悬浮流化式生物质热解液化装置设计理论及仿真研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
生物质能源是一种可再生能源,对生物质能的开发和利用能够缓解能源短缺的压力、减少环境污染、改善未来的能源结构。利用生物质热解转化技术,将生物质转化成高品位的液体燃料是生物质能开发利用的重要方式。本文基于国内外生物质热解液化制取生物油领域已经开展的研究工作,对生物质悬浮流化床技术进行了理论探讨,并对生物质在悬浮流化床内的运动规律、热解规律和悬浮流化床的设计理论进行了理论分析和模拟仿真。
     本文首先提出了课题的研究背景,对生物质的种类和生物质能转化利用技术进行了阐述,对国内外生物质流化床热解液化制取生物油技术的研究进行了综述分析,全面掌握了该领域的研究方向和研究热点,确定了论文的研究内容和研究目标。
     分析了生物质原料的颗粒特性和化学特性,建立了生物质流化冷态实验装置,对玉米芯和稻壳进行了单独流化实验,对玉米芯和稻壳与石英砂进行了混合流化实验。生物质单独流化实验表明,生物质是可以实现流态化的;生物质原料颗粒较小,流化特性没有显著区别;流化风速变化时,每一个测压点的压降变化不大,没有一定的规律性。生物质混合流化实验表明,生物质质量分率较小时,质量分率不同,流化状态和压差变化没有明显的差别,混合流化临界流化速度较小。
     通过高速摄像法得到床内颗粒瞬时流动形态的图像,对图像分析得到颗粒的速度变化图。对图像的分析表明,生物质与石英砂床内混合较好,没有明显的分层现象,对于轴向混合,石英砂在床下部积聚浓度较大。床内颗粒运动速度变化剧烈,速度分布不均匀。由于生物质流化运动复杂,实验重复性差,难以测得准确的实验参数值。
     由于生物质流态化运动的复杂性,通过有限的实验难以全面理解床内气固两相流动的规律,为此,建立了气固流动的基本微分方程,应用Fluent软件,采用欧拉双流体计算模型对床内气固两相运动进行模拟仿真,得到随时间变化沿床高方向固体体积分数分布云图、固体速度分布云图。模拟仿真结果表明,床内出现稠密相和气泡相两种不同的结构,固相颗粒在床层内循环运动,气泡生成、破裂周期性变化,有利于生物质的混合和分离。通过模拟仿真,较为准确地描述床内气固两相流体的运动特性,提高了对生物质流化特性的认识。
     根据Waterloo大学的热解机理模型,建立了生物质热解动力学方程式,对方程式进行了求解,得到生物质质量及热解产物质量随热解温度变化的曲线。对曲线的分析表明,温度是影响生物质热解的重要参数,炭产量随温度的增加而增加,并逐渐趋向于一固定值;生物油的产量随温度的升高而增加,在800~900K时,生物油的产量达到最大值。方程求解得到的热解曲线与前人研究结果基本一致,说明建立的方程是可信的,可以利用该方程式预测热解参数温度对生物质热解产物的影响。生物质热解传热复杂,通过对热解过程的分析,建立了颗粒传热的方程式。
     根据悬浮流化生物质热解设计理论和实验结果,设计了一套新型生物质悬浮流化热解反应系统。该系统燃烧生物质气化燃气为反应器供热,热解后的不可冷凝气体经过预热作为流化气体进入反应器。利用生物质燃气燃烧提供热源,可以减少其它能源的使用,就地取能,就地生产,最大限度地将地产生物质原料转化为可利用的清洁能源,降低生物质热解制油的成本。设计了生物质燃气气体燃烧器,并对反应器的能量平衡进行了计算。
     论文最后对全文进行了总结。
Biomass energy is a kind of renewable energy.It is important to exploit and utilize biomass energy.Energy shortage can be relieved,fossil fuels utilization can be reduced and energy construction can be modified in the future.It is an important method of biomass energy development and research to transform biomass to high quality liquid fuels through fast pyrolysis of biomass technology.This paper based on research achievement of the biomass of the civil and foreign country about making bio-oil from fast pyrolysis of biomass.The theory is developed on the biomass suspension fluidized bed.The theory analysis and simulation can be executed.The theory involved the law of motion,the law of pyrolysis and design theory about biomass suspension fluidized bed.
     In the first place,the research background of science project is putted forward.The biomass species and biomass energy transformation and utilization technology are expounded. The domestic literature review and foreign literature review are analyzed on the making bio-oil technology form biomass fluidized pyrolysis.The research direction and research hot spot are grasped roundly in this domain.
     The granule and chemistry characteristic of biomass raw material are analyzed.The biomass cooling fluidization test-bed is established.Corn cob and rice hull fluidization experiments are executed separately,then,the mixture fluidization experiments are executed. Biomass fluidization experiment indicated that pure biomass fluidization is well achieved.The granule of biomass raw material is small and fluidized characteristic.The variety of pressure of every test point is not distinct.The variety pressure has not definite regularity.The mixed biomass fluidization experiment indicated that the biomass quality ratio is different and fluidization and pressure variety have not prominent difference.The mixed biomass critical velocity is small.
     The instantaneous flow of images of granule in bed has been received by the method of high-speed camera.The granule speed chart have been received by analysis of the particles image.Image analysis shows that the biomass and quartz sand mixed well in the bed and no obvious phenomenon of layered.The quartz sand at lower part of the bed accumulates a larger concentration for the axial mixing.Particles in the bed have a violent change in velocity and have a uneven distribution in velocity.As the biomass flow of movement complexity,poor reproducibility experiments,it is difficult accurately measured experimental values.
     As a result of the complexity of the fluidized movement of biomass,it is difficult to comprehensive understand the flow discipline of gas-solid phase through a limit test in the bed. So,the basic differential coefficient equations of gas-solid phase have been established.The movement simulation of gas-solid phase has been carried using Euler two-fluid model calculation of Fluent software.The solid speed distribution of cloud chart and solid volume fraction distribution of cloud chart have been received along the direction of the bed as the time change.The results show that two different structures of the bubble phase and dense phase can be seen inside the bed.Solid-phase particles in the bed have the circle of movement.The formation and the breakdown of the bubble have a cyclical change.These behaviors are in favor of mixture and separation of biomass.Through the simulation,the gas-solid characteristics of the movement in the bed have more accurate description and more knowledge of biomass fluidization characteristics.
     According to the Waterloo university pyrolysis mechanism model,the pyrolysis kinetics equation of biomass has been established.The biomass quality along with the pyrolysis temperature change curve has been received through solving equation.The curve analysis shows that the temperature is an important parameter influencing biomass pyrolysis.The production of Char increases with temperature,and gradually moving to a fixed value.The bio-oil production with the temperature increases and in the 800-900K,bio-oil production to reach the maximum.The pyrolysis curve by solving equation with the previous results are basically the same.It is illustrated that the establishment of the equation is credible.The formula can predict the impact of the temperature with biomass pyrolysis product.The heat transfer of biomass pyrolysis is complex,through the pyrolysis process analysis,the heat transfer equation of biomass have been established.
     According to the preceding design theory and testing results,the heat input of reactor are discussed,the new set of suspension biomass pyrolysis for bio-oil is developed.The method of the heat input use burning fuel gas by biomass gasification.Non condensation gas producted by pyrolysising biomass entered reactor by conducted fluidized gas.The heat of burning biomass fuel gas can reduce the use of other energy sources.Be able to take energy and produce on the spot.To maximize the conversion of local raw materials to produce material for the use of clean energy and reduce bio-oil costs by biomass pyrolysis.The heat input gas burner by burning fuel gas is designed,and energy balance of the reactor were calculated.
     In the end,the full-text of the final paper is summarized.
引文
[1]李传统.新能源与可再生能源技术[M].东南大学出版社,2003
    [2]赵青玲,杨继涛,等.畜禽粪便资源化利用技术的现状及展望[J].河南农业大学学报,2003,(2):184-187
    [3]杨立忠,杨钧锡,别义勋.新能源技术[M].中国科学技术出版社,1994
    [4]吴创之,马隆龙.生物质能现代化利用技术[M].北京,化学工业出版社,2003
    [5]张瑞芹,魏新利.生物质衍生的燃料和化学物质[M].郑州,郑州大学出版社,2004
    [6]张明,袁益超,刘聿拯.物质直接燃烧技术的发展研究[J].能源研究与信息,2005,(1):15-20.
    [7]刘宝亮,蒋剑春.中国生物质气化发电技术研究开发进展[J].生物质化学工程,2006,40(4):47-52
    [8]Y.Lin,S.Tanaka.Ethanol fermentation from biomass resources:current state and prospects.Appl Microbiol Biotechnol,New York:Springer-Verlag,2005
    [9]周良虹,黄亚晶.国外生物柴油产业与应用状况[J].可再生能源,2005,(4):62-67
    [10]中华人民共和国国家统计局编.中国统计年鉴2003[M].北京:中国统计出版社,2003
    [11]雒廷亮,许庆利,刘国际,等.生物质能的应用前景分析[J]:能源研究与信息,2003,19(4):194-197
    [12]Liao Cuiping,Yanyongjie,Wuchuangzhi,Huanghaitao.Study on the distribution and quantity of biomass residues resource in China.Biomass and Bioenergy,27(2004)111-117
    [13]刘江.21世纪初中国农业发展战略[M]北京:中国农业出版社,2000
    [14]孙贝烈,陈丛斌.厌氧消化技术在禽畜粪便处理中的应用[J].辽宁农业科学,2006,(3):59-60
    [15]蒋剑春,应浩.中国林业生物质能源转化技术产业化趋势[J].林产化学与工业,2005,第25卷增刊:5-9
    [16]G Maschio,C.Koufopanos,A.Lucchesi.Pyrolysis,a promising route for biomass utilization.Bioresource technology,1992,42:219-231
    [17]D.S.Scott,J.Piskorz.The flash pyrolysis of aspen-poplar wood.Canadian journal of chemical engineering.1982,60:666-674
    [18]E.J.Soltes,A.T.Wiley,S.C.K.Lin.Biomass pyrolysis-towards an understanding of its versatility and potentials.Biotech&bioengineering symposium.1981,11:125-136
    [19]A.V Bridgwater,M.L.Cottam.Opportunities for biomass pyrolysis liquids production and upgrading.Energy and fuels,1992,6(2):113-120
    [20]I.S.Goldstein.Organic chemicals from biomassFlorida:CRC Press.Inc.1981
    [21]Bridgewater,A.V,.An Introduction to Fast Pyrolysis of Biomass for Fuels and Chemicals in Fast Pyrolysis of Biomass:A Handbook,edited by Bridgewater,A.et.al.(CPL Scientific Publishing Services Limited,Newbury,1999),pp.1-13
    [22]DynaMotive Energy Systems Corporation.Fast Pyrolysis of Bagasse to Produce BioOil Fuel for Power Generation.2001 Sugar Conference
    [23]F.Ates,Putune,A.E.Putun.Fast pyrolysis of sesame stalk:yields and structural analysis of bio-oil.Analytical and Applied Pyrolysis,2004,71:779-790
    [24]刘荣厚.生物质闪速热裂解特性及闪速热裂解试验研究[D].沈阳农业大学,1997
    [25]A.V.Bridgwater,J.M.Double.Production costs of liquid fuels from biomass.Fuel,1991,70:1209-1224
    [26]Groux B.Technique de Carbonisation et de Pyrolyse.Bio-Alternative SA,Switzerland.In:Mattucci E.,Grassi G.,Palz W,editors.Pyrolysis as a Basic Technology for Large Agro-Energy Projects,Proceedings of a Workshop held in L'Aquila,Italy,15~(th)-16~(th)Oct.1987.Commission of the European Communities(EUR 11382 EN),Belgium,19 89,p205
    [27]Van de Kamp WL,Smart JP.Evaluation of the combustion characteristics of pyrolytic oils derived from biOmass.In:Grassi G.Moncada P,Zibetta H,editors.Proceedings of Energy from Biomass Contractors Meeting,CEC DG Ⅻ Biomass unit(F/4),1991,p31-79
    [28]Underwood G.Commercialisation of fast pyrolysis products.In:Hogan E,Robert J,Grassi G;Sridgewater AV,editors.Biomass Thermal Processing-Proceeding of the First CanadalEuropean Community R&D Contractors Meeting.CPL Scientific Press,1992,p226-228
    [29]B.Scholze a,C.Hanser b,D.Meier.Characterization of the water-insoluble fraction from fast pyrolysis liquids(pyrolytic lignin) Part Ⅱ.GPC,carbonyl goups,and 13C-NMR Journal of Analytical and Applied Pyrolysis.58-59(2001)387-00
    [30]Samy S.Sadaka.Two phase biomass air-steam gasification model for fluidized bed reactor.Biomass and bioenergy[J].2002(22):439-487
    [31]Morris K W.Fast pyrolysis of the bagasse to produce bio-oil fuel for power generation[J].Intermational Sugar Journal.2007(103):259-263
    [32]董良杰.生物质热裂解技术及其反应动力学研究[D].沈阳农业大学,1997
    [33]廖艳芬,王树荣.生物质热裂解制油的动力学及技术研究[J].燃烧科学与技术,2002,8(2):176-180
    [34]王树荣,骆仲泱,谭洪,等.生物质热裂解生物油特性的分析研究[J].工程热物理学报,2004,25(6):1049-1052
    [35]谭洪,王树荣,骆仲泱,等.生物质整合式流化床热解制油系统试验研究[J].农业机械学报,2005,36(4):30-33
    [36]刘艳阳.生物质热裂解制取生物油的试验研究[D].吉林农业大学,2005
    [37]任铮伟,徐清,陈明强,等.流化床生物质快速裂解制液体燃料[J].太阳能学报, 2002(23):462-466
    [38]朱锡锋,郑冀鲁,陆强,等。生物质热解液化装置研制与试验研究[J].中国工程科学,2006(8):89-93
    [39]林木森.生物质热解机制和反应动力学研究[D].中国林业科学研究院,2007
    [40]李伍刚,李瑞阳,郁鸿凌,等.生物质热解技术研究现状及其进展[J].能源研究与信息,2001,17(4):210-214
    [41]R.K.Sharma,N.N.Bakhshi.Catalytic upgrading of fast pyrolysis oil over HZSM-5.Canadian journal of chemical engineering,1993,71:383-391
    [42]Radlein,D.,et al.Symposium on Fast Pyrolysis:Processes.echnologies and Products,Cellulose Division.ACS National Meeting,Denver,March 1993
    [43]M.G.Rasul,V.Rudolph,M.Carsky.Physical properties of bagasse.Fuel 1999(78):905-910
    [44]A database containing information on the composition of Biomass and Waste.http://www.ecn.al/physics
    [45]吴创之,马隆龙.生物质能现代化利用技术[M].北京:化学工业出版社,2003
    [46]朱锡锋.生物质热解原理与技术[M].中国科学技术大学出版社,2006
    [47]Li Junfeng,Hu Runqing,Song Yanqina,etc.Assessment of sustainable energy potential of non-plantation biomass resources in China.Biomass and Bioenergy 29(2005) 167-177
    [48]Koufopanos CA,Papayannakos N,MaschioG,LucchesiA.Can J Chem Eng 1991;69:907
    [49]宋新朝,王志锋,孙东凯等.生物质与煤混合颗粒流化特性的试验研究[J],煤炭转化,2005,28(1):74-77
    [50]王立群,宋旭,周浩生,等.双组分颗粒系统流化特性的试验[J],江苏大学学报(自然科学版),2007,28(3):232-236
    [51]王佳文,刘荣厚.生物质与石英砂组成双组分混合物的流化特性分析[J].农机化研究,2006,11:190-193
    [52]朱锡锋,陆强,郑冀鲁.木粉和稻壳流化特性,太阳能学报[J],2006,27(4):345-348
    [53]Cheung L,Nienow A W.Rowe P N.Minimum Fluidization Velocity of a Binary Mfixture of Different Sized Particles.Chemical Engineering Science,1974,24:1301-1303
    [54]Joaquin Rein,Enrique Velo,Luis Puigianer.Predicting the Minimum Fluidization Velocity of Polydisperse Mixtures of Scrap-woodl Particles.Powder Technology,2000,111(3):245-251
    [55]S.Ergun..Fluid flow through packed columns.Chem.Engr.Prog.1952,Vo1.48,No.2,89
    [56]金涌,祝京旭,汪展文等.流态化工程原理[M].北京:清华大学出版社,2001,17-37
    [57]T.R.Rao,J.V.Ram.Bheemarasetti.Minimum fluidization velocities of mixtures of biomass and sands.Energy 26(2001) 633-644
    [58]吴锦坤,罗坤,胡桂林,等.鼓泡流化床流动特性的直接颗粒模拟[J].浙江大学学报(工学版),2007(3):504-508
    [59]石惠娴.循环流化床流动特性PIV测试和数值模拟[D].浙江大学,2003
    [60]吴锦坤,鼓泡流化床流动特性的直接数值模拟[D],浙江大学,2006
    [61]周继良,邹宗树,余艾冰.鼓泡流化床流动特性的数值模拟[J].材料与冶金学报,2007,6(2):127-130
    [62]杨太阳,王安仁,张锁江,等.气固鼓泡流化床的流动特性数值模拟[J].计算机与应用化学,2005,22(3):207-211
    [63]何广湘,杨索和,靳海波.鼓泡床反应器内流动与传质行为的研究进展[J].化学工业与工程,2007,24(1):76-81
    [64]陈俊,叶旭初,宋涛,等.流态化合成氮化硅的鼓泡床冷模试验与CFD模拟[J].南京工业大学学报,2005,27(1):58-62
    [65]徐祥,循环流化床流动特性的数值模拟[D],东南大学,2004
    [66]H.K.Versteeg,W.Malalasekera,An Induction to Computational Fluid Dynamics:The Finite Volume Method.Wiley,New York,1995
    [67]D.Gidaspow,R.Bezburuah,and J.Ding.Hydrodynamics of Circulating Fluidized Beds,Kinetic Theory Approach.In Fluidization Ⅶ,Proceedings of the 7th Engineering Foundation Conference on Fluidization,75-82,1992
    [68]M.Syamlal,W.Rogers,and O'Brien T.J.MFIX Documentation:Volume 1,Theory Guide.National Technical Information Service,Springfield,VA,1993.DOE/METC-9411004,NTIS/DE9400087
    [69]D.G.Schaeffer.Instability in the Evolution Equations Describing Incompressible Granular Flow.J.Diff.Eq,66:19-50,1987
    [70]M.Syamlal and T.J.O'Brien.Computer Simulation of Bubbles in a Fluidized Bed.AIChE Synp.Series.85:22-31.1989.
    [71]S.Ogawa,A.Umemura,Oshima.On the Equation of Fully Fluidized Granular Materials.J.Appl.Math.Phys.1980,31:483
    [72]C.K.K.Lun,S.B.Savage,D.J.Jeffrey,and N.Chepurniy.Kinetic Theories for Granular Flow:Inelastic Particles in Couette Flow and Slightly Inelastic Particles in a General Flow Field.J.Fluid Mech,140:223-256.1984
    [73]S.Ogawa,A.Umemura,and N.Oshima.On the Equation of Fully Fluidized Granular Materials.J.Appl.Math.Phys.,31:483,1980
    [74]费祥麟.高等流体力学[M].西安交通大学出版社,1989:71
    [75]王福军.计算流体动力学分析[M].清华大学出版社,2004
    [76]Van de Velden M,Baeyens J,Seville JPK,Fan X.The solids flow in the riser of a circulating fluidized bed viewed by positron emission particle tracking.Powder Technology 2007,in press,doi:10.1016/j.powtec.2007.07.027
    [77]Manon Van de Veldena,Jan Baeyensa,Ioannis Boukisb.Modeling CFB biomass pyrolysis reactors.Biomass and Bioenergy 9(2007) 123-135
    [78]Di Blasi C.Kinetics and modeling of biomass pyrolysis.In:Bridgwater AV,editor.Fast pyrolysis of biomass:a handbook,vol.3.Newbury,UK:CPL Press;2005.p.121-46
    [79]Gorton WC,Knight JA(1984) cited by Di Blasi C.Kinetics and modeling of biomass pyrolysis.In:Bridgwater AV,editor.Fast pyrolysis of biomass:a handbook,vol.3.Newbury:CPL Press;2005.121-46.
    [80]Reina J,Velo E,Puigjaner L.Thermogravimetric study of the pyrolysis of waste wood.Thermochimica Acta 1998;320:161 - 7.
    [81]Thurner F,Mann U(1981) cited by Di Blasi C.Kinetics and modeling of biomass pyrolysis.In:Bridgwater AV,editor.Fast pyrolysis of biomass:a handbook,vol.3.Newbury:CPL Press;2005.121-46.
    [82]I.Ph.Boukis,P.Grammelis,S.Bezergianni,A.V.Bridgwater.CFB air-blown flash pyrolysis.Part Ⅰ:Engineering design and cold model performance.Fuel 86(2007) 1372-1386
    [83]Botterill,J.S.,Williccms,J.R.,Trans.Inst.Chem.Engrs.,41,1963,217-230
    [84]Wen C Y,Chang T M.Particle-to-particle heat tansfer in-air fluidized beds[C].Proceedings of International Symposium on Fluidization,edited by Drinkenburg,A.A.H.,Eindhoven,1967,Part 2:491-506.
    [85]田凤国.内循环流化床气固流动数值模拟与试验研究[D].上海交通大学,2007
    [86]Ranz W E.Friction and transfer coefficients for single particles and packed beds[J]Chemical Engineering Progress,1952,48:247-253.
    [87]Mandon Van de Velden,Jan Baeyens,Ioannis Boukis.Modeling CFB biomass pyrolysis reactors.BIOMASS & BIOENERGY,2007
    [88]L.Conti,G.Scano,J.Boufala.Bio-oils from arid land plants:Flash pyrolysis of EUPHORBIA CHARACIAS bagasse.Biomass and energy,1994,7(1-6):291-296
    [89]M.Steinberg,P.T.Fallon,M.S.Sundaram.Flash pyrolysis of biomass with reactive and non-reactive gas.8iomass,1986,9:293-315
    [90]C.D.Blasi.Kinetic and heat transfer control in the slow and flash pyrolysis of solids.Ind.Eng Chem.Res.1996.35:37-46
    [91]朱锡锋,陆强.生物质快速热解制备生物油.科技导报,2007,25(21):69-75
    [92]生物质热解气化及应用技术.http://www.newenergy.org.cn/html/2005-6/20056691.html
    [93]熊昌国,洪章,张芸.生物质燃气烘干粮食的试验和应用研究[J].四川农机,2005(2)
    [94]林宗虎,徐通模.实用锅炉手册[M].北京:化学工业出版社,1999.6,34-51
    [95]王智微,李宗凯,沈幼庭,等.一氧化碳在循环流化床燃烧室中的燃烧模型[J].清华大学学报.2000,14(2):110-113
    [96]雷廷宙,师新广,李海军,等.生物质燃气专用灶具的设计[J].农业工程学报.2001,17(4):165-167
    [97]张科选,王永振,张祥华.低变质烟煤热解试验探讨[J].陕西煤炭技术,1997(4)
    [98]胡震岗,黄信仪.燃料与燃烧概论[M].清华大学出版社,1995
    [99]Satoru Ishizuka,Tetsuya Motodamari.Rapidly mixed combustion in a tubular flame burner,proceedings of the Combustion Institute,2007,31(1):1085-1092
    [100]Dupont,M.Porkashanian,A.Williams and R.Woolley,Reduction of NOx formation in natural gas burnerflames[J].Fuel,No.4,1993
    [101]Helie,J.Trouve,A.Turbulent flame propagation in partially premixed combustion.Symposium(International) on Combustion[J].1998,1:891-898
    [102]J oseph A.Senecal.Flame extinguishing in the cup-burner by inert gases[J].Fire Safety Journal,2005,40(6):579-591
    [103]Harris,J.A.andSouth,R.,Flame Stability Principles and Practice,Gas Engineering and Management,May,1978
    [104]何芳,徐梁,柏雪源,等.生物质热解过程吸热量[J].太阳能学报,2006(3),237-241
    [105]I.Ph.Boukis,P.Grammelis,S.Bezergianni,A.~.Bridgwater.CFB air-blown flash pyrolysis.Part Ⅰ:Engineering design and cold model performance.Fuel 86(2007) 1372-1386
    [106]Maniatis K.Fluidized bed gasification of biomass.PhD thesis,Aston University;1986.