居群间地理距离的增加会进一步阻断居群间的基因流;三、莲本身繁育系统的特殊性也是造成其居群水平上遗传多样性较低的主要原因。
     1.2来源于美国的2个美洲黄莲居群、黑龙江省的7中国莲居群和泰国的2个泰国莲居群野生种质间的遗传关系为:泰国莲与美洲黄莲居群间的亲缘关系最远,中国莲与美洲黄莲居群间的亲缘关系居中,而泰国莲与中国莲居群之间的亲缘关系最近。并且美洲黄莲与亚洲莲居群在遗传相似系数(GS)为0.14处以100%靴带支持率分化为两支,表明两者间的遗传差异较大。
     1.3支持莲属2个物种的独立分类地位。虽然来自于化石的证据、叶绿体基因rbcL和核糖体DNA ITS区序列的高同源性、染色体及血清学反应的同源性等显示,美洲黄莲和亚洲莲的亲缘关系较近。但两者被太平洋隔离的地理分布格局、一定的杂交生殖障碍、居群间较远的遗传距离及显著的遗传分化变异,再加上植株形态特征的显著不同及其F1植株的自交不结实现象,本文支持莲属2个物种的独立分类地位。
     1.4对莲野生居群的保护建议采取下列措施:一、对居群间遗传分化较大的7个中国莲和2个美洲黄莲居群,及遗传多样性相对较高的泰国莲居群THL1实施就地保护;二、在对野生莲进行就地保护的同时,应尽量避免引入栽培莲品种;三、迁地保护。建议采集种子以达到保育尽可能多的居群遗传多样性的目的。
     2莲高密度遗传连锁图谱的构建
     2.1构建了莲的遗传连锁框架图谱。母本‘中国古代莲’的图谱包括8个连锁群,共32个标记,覆盖基因组长度362.52cM,标记间平均图距为11.33cM,连锁群平均长度为45.315cM;父本美洲黄莲‘AL1’的图谱包括11个连锁群,共137个标记,覆盖基因组长度495.37cM,标记间平均图距3.62cM,连锁群平均长度为45.03cM。
     2.2RAD-seq技术是快速获得大量SNP标记的一条有效途径。本研究以‘中国古代莲’的全基因组序列为参考,利用RAD-seq技术分析亲本与分离群体不同单株的SNP标记基因型,共获得了适合图谱构建的6622个SNP多态性标记。
     2.3构建了美洲黄莲‘AL1’的高密度遗传连锁图谱。以SSR遗传连锁框架图谱为基础,利用SNP标记构建了一张由1515个标记组成的10个连锁群的高密度遗传图谱。该图谱覆盖基因组长度563.6cM,平均图距为0.38cM。每个连锁群上的标记数介于95-194之间,长度为39.9-83.8cM。
     2.4RAD标记是加密图谱和构建高密度遗传连锁图谱的优势分子标记。本文利用RAD标记构建的遗传图谱与莲SSR标记连锁框架图谱相比,总容量增加了1378个标记,总图距增加了68.23cM,标记间平均图距缩小了3.24cM。
     2.5本文中不同连锁群上偏分离标记的分布是不均匀的,LG5、LG7和LG9上无偏分离标记,LG3、LG8和LG10上仅有2-3个偏分离标记,而LG1(21)、LG2(19)、LG4(80)和LG6(127)上分布较多,并且LG4和LG6上存在偏分离标记聚集现象。其原因可能是:一、为了增加群体的多态性,采用亲缘关系相对较远的‘中国古代莲’和美洲黄莲‘AL1’作为亲本。亲本间较远的遗传背景差异导致杂种染色体的配对和重组行为受到不同程度的影响,从而使连锁位点间的重组率降低而最终导致偏分离;二、作图群体亲本之一‘中国古代莲’杂合性较低;三、作图群体较小(80个F1单株)也有可能加重偏分离情况。
Researches on genetic diversity of Nelumbo are mainly focused on Chinese lotus with abundant variety resources. About the evaluation of genetic diversity among natural populations of American lotus, Thai lotus and Chinese lotus, few reports was involved. Construction of a genetic linkage map is a powerful research tool for studies on plant genetics and analysis of quantitative trait loci (QTL) underlying traits of economic importance, however, little progress on the genomic constitution of Nelumbo species has been reported. In this studies, genetic diversity and the evolutionary relationship among wild lotus populations in its main distribution area are analyzed. And based on an F1population derived from a cross between Nelumbo nucifera'China Antique' and Nelumbo lutea'AL1', a high-density genetic linkage map of lotus has been constructed using SSR and SNP markers which are discovered by restriction site associated DNA sequencing (RAD-Seq). The main results are as follows:
     1Assessment of genetic diversity among wild lotus populations
     1.1Wild lotus had a high genetic diversity at species level (I=0.95, He=50and PIC=0.46), and a unique evolutionary history of lotus was likely to be the reason for this. However, a low genetic diversity was revealed at population level. And three possible factors might contribute to the low genetic diversity within populations. Firstly, habitat destruction resulted in the reducing or loss of distribution area and population numbers of wild lotus. Secondly, the natural habitats of wild lotus had become fragmented and isolated, which increased the geographical distance and blocked gene flow between populations. Finally, the specificity of lotus' breeding system was the main reason for its low genetic diversity.
     1.2The populations from N. lutea were separated from those from N. nucifera at a similarity coefficient of0.14with the bootstrap of100%, which confirmed that N. lutea and N. nucifera were genetically distinct. And the ranks of genetic distance between lotus populations are AmL&ThL> AmL&ChL> ThL&ChL. The population AmL was related more closely with the population ChL than with the population ThL.
     1.3The paper supported that N. nucifera and N. lutea are the two independent species of Nelumbo. According to the fossil evidence, very high similarity of rbcL gene and nuclear DNA ITS sequence, high homology in serological reaction and chromosome analysis, N. nucifera and N. lutea were considered as one species. But on the basis of the facts that N. nucifera and N. lutea were separated by Pacific, and had a certain barrier of reproductive isolation, greater genetic distance, significant genetic variation, divergence in plant traits and the self-imcompatibility of F1plants, the author supported that N. nucifera and N. lutea are two independent species of Nelumbo.
     1.4Some actions about the protection of lotus population are suggested as follows. Firstly, try to protect the natural habitats of wild lotus from damage. Second, it is imperative to preserve in situ all the populations surveyed to conserve genetic diversity and evolutionary processes. Finally, ex situ conservation could also be applied because of the low genetic diversity within populations. And seeds and rhizomes could be harvested for ex situ conservation.
     2Construction of a high-density genetic linkage map of lotus
     2.1A framework map of lotus was constructed. The map for female parent N. nucifera 'China Antique' was362.52cM with32markers distributed in eight linkage groups. The mean genetic distance between markers was11.33cM and the mean length of linkage group was45.315cM. The map for male parent N. lutea 'AL1' was495.37cM with137markers distributed in11linkage groups. The mean genetic distance between markers was3.62cM and the average length of linkage group was45.03cM.
     2.2RAD-seq technology was an effective way to discover rapidly thousands of SNP markers. In line with the reference genomes of N. nucifera'China Antique', we identified6622potential SNP markers for lotus map construction using high-throughput genotyping of F1population of RAD system.
     2.3A high-density genetic linkage map of American lotus 'AL1' was constructed on the basis of a SSR framework map. And the map mainly consisting of RAD markers was563.6cM with1515markers distributed in ten linkage groups. The average distance between markers was0.38cM. There were95to194markers per linkage group, and the genetic distance of each linkage group varied from39.9cM to83.8cM.
     2.4RAD was a powerful molecular marker of increasing marker density and extending linkage groups. In this project, compared with the framework map in common with SSR markers, the high-density map mainly consisting of RAD markers contained1378more markers and increased genetic distance of68.23cM in length, and the average distance between markers was decreased by3.24cM.
     2.5We found that marker segregation distortion was unevenly distributed on linkage groups. There were no markers deviated significantly from Mendelian segregation ratios on LG5, LG7and LG9. Two and three markers of segregation distortion were observed on LG3, LG8and LG10. Many markers on LG1(21), LG2(19), LG4(80) and LG6(127) showed moderate segregation distortion. And obvious clusters of deviated marker loci were investigated on LG4and LG6, which might be explained by the following factors:1) in order to improve the polymorphism of F1population, Nelumbo nucifera 'China Antique'and Nelumbo lutea 'AL1', diverging strongly in their geographical distributions and important morphological traits, were chosen as parents for hybridization.2) the high level of homozygosity of the female parent Nelumbo nucifera 'China Antique', which was unexpected, mainly contributed to the considerable segregation distortion in the F1population.3) the number of individuals in F1population was not very large.
引文
1.刁英.莲属(Nelumbo nucifera)植物的分子细胞遗传学研究.[硕士学位论文].武汉:武汉大学图书馆.2005.
    2. 房经贵,刘大钧,马正强.利用双杂合位点标记资料构建芒果遗传图谱.分子植物育种,2003,1:313-319.
    3.高妍,韩明玉,赵彩平,宋健.桃分子连锁图谱的构建.果树学报,2008,25:478-484.
    4.巩鹏涛,木金贵,赵金荣,王晓玲,白羊年,方宣钧.一张含有315个SSR和40个AFLP标记的大豆分子遗传图的整合.分子植物育种,2006,4:309-316.
    5.黄翠娟.梅花F1作图群体与框架分子连锁图谱的初步构建.[硕士学位论文].武汉:华中农业大学图书馆.2007.
    6.黄秀强,陈俊愉,黄国振.莲属两个种亲缘关系的初步研究.园艺学报,1992,19:164-170.
    7.刘艳玲,徐立铭,倪学明,赵家荣.睡莲科的系统发育:核糖体DNA ITS区序列证据.植物分类学报,2005,43:22-30.
    8.倪学明,於炳,周远捷,赵家荣.睡莲科的属间关系研究武汉植物学研究,1994,12:311-320.
    9.施立明,贾旭,胡志昂.遗传多样性.见:陈灵芝主编,中国的生物多样性现状及其保护.北京:科学出版社,1993,31-113.
    10.王曼玲.莲(Nelumbo nucifera)几个重要基因的克隆及其序列分析.[硕士学位论文].武汉:武汉大学图书馆.2005.
    11.王其超,张行言.中国荷花品种图志.北京:林业出版社,2005,1-9.
    12.王其超,张行言.新荷花品种图志.北京:林业出版社,2011,1.
    13.王其超,张行言,胡春根.荷花品种分类新系统.武汉植物学研究,1997,15:19-26.
    14.王兴春,杨致荣,王敏,李玮,李生才.高通量测序技术及其应用.中国生物工程杂志,2012,32(1):109-114.
    15.王永军,吴晓雷,贺超英,张劲松,陈受宜,盖钧镒.大豆作图群体检验与调整后构建的遗传图谱.中国农业科学,2003,36:1254-1260.
    16.王峥峰,彭少麟.植物保护遗传学.生态学报,2003,23:158-172.
    17.韦平和,陈维培,陈瑞阳.睡莲科的核型分析及其分类学位置的探讨.植物分类学报,1994,32:293-300.
    18.吴征镒,路安民,汤彦承等.中国被子植物科属总论.北京:科学出版社,2003,365-367.
    19.向巧彦.莲种质资源遗传多样性研究及DNA指纹图谱构建.[硕士学位论文].北京:北京林业大学图书馆.2008.
    20.肖桂青,卢向阳,田云,易克,周晓明.荷叶中生物碱类成分的研究进展.化学与生物工程,2006,23:1-2,8.
    21.许申平,刘晓荣,刘金梅,汪国平,连芳青,廖飞雄.基于AFLP分子图谱的蝴蝶兰3个叶片性状QTL分析.分子植物育种,2011,9:104-112.
    22.薛建华.黑龙江流域野生莲的遗传多样性.[博士学位论文].哈尔滨:东北林业大学图书馆.2006.
    23.杨美,付杰,向巧彦,刘艳玲.利用AFLP分子标记技术构建花莲核心种质资源.中国农业科学,2011,44:3193-3205.
    24.张行言,王其超.热带型荷花的发现与荷花品种分类系统.中国园林,2006,22:82-85.
    25.章秋平,刘威生,刘宁,张玉萍,刘硕,魏潇,刘有春.杏杂合位点共显性标记的分离方式及连锁图谱构建.园艺学报,2011,38:1983-1990.
    26. An N, Guo HB, Ke WD. Genetic variation in rhizome lotus (Nelumbo nucifera Gaertn. ssp nucifera) germplasms from China assessed by RAPD markers. Agricultural Sciences in China,2009,8:31-39.
    27. Andreas von Bubnoff. Next-generation sequencing:The race is on. Cell,2008,132: 721-723.
    28. Baird NA, Etter PD, Atwood TS, Currey MC, Shiver AL, Lewis ZA, Selker EU, Cresko WA, Johnson EA. Rapid SNP discovery and genetic mapping using sequenced RAD markers. PLoS ONE,2008,3:e3376.
    29. Balasubramanian S, Schwartz C, Singh A, Warthmann N, Kim MC, Maloof JN, Loudet O, Trainer GT, Dabi T, Borevitz JO, Chory J, Weigel D. QTL Mapping in new Arabidopsis thaliana advanced intercross-recombinant inbred lines. PLoS ONE, 2009,4:e4318.
    30. Barkman TJ, Chenery G, McNeal JR, Lyons-Weiler J, Ellisens WJ, Moore G, Wolfe AD, dePamphilis CW. Independent and combined analyses of sequences from all three genomic compartments converge on the root of flowering plant phylogeny. Proceedings of the National Academy of Sciences of the United States of America, 20009,7:13166-13171.
    31. Baxter SW, Davey JW, Johnston JS, Shelton AM, Heckel DG, Jiggins CD, Blaxter ML. Linkage mapping and comparative genomics using next-generation RAD sequencing of a non-model organism. PLoS ONE,2011,6(4):e19315.
    32. Bentley DR, Balasubramanian S, Swerdlow HP, Smith GP, Milton J, Brown CG, et al.. Accurate whole human genome sequencing using reversible terminator chemistry. Nature,2008,456:53-59.
    33. Bohn MM, Khairallah D. QTLmapping in tropical maize:Genomic region affecting leaf feeding resistance to sugarcane borer and other traits. CropSci,1996,36: 1352-1361.
    34. Borsch T, Barthlott W. Classification and distribution of the genus Nelumbo Adans. (Nelumbonaceae). Beit rge zur Biologie der Pf lanzen,1994,68:421-450.
    35. Botstein D, White RL, Skolnick M, Davis RW. Construction of a genetic linkage map in man using restriction fragment length polymorphisms. Am. J. Hum. Genet, 1980,32:314-331.
    36. Burlakova LE, Karatayev AY. The effect of invasive macrophytes and water level fluctuations on unionids in Texas impoundments. Hydrobiologia,2007,586: 291-302.
    37. Cerenak A, Satovic Z, Javornik B. Genetic mapping of hop (Humulus lupulus L.) applied to the detection of QTLs for alpha-acid content. Genome,2006,49:485-494.
    38. Chen D, Zheng X, Li G, Zhu H, Zhou M, Hu Z. Molecular cloning and expression of two cytosolic copper-zinc superoxide dismutases genes from Nelumbo nucifera. Appl Biochem Biotechnol,2011,163:679-691.
    39. Chen DW, Chen LQ. The first intraspecific genetic linkage maps of wintersweet Chimonanthus praecox (L.) Link based on AFLP and ISSR markers. Scientia Horticulturae,2010,124:88-94.
    40. Chen YY, Zhou RC, Lin XD, Wu KQ, Qian X, Huang SZ. ISSR analysis of genetic diversity in sacred lotus cultivars. Aquatic Botany,2008,89:311-316.
    41. Chutimanitsakun Y, Nipper RW, Cuesta-Marcos A, Cistue L, Corey A, Filichkina T, Johnson EA, Hayes PM. Construction and application for QTL analysis of a Restriction Site Associated DNA (RAD) linkage map in barley. BMC Genomics, 2011,12:4-16.
    42. Cloutier S, Cappadocia M, Landry BS. Analysis of RFLP mapping inaccuracy in Brassica napus L. Theoretical and Applied Genetics,1997,95:83-91.
    43. Collard BCY, Jahufer MZZ, Brouwer JB, Pang ECK. An introduction to markers, quantitative trait loci (QTL) mapping and marker-assisted selection for crop improvement:The basic concepts. Euphytica,2005,142:169-196.
    44. Crespel L, Chirollet M, Durel CE, Zhang D, Meynet J, Gudin S. Mapping of qualitative and quantitative phenotypic traits in Rosa using AFLP markers. Theoretical and Applied Genetics,2002,105:1207-1214.
    45. Cronquist A. Some realignments in the dicotyledons. Nord Journ Bot,1981,3:75-83.
    46. Dahlgren R. General aspects of angiosperm evolution and macrosystematics. Nordic Journal of Botany,1983,3:119-149.
    47. de Givry S, Bouchez M, Chabrier P, Milan D, Schiex T. CARTHAGENE: multipopulation inboard genetic and radiated hybrid mapping. Bioinformatics,2005, 21:1703-1704.
    48. Diao Y, Chen L, Yang GX, Zhou MQ, Song YC, Hu ZL, Liu JY. Nuclear DNA C-values in 12 species in nymphaeales. Caryologia,2006,59:25-30.
    49. Doyle J, Doyle J. Isolation of plant DNA from fresh tissue. Focus,1990,12:13-15.
    50. Dugo ML, Satovic Z, Millan T, Cubero JI, Rubiales D, Cabrera A, Torres AM. Genetic mapping of QTLs controlling horticultural traits in diploid roses. Theoretical and Applied Genetics,2005,111:511-520.
    51. Felsenstein J. PHYLIP (Phylogeny Inference Package) Version 3.69. department of genetics. University of Washington, Seattle, USA.2009
    52. Fu J, Xiang QY, Zeng XB, Yang M, Wang Y, Liu YL. Assessment of the genetic diversity and population structure of lotus cultivars grown in China by amplified fragment length polymorphism. Journal of the American Society for Horticultural Science,2011,136:339-349.
    53. Grattapaglia D, Sederoff R. Genetic linkage maps of Eucalyptus grandis and Eucalyptus urophylla using a pseudo-testcross:mapping strategy and RAPD markers. Genetics,1994,137:1121-1137.
    54. Groenen MAM, Wahlberg P, Foglio M, Cheng HH, Megens HJ, Crooijmans R, Besnier F, Lathrop M, Muir WM, Wong GKS, Gut I, Andersson L. A high-density SNP-based linkage map of the chicken genome reveals sequence features correlated with recombination rate. Genome Research,2009,19:510-519.
    55. Guo HB, Li SM, Peng J, Ke WD. Genetic diversity of Nelumbo accessions revealed by RAPD. Genetic Resources and Crop Evolution,2007,54:741-748.
    56. Gupta S, Pandey-Rai S, Srivastava S, Naithani SC, Prasad M, Kumar S. Construction of genetic linkage map of the medicinal and ornamental plant Catharanthus roseus. Journal of Genetics,2007,86:259-268.
    57. Han TH, Herman J van Eck, Marjo J De Jeu, Jacobsen E. Mapping of quantitative trait loci involved in ornamental traits in Alstroemeria. HortScience,2002a,37: 585-592.
    58. Han TH, Herman J van Eck, Marjo J De Jeu, Jacobsen E. The construction of a linkage map of Alstroemeria aurea by AFLP markers. Euphytica,2002b,128: 153-164.
    59. Han YC, Teng CZ, Chang FH, Robert GW, Zhou MQ, Hu ZL, Song YC. Analyses of genetic relationships in Nelumbo nucifera using nuclear ribosomal ITS sequence data, ISSR and RAPD markers. Aquatic Botany,2007a,87:141-146.
    60. Han YC, Teng CZ, Zhong S, Zhou MQ, Hu ZL, Song YC. Genetic variation and clonal diversity in populations of Nelumbo nucifera (Nelumbonaceae) in central China detected by ISSR markers. Aquatic Botany,2007b,86:69-75.
    61. Hu JH, Pan L, Liu HG, Wang SZ, Wu ZH, Ke WD, Ding Y. Comparative analysis of genetic diversity in sacred lotus(Nelumbo nucifera Gaertn.) using AFLP and SSR markers. Molecular Biology Reports,2012,39:3637-3647.
    62. Kalo P, Endre G, Zimanyi L, Csanadi G, Kiss GB. Construction of an improved linkage map of diploid alfalfa (Medicago sativd). Theoretical and Applied Genetics, 2000,100:641-657.
    63. Kanazawa A, Watanabe S, Nakamoto T, Tsutsumi N, Hirai A. Phylogenetic relationships in the genus Nelumbo based on polymorphism and quantitative variations in mitochondrial DNA. Genes & Genetic Systems,1998,73:39-44.
    64. Kianian SF, Quiros CF. Generation of a Brassica oleracea composite RFLP map: linkage arrangements among various populations and evolutionary implications. Theoretical and Applied Genetics,1992,84:544-554.
    65. Kubo N, Hirai M, Kaneko A, Tanaka D, Kasumi K,2009a. Classification and diversity of sacred and American Nelumbo species:the genetic relationships of flowering lotus cultivars in Japan using SSR markers. Plant Genetic Resources: Characterization and Utilization,2009a,7:260-270.
    66. Kubo N, Hirai M, Kaneko A, Tanaka D, Kasumi K. Development and characterization of simple sequence repeat (SSR) markers in the water lotus (Nelumbo nucifera). Aquatic Botany,2009b,90:191-194.
    67. Kumpatla SP, Mukhopadhyay S. Mining and survey of simple sequence repeats in expressed sequence tags of dicotyledonous species. Genome,2005,48:985-998.
    68. Lashermes P, Combes MC, Prakash NS, Trouslot P, Lorieux M, Charrier A. Genetic linkage map of Coffea canephora:effect of segregation distortion and analysis of recombination rate in male and female meioses. Genome,2001,44:589-596.
    69. Les DH, Garvin DK, Wimpee CF. Molecular evolutionary history of ancient aquatic angiosperms. Proc Natl Acad Sci USA,1991,88:10119-10123.
    70. Les DH, Schneider EL, Padgett DJ. Phylogeny, classification and floral evolution of water lilies (Nymphaeales):A synthesis of non-molecular, rbcL, mat and 18S rDNA data. Systematic Botany,1999,24:28-46.
    71. Ley TJ, Mardis ER, Ding L, Fulton B, McLellan MD, Chen K, et al. DNA sequencing of a cytogenetically normal acute myeloid leukaemia genome. Nature, 2008,456:66-72.
    72. Li G, Quiros CF. Sequence-related amplified polymorphism (SRAP), a new marker system based on a simple PCR reaction:its application to mapping and gene tagging in Brassica. Theoretical and Applied Genetics,2001,103:455-461.
    73. Li HL. Classification and phylogeny of Nymphaeaceae and allied families. American Midland Naturalist,1955,54:33-41.
    74. Li M, Yuyama N, Hirata M, Han J, Wang Y, Cai H. Construction of a high-density SSR marker-based linkage map of zoysiagrass (Zoysia japonica Steud.). Euphytica, 2009,170:327-338.
    75. Li Z, Liu X, Gituru RW, Juntawong N, Zhou M, Chen L. Genetic diversity and classification of Nelumbo germplasm of different origins by RAPD and ISSR analysis. Scientia Horticulturae,2010,125:724-732.
    76. Lien S, Gidskehaug L, Moen T, Hayes BJ, Berg PR, Davidson WS, Omholt SW, Kent MP. A dense SNP-based linkage map for Atlantic salmon (Salmo salar) reveals extended chromosome homeologies and striking differences in sex-specific recombination patterns. BMC Genomics,2011,12:615.
    77. Linde M, Hattendorf A, Kaufinann H, Debener T. Powdery mildew resistance in roses:QTL mapping in different environments using selective genotyping. Theoretical and Applied Genetics,2006,113:1081-1092.
    78. Liu BH, Knapp SJ. Gmendel:a program for mendelian segregation and linkage analysis of individual or multiple progeny populations using log-likelihood ratios. Journal of Heredity,1990,81:407-407.
    79. Liu JM, Wang L, Geng YP., Wang QB, Luo LJ, Zhong Y. Genetic diversity and population structure of Lamiophlomis rotata (Lamiaceae), an endemic species of Qinghai-Tibet Plateau. Genetica,2006,128:385-394.
    80. Liu YL, Yang M, Xiang QY, Xu LM, Zeng XB, Bao MZ. Characterization of microsatellite markers and their application for the assessment of genetic diversity among lotus accessions. Journal of the American Society for Horticultural Science, 2012,137:180-188.
    81. Lohne C, Borsch T. Molecular evolution and phylogenetic utility of the petD group II intron:A case study in basal angiosperms. Molecular Biology and Evolution,2005, 22:317-332.
    82. Lu H, Romero-Severson J, Bernardo R. Chromosomal regions associated with segregation distortion in maize. Theoretical and Applied Genetics,2002,105: 622-628.
    83. Magallon S, Sanderson MJ. Relationships among seed plants inferred from highly conserved genes:Sorting conflicting phylogenetic signals among ancient lineages. American Journal of Botany,2002,89:1991-2006.
    84. Mangelsdorf PC, Jones DF. The expression of Mendelian factors in the gametophyte of maize. Genetics,1926,11:423-455.
    85. Manly KF, Olson JM. Overview of QTL mapping software and introduction to map manager QT. Mamm. Genome,1999,10:327-334.
    86. Mardis E, Ley TJ, Wilson RK. Sequencing acute myeloid leukemia genomes with "next generation" technologies. Blood,2008,112:1351-1352.
    87. Ming R, Robert VB, Liu YL, Yang M, Han YP, Li LT, Zhang Q, Kim MJ, et al. Genome of the long-living sacred lotus(Nelumbo nucifera Gaertn.). Genome Biology,2013, doi:10.1186/gb-2013-14-5-r41.
    88. Morrell PL, Buckler ES, Ross-Ibarra J. Crop genomics:advances and applications. Nature Reviews Genetics,2012,13:85-96.
    89. Orozco-Obando W, Tilt K, Fischman B,田代科,刘义满.莲属植物(Nelumbo spp.)在美国东南部的利用潜力研究.长江蔬菜(学术版),2009,16:23-27.
    90. Oyant LHS, Crespel L, Rajapakse S, Zhang L, Foucher F. Genetic linkage maps of rose constructed with new microsatellite markers and locating QTL controlling flowering traits. Tree Genet. Genomes,2008,4:11-23.
    91. Pan L, Quan Z, Hu J, Wang G, Liu S, He Y, Ke WD, Ding Y. Genetic diversity and differentiation of lotus (Nelumbo nucifera) accessions assessed by simple sequence repeats. Annals of Applied Biology,2011,159,428-441.
    92. Pan L, Quan ZW, Li SM, Liu HG, Huang XF, Ke WD, Ding Y. Isolation and characterization of microsatellite markers in the sacred lotus (Nelumbo nucifera Gaertn.). Molecular Ecology Notes,2007,7:1054-1056.
    93. Pan L, Xia QJ, Quan ZW, Liu HG, Ke WD, Ding Y. Development of novel EST-SSRs from sacred lotus (Nelumbo nucifera Gaertn) and their utilization for the genetic diversity analysis of N. nucifera. Journal of Heredity,2010,101:71-82.
    94. Peakall R, Smouse P. GEN ALEX 6:genetic analysis in Excel. Population genentic software for teaching and research. Molecular Ecology Notes,2006,6:288-295.
    95. Peltier D, Farcy E, Dulieu H, Berville A. Origin, distribution and mapping of RAPD markers from wild Petunia species in Petunia hybrida Hort lines. Theoretical and Applied Genetics,1994,88:637-645.
    96. Pfender WF, Saha MC, Johnson EA, Slabaugh MB. Mapping with RAD (restriction-site associated DNA) markers to rapidly identify QTL for stem rust resistance in Lolium perenne. Theoretical and Applied Genetics,2011,122: 1467-1480.
    97. Pritchard JK, Stephens M, Donnelly P. Inference of population structure using multilocus genotype data. Genetics,2000,155:945-959.
    98. Qiu YL, Lee JH, Bernasconi-Quadroni F, Soltis DE, Soltis PS, Zanis M, Zimmer EA, Chen ZD, Savolainen V, Chase MW. The earliest angiosperms:evidence from mitochondrial, plastid and nuclear genomes. Nature,1999,402:404-407.
    99. Rohlf FJ. NTSYS-pc:numerical taxonomy and multivariate analysis system, version 2.10. Exeter Software, Setauket, NY.2000.
    100.Sandbrink JM, Vanooijen JW, Purimahua CC, Vrielink M, Verkerk R, Zabel P, Lindhout P. Localization of genes for bacterial canker resistance in Lycopersicon peruvianum using RFLPs. Theoretical and Applied Genetics,1995,90:444-450.
    101. Scheider EL, Buchanan JD. Morphological studies of the Nymphaeaceae. XI.The floral biology of Nelumbo pentapelala. American Journal of Botany,1980,67: 182-193.
    102. Shahin A, Arens P, van Heusden AW, van der Linden G, van Kaauwen M, Khan N, Schouten HJ, van de Weg WE, Visser RGF, van Tuyl JM. Genetic mapping in Lilium: mapping of major genes and quantitative trait loci for several ornamental traits and disease resistances. Plant Breeding,2011,130:372-382.
    103. Shen-Miller J, Mudgett MB, Schope JW, Clarke S, Berger R. Exceptional seed longevity and robust growth:ancient sacred lotus from China. American Journal of Botany,1995,41:1335-1339.
    104. Shin SK, Yun JS, Yun T. Taxonomic relationship of lotus(Nelumbo nucifera) based on ITS sequences of nuclear ribosomal DNA. Journal of the Korean Society for Horticultural Science,2003,44:451-457.
    105. Sibov ST, De Souza CL, Garcia AAF, Garcia AF, Silva AR, Mangolin CA, Benchimol LL, De Souza AP. Molecular mapping in tropical maize (Zea mays L.) using microsatellite markers.1. Map construction and localization of loci showing distorted segregation. Hereditas,2003,139:96-106.
    106. Simon JP. Comparative serology of the order Nymphaeales I. Preliminary survey on the relationships of Nelumbo. Aliso,1970,7:243-261.
    107. Spiller M, Linde M, Hibrand-Saint Oyant L, Tsai CJ, Byrne DH, Smulders MJM, Foucher F, Debener T. Towards a unified genetic map for diploid roses. Theoretical and Applied Genetics,2011,122:489-500.
    108. Sun ZD, Wang ZN, Tu JX, Zhang JF, Yu FQ, McVetty PBE, Li GY. An ultradense genetic recombination map for Brassica napus, consisting of 13551 SRAP markers. Theoretical and Applied Genetics,2007,114:1305-1317.
    109. Takhtajan A. Outline of the classification of flowering plants (Magnoliophyta). Botanical Review,1980,46:226-267.
    110. Thorne RF. Proposed new realignments in the angiosperms. Nordic Journal of Botany,1983,3:85-117.
    111. Tian HL, Chen XQ, Wang JX, Xue JH, Wen J, Mitchell G, Zhou SL. Development and characterization of microsatellite loci for lotus(Nelumbo nucifera). Conservation Genetics,2008a,9:1385-1388.
    112. Tian HL, Xue JH, Wen J, Mitchell G, Zhou SL. Genetic diversity and relationships of lotus(Nelumbo) cultivars based on allozyme and ISSR markers. Scientia Horticulturae,2008b,116:421-429.
    113. van Os H, Andrzejewski S, Bakker E, Barrena I, Bryan GJ, Caromel B, et al. Construction of a 10,000-marker ultradense genetic recombination map of potato: Providing a framework for accelerated gene isolation and a genomewide physical map. Genetics,2006,173:1075-1087.
    114. Wang XW, Wadl PA, Rinehart TA, Scheffler BE, Windham MT, Spiers JM, Johnson, DH, Trigiano RN. A linkage map for flowering dogwood (Cornus florida L.) based on microsatellite markers. Euphytica,2009,165:165-175.
    115. Wheeler DA, Srinivasan M, Egholm M, Shen Y, Chen L, McGuire A, et al. The complete genome of an individual by massively parallel DNA sequencing. Nature, 2008,452:872-U875.
    116. Xue DW, Feng SG, Zhao HY, Jiang H, Shen B, Shi NN, Lu JJ, Liu JJ, Wang HZ. The linkage maps of Dendrobium species based on RAPD and SRAP markers. Journal of Genetics and Genomics,2010,37:197-204.
    117. Xue J, Zhuo L, Zhou S. Genetic diversity and geographic pattern of wild lotus (Nelumbo nucifera) in Heilongjiang Province. Chinese Science Bulletin,2006,51: 421-432.
    118. Xue JH, Dong WP, Cheng T. Nelumbonaceae:Systematic position and species diversification revealed by the complete chloroplast genome. Journal of Systematics and Evolution,2012,50(6):477-487.
    119. Yagi M, Onozaki T, Taneya M, Watanabe H, Yoshimura T, Yoshinari T, Ochiai Y, Shibata M. Construction of a genetic linkage map for the carnation by using RAPD and SSR markers and mapping quantitative trait loci (QTL) for resistance to bacterial wilt caused by Burkholderia caryophylli. Journal of the Japanese Society for Horticultural Science,2006a,75:166-172.
    120. Yagi M, Onozaki T, Nakayama M, Shibata M. Mapping floral anthocyanin pigmentation traits in Carnation by molecular linkage map. Abstract, XXVII International Horticultural Congress-IHC2006:International Symposium on Ornamentals,2006, Leuven, Belgium.
    121. Yang M, Han YN, Xu LM, Zhao JR, Liu YL. Comparative analysis of genetic diversity of lotus(Nelumbo) using SSR and SRAP markers. Scientia Horticulturae, 2012,142:185-195.
    122. Yeh FC, Yang RC, Boyle T. Popgene version 1.31. microsoft windows-based freeware for population genetic analysis. University of Alberta, Edmonton, Canada. 1999.
    123. Yu HH, Xie WB, Wang J, Xing YZ, Xu CG, Li XH, Xiao JH, Zhang QF. Gains in QTL detection using an ultra-high density SNP map based on population sequencing relative to traditional RFLP/SSR markers. PLoS ONE,2011,6(3):e17595 6.
    124. Zhang F, Chen S, Chen F, Fang W, Chen Y, Li F. SRAP-based mapping and QTL detection for inflorescence-related traits in chrysanthemum (Dendranthema morifolium). Molecular Breeding,2011,27:11-23.
    125. Zhang LH, Byrne DH, Ballard RE, Rajapakse S. Microsatellite marker development in rose and its application in tetraploid mapping. Journal of the American Society for Horticultural Science,2006,131:380-387.