网格型仿生表面形态汽车齿轮抗疲劳性能研究与数值模拟
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在汽车行驶过程中,汽车变速箱齿轮就成为了传递动力的主要载体之一,但是,由于齿面长期承受滚动与滑动交变的接触应力作用,使得齿根长期承受弯曲应力作用,轮齿次表层将出现疲劳裂纹的形核与扩展,最终导致断齿。这就将造成不可估量与不可挽回的人民群众生命财产安全方面的损失,由此可见,增强汽车变速箱齿轮的抗疲劳性能对人民群众的生产生活具有十分重要的现实意义。本文以工程仿生学的研究方法为基础,采用激光表面热处理技术在齿轮表面局部区域制备网格型仿生表面形态,进而改善齿轮的抗疲劳性能,并应用有限元软件进行数值分析,从多个方面研究仿生表面形态对齿轮抗疲劳性能的影响。
     本文主要工作与结论如下:
     根据工程仿生学的研究方法,设计了9组网格型仿生表面形态参数组合,并以CT—200Ⅱ数控激光刻花机作为实现仿生表面形态的主要设备,在齿轮表面局部区域制备仿生表面形态,也即在齿轮表面制备出了硬度较高的硬化层。
     仿生表面形态齿轮的接触疲劳试验:首先,根据试验优化设计方法编排试验方案,然后,通过对辊试验来完成仿生表面形态参数的优化选择过程。应用显微镜直接观察法来探究仿生表面形态、试件表面疲劳损伤和点蚀率之间的变化规律。试验结果表明:所有仿生表面形态辊子的抗疲劳性能均不同程度地优于普通辊子试件,其中2号辊子试件的点蚀率最小,其点蚀率为2.46%。最终优选出最佳网格型仿生表面形态为条纹宽度50μm、条纹横向间距150μm、条纹纵向间距250μm。随后进行了最优仿生表面形态齿轮和普通齿轮的台架对比试验,通过最优形态齿轮与普通齿轮的平均点蚀率的比较表明,最优网格型仿生表面形态能够将齿轮的抗疲劳强度提高2.91倍,且仿生表面形态改变了齿轮的接触疲劳失效规律,使得节圆附近区域的点蚀更少,具有仿生表面形态的齿轮在试验前后齿向误差值的变化更小。
     仿生表面形态齿轮的弯曲疲劳试验:根据试验优化设计方法编排试验方案,采用双齿脉动载荷作为弯曲疲劳试验的加载方式,进行了9种网格形态与普通齿轮的弯曲疲劳试验,以达到弯曲疲劳失效标准时的应力循环次数为弯曲疲劳寿命。试验结果表明:与普通齿轮的抗弯曲疲劳性能相对比,所有具有仿生表面形态的齿轮的抗弯曲疲劳性能都显著增强,仿生表面形态将齿轮的弯曲疲劳寿命提高了1.06~1.42倍,其中1号形态齿轮的弯曲疲劳寿命最长,为121.5×10~3。最终优选出最佳的网格型仿生表面形态为条纹宽度150μm、条纹横向间距150μm、条纹纵向间距250μm。
     通过对具有仿生表面形态的齿轮和普通齿轮的弯曲疲劳试验和接触疲劳试验的结果数据分析,就能够探究仿生表面形态与齿轮抗疲劳性能之间的变化规律,进而能够揭示出仿生表面形态改善齿轮抗接触疲劳性能的机理:通过激光表面热处理工艺所获得的硬化层能够显著提高齿轮的抗接触疲劳强度,能够阻止疲劳裂纹的形核与扩展;激光表面热处理技术能够在齿轮表面的一定深度的范围之内积累了一定的的残余压应力。在齿轮的运行过程当中,这些残余压应力的逐渐释放,就将有助于改善齿轮的抗接触疲劳性能;另外,仿生表面形态还具有阻止疲劳裂纹的形核和扩展;储存磨屑;改善齿轮副运转过程中的润滑条件等各种优点。
     应用MSC.Nastran有限元软件进行了齿轮静力学问题的数值模拟。通过齿轮静力学问题的数值模拟所得到的形变位移云图和等效应力云图表明,在承受相同强度的均布载荷作用时,仿生表面形态齿轮和普通齿轮的形变趋势基本相同,形变量峰值均出现在齿顶。但由于仿生表面形态的存在,使得齿轮的形变量明显降低,从而,更有利于提高齿轮的抗疲劳强度,有利于减少由轮齿形变而引起的断齿等疲劳失效情况的发生。且二者的等效应力分布趋势基本相同,等效应力峰值均出现在齿根。但由于仿生表面形态的存在,使得齿轮的应力值明显降低,从而,有助于改善齿轮的抗疲劳性能,延长齿轮的疲劳寿命。
     应用MSC.Nastran有限元软件进行了齿轮动力学问题的数值模拟。通过齿轮瞬态频率响应和瞬态冲击响应问题的数值模拟所得到的曲线表明,在承受相同强度的频率和冲击激励作用时,仿生表面形态有效地降低了齿轮的形变量,进而能够减少由于轮齿变形而引起的折断等疲劳失效情况的发生。通过齿轮模态问题的数值模拟分析结果表明,仿生表面形态齿轮和普通齿轮的振型类型均为5种,且二者振型类型相同,但振型变化顺序有所区别,主振型均为弯曲振。仿生表面形态齿轮基本上各阶的最大振幅均小于普通齿轮。仿生表面形态齿轮的固有频率范围更集中,且上升趋势更平缓。由于仿生表面形态的存在,将有效地降低齿轮运行过程中的振动与噪声,从而,改善齿轮的动力学性能,延长齿轮的疲劳寿命。
     应用MSC.Nastran有限元软件进行了齿轮热力学问题的数值模拟。通过齿轮热传导问题的数值模拟所得到的温度分布云图和温度梯度云图表明,当齿面承受相同强度的热载荷时,仿生表面形态齿轮的温度峰值小于普通齿轮。随着润滑油温度的升高,润滑油的粘度会降低,形成油膜的能力将减弱,齿面更易形成点蚀,因此,仿生表面形态齿轮齿面的较低温度能够有利于减缓润滑油的失效,改善齿轮的润滑条件。普通齿轮的齿面出现两个温度峰值区域,而仿生表面形态齿轮的温度峰值区域只有一个,且区域面积较小,这都有利于延长齿轮的疲劳寿命。仿生表面形态齿轮的最大温差值小于普通齿轮,仿生表面形态的存在增大了齿面的受热面积,有利于迅速散热,从而,使得仿生表面形态齿轮齿面的温度梯度变化更为均匀,均匀的温度梯度变化对齿轮裂纹的萌生和扩展具有一定的遏阻作用。
The gears are often shifting in the automobile gearbox. The gear surface is suffering therolling and sliding alternative contact stress. The gear root is suffering the bending stress.The crack initiation is very easy for the gear. Even the bending fatigue fracture is oftenhappened to the gear. It could be the inducement of the aggravation of crack propagation.The fatigue failure of the gear will lead to the deterioration of automobile performance, thereplacement and maintenance of the parts, the increment of the fuel consumption, etc. Thehuge economic loss will be caused by it. According to the relevant principle of theengineering bionics, the gear surface and gear root had been processed by the laser. The gridbionic surface micro-morphology was processed on the gear by the laser engraving machineto improve the anti-fatigue resistance of the gear. The numerical analysis had been carriedout based on the finite element software. It is to research the influence of the bionic surfacemicro-morphology for the anti-fatigue performance of the gear from various aspects of FEM.
     According to the relevant principle of the engineering bionics, nine kinds of grid bionicsurface micro-morphology had been designed. It had been processed by the NC laserengraving machine under the appropriate parameters. It had been engraved on the gearsurface and gear root. The hardness test showed that the hardness of gear surface had beenprocessed by laser was much higher than the gear body.
     The contact fatigue experiment of the gear with bionic surface micro-morphology:According to the principle of the experimental optimum design, the experimental schemehad been arranged by the orthogonal design. The optimization test of rollers with the bionicsurface micro-morphology had been carried out. The situation of the gear fatigue failure hadbeen observed and analyzed by the stereomicroscope. The pitting ratio of the rollers hadbeen gotten. The experimental results showed that the anti-fatigue performance of all therollers with bionic surface micro-morphology was much better than that of the ordinaryroller with different extent. The pitting ratio of No.2bionic surface micro-morphology wasthe lowest among them. It was2.46%. The optimizing parameters of the bionic surfacemorphology was Stripe width50μm, Stripe transverse space150μm, Stripe longitudinal space250μm. Then the contrast test between the gear with the optimizing bionic surfacemicro-morphology and the ordinary gear had been carried out. Through the comparison ofthe average value of the pitting ratio between the two kinds of gears, the anti-fatigueresistance of the gear could be improve to291%by the optimizing bionic surfacemicro-morphology. The law of contact fatigue failure of gear had been changed by theoptimizing bionic surface micro-morphology. The pitting of the gear surface near the pitchcircle had been alleviated. The changes of the longitudinal form error of the gear with theoptimizing bionic surface micro-morphology were much smaller than that of the ordinarygear after the experiment.
     The bending fatigue experiment of the gear with bionic surface micro-morphology:According to the principle of the experimental optimum design, the experimental schemehad been arranged by the orthogonal design. The pulsating load had been applied to thedouble teeth. The bending fatigue experiment for the gears with nine kinds of gird bionicsurface micro-morphology and the ordinary gear had been carried out. The stress circle timeswere the bending fatigue life of the gears until the gears had come to the standard of thebending fatigue failure. The experimental result showed that the anti-fatigue performance ofall the gears with bionic surface micro-morphology was much better than that of the ordinarygear with different extent. The fatigue life of the gears could be prolonged to106%-142%bythe bionic surface micro-morphology. The fatigue life of No.1bionic surfacemicro-morphology was the longest among them. It was121.5×10~3. The optimizingparameters of the bionic surface morphology was Stripe width150μm, Stripe transversespace150μm, Stripe longitudinal space250μm.
     Through the analysis of the experimental results between the gear with gird bionicsurface micro-morphology and the ordinary gear, the mechanism of the anti-fatigueresistance had been improved by the bionic surface micro-morphology had been obtained.The hardness of the gear surface had been improved by the laser engraving technology. Andit was beneficial to improve the anti-fatigue resistance of the gear. The residual compressivestress had been accumulated by the laser engraving technology. And the bending tensilestress could be offset by the residual compressive stress release. The fatigue life of gearwould be prolonged by such kind of mechanism. The crack initiation and propagation wouldbe prevented by the grid unit. The existence of the grid bionic surface micro-morphologywas in favor of the storage of the abrasive dust. The abrasive wear could be prevented bysuch kind of mechanism. The existence of the grid bionic surface micro-morphology was infavor of the storage of lubricant. The lubrication conditions could be ameliorated by such kind of mechanism. The existence of the grid bionic surface micro-morphology was in favorof the increment of contact surface. The heat dissipation could be increased. Thethermoplastic deformation of gear could be decreased.
     The dynamic numerical simulation had been carried out by applying the MSC.Nastransoftware. The analysis curve of transient frequency response and transient shock responsehad been obtained. The results of the numerical simulation showed that the deformation ofthe gear with bionic surface micro-morphology was much smaller than that of the ordinarygear under the same frequency and shock excitation. The deformation of gear tooth and eventhe tooth fracture could be prevented because of the bionic surface micro-morphology. Theresults of the modal analysis showed that they both had five kinds of modal shape. Thevariation order of the modal shape of the gear with bionic surface micro-morphology wasdifferent from that of the ordinary gear. The most of maximum amplitude of the gear withbionic surface micro-morphology was smaller than that of the ordinary gear. The naturalfrequency range of the gear with bionic surface micro-morphology was much narrower thanthat of the ordinary gear. The increased trend of the natural frequency of the gear with bionicsurface micro-morphology was much slower than that of the ordinary gear. Because of theexistence of the bionic surface morphology, the vibration and noise of the gear box could beprevented. The dynamic performance of the gear box could be improved effectively. It isimportant for prolongation of fatigue life of gear.
     The thermodynamic numerical simulation had been carried out by applying theMSC.Nastran software. The cloud picture of temperature distribution and gradient of hadbeen obtained. The results of the numerical simulation showed that the temperature peak ofthe gear with bionic surface micro-morphology was much lower than that of the ordinarygear under the same thermal load. With the temperature increment of the lubricant, the oilviscosity was decreasing. The oil film was much harder to form. The pitting was much easierto form. The lower temperature on the gear surface with micro-morphology was beneficial toreduce the lubrication failure and to improve the lubrication condition. There were twotemperature peak zones on the ordinary gear surface. And there was only one temperaturepeak zone on the gear surface with micro-morphology. The area of the temperature peakzone was smaller than that of the ordinary gear. It is in favor of prolongation of fatigue life.The largest temperature difference of the gear with bionic surface micro-morphology wasmuch smaller than that of the ordinary gear. Because of the existence of bionic surfacemicro-morphology, the heating area on the gear surface was larger than that of the ordinarygear. It is important for the heat dissipation. The temperature gradient variation of the gear with bionic surface micro-morphology was much more uniform than that of the ordinarygear. The crack initiation and propagation could be prevented by such kind of mechanism.
     The static numerical simulation had been carried out by applying the MSC.Nastransoftware. The cloud picture of deformation displacement and von mises of had been obtained.The results of the numerical simulation showed that the deformation trend of the gear withbionic surface micro-morphology and the ordinary gear were almost the same under thesame uniform load. The deformation peak value of the two kinds of gears was at addendumcircle area. Because of the existence of the bionic surface micro-morphology, thedeformation of the gear surface with micro-morphology was much lower than that of theordinary gear. The deformation of gear tooth and even the tooth fracture could be preventedbecause of the bionic surface micro-morphology. The von mises distribution trend of twokinds of gears was almost the same. The von mises peak value of the two kinds of gears wasat root circle area. Because of the existence of the bionic surface micro-morphology, the vonmises of the gear surface with micro-morphology was much lower than that of the ordinarygear. The anti-fatigue resistance of the gear had been improved by the bionic surfacemicro-morphology.
引文
[1]赵宁,李虎.应用修正的P-S-N曲线计算齿轮疲劳寿命[J].现代制造工程,2007(5):105-107
    [2] Qian Xue-yi. Design of counteracting fatigue of vice gear of pin gear [J]. Light IndustryMachinery,2007,25(3):71-73
    [3] Wang Guo-jun, Yan Qing-dong, Xiang Chang-le. Study of the Load spectrum countingmethod for gears [J]. Journal of Mechanical Strength,2006,28(4):562-565
    [4] Inés Fernández Pariente, Mario Guagliano. Contact fatigue damage analysis of shotpeened gears by means of X-ray measurements [J]. Engineering Failure Analysis,2009,16(3):964-971
    [5]邓小雷,周兆忠,汪建平.工程塑料齿轮疲劳寿命有限元分析[J].轻工机械,2008,26(6):44-46
    [6] William D. Mark, Hyungdae Lee, Romano Patrick. A simple frequency-domainalgorithm for early detection of damaged gear teeth [J]. Mechanical Systems and SignalProcessing,2010,10(3):40-44
    [7]王淑仁,闫玉涛,殷伟俐.齿轮啮合摩擦疲劳磨损的计算模型[J].东北大学学报,2008,29(8):1164-1167
    [8]蔡显新,李福益,廖学军.航空薄辐齿轮辐板的抗疲劳设计[J].机械传动,2010,28(5):23-25
    [9]范垂本.齿轮的强度和试验[M].北京:机械工业出版社,1979
    [10] K. Mao, W. Li, C.J. Hooke. Polymer gear surface thermal wear and its performanceprediction [J]. Tribology International,2010,43(1):433-439
    [11] Alfonso Fuentes, Hiroyuki Nagamoto, Faydor L. Litvin. Computerized design ofmodified helical gears finished by plunge shaving [J]. Mechanical Systems and SignalProcessing,2010,199(25):1677-1690
    [12]陈赛克,王毅.基于精确模型的齿轮接触疲劳寿命有限元分析[J].机械传动,2007,31(2):81-82
    [13] Yuan Fei, Xu Ying-qian. Estimation on bending fatigue life of gears by considering loaddistribution among gear teeth [J]. Journal of Machine Design,2006,23(4):35-37
    [14]许洪斌,祖世华.随机载荷条件下齿轮弯曲疲劳强度[J].重庆工学院学报,2007,21(11):49-51
    [15] V. Savsani, R.V. Rao, D.P. Vakharia. Optimal weight design of a gear train using particleswarm optimization and simulated annealing algorithms [J]. Mechanism and MachineTheory,2010,45(3):531-541
    [16] Chen Feng, Ma Pei-sheng, Liu Jian-ye. Finite Element Analysis of the Fatigue Failureof Calcine Air Turbine Drive Gears [J]. Pipeline Technique and Equipment,2008(3):29-31
    [17]王国军,闫清东,蒋美华.双面受载齿轮弯曲疲劳设计方法研究[J].机械设计,2006,23(6):10-12
    [18] Yichao Guo, Robert G. Parker. Purely rotational model and vibration modes ofcompound planetary gears [J]. Mechanism and Machine Theory,2010,45(3):365-377
    [19]肖龙,胡世超,苗志毅.硬齿面齿轮的疲劳失效及解决方法[J].水利电力机械,2007,29(10):99-100
    [20]孙凤文,李东峰,付显随.履带式装甲底盘侧减速器齿轮接触疲劳的可靠性分析[J].南京理工大学学报,2007,31(3):296-303
    [21] Cai Wan, Chang Jian. Nonlinear analysis for gear pair system supported by long journalbearings under nonlinear suspension [J]. Mechanism and Machine Theory,2010,45(4):569-583
    [22] Cai Wan, Chang Jian. Strong nonlinearity analysis for gear-bearing system undernonlinear suspension—bifurcation and chaos [J]. Nonlinear Analysis,2010,11(3):1760-1774
    [23] José I. Pedrero, Miguel Pleguezuelos, Mariano Artés. Load distribution model along theline of contact for involute external gears [J]. Mechanism and Machine Theory,2010,45(5):780-794
    [24]徐华俊,周龙,栾振辉.基于Solidwork-scosmos的同步齿轮泵轴的疲劳分析[J].煤矿机械,2007,28(11):73-75
    [25]钱文学.某型航空发动机低压压气机轮盘疲劳可靠性分析[M].沈阳:东北大学出版社,2006
    [26]李永东,张男,张丙喜.某型坦克齿轮接触疲劳强度可靠性的Monte Carlo数值模拟[J].机械强度,2006,28(1):51-54
    [27]刘惟信.机械可靠性设计[M].北京:清华大学出版社,1996
    [28] He Zhang, Lin Hua, Xing Hui-han. Computerized design and simulation of meshing ofmodified double circular-arc helical gears by tooth end relief with helix [J]. Mechanismand Machine Theory,2010,45(1):46-64
    [29]王中应.汽车驱动桥总成齿轮疲劳试验台的研究与设计[J].汽车科技,2008,(1):25-28
    [30] Li Zhen-zi. Influence of materials and technology on gear contact fatigue property [J].Automobile Technology&Material,2006,(2):12-14
    [31] Ya You-lei, Ming Ji-zuo, Zheng Jia-he. A multidimensional hybrid intelligent methodfor gear fault diagnosis [J]. Expert Systems with Applications,2010,37(2):1419-1430
    [32] Jo l Teixeira Alves, Michèle Guingand, Jean-Pierre de Vaujany. Set of functions for thecalculation of bending displacements for spiral bevel gear teeth [J]. Mechanism andMachine Theory,2010,45(2):349-363
    [33]孙静,王小群.利用有限元法对斜齿轮弯曲疲劳强度进行研究的可行性分析[J].河北建筑工程学院学报,2008,26(4):74-77
    [34] Yi Pei,Shi He. A novel ease-off flank modification methodology for spiral bevel andhypoid gears [J]. Mechanism and Machine Theory,2010,45(8):1108-1124
    [35] Lu Xi, Zheng Song-lin, Feng Jin-zhi. Prediction of fatigue strength and region of crackinitiation of transmission gear [J]. Transaction of Material and Heat Treatment,2008,29(1):80-84
    [36] T. Osman, Ph. Velex. Static and dynamic simulations of mild abrasive wear inwide-faced solid spur and helical gears [J]. Mechanism and Machine Theory,2010,45(6):911-924
    [37] Jing Yuan, Zheng Jia-He, Yan Yang-zi. Gear fault detection using customizedmultiwavelet lifting schemes [J]. Mechanical Systems and Signal Processing,2010,24(5):1509-1528
    [38] Zhi Wei-yu, Xiao Lei-xu. Failure investigation of a truck diesel engine gear trainconsisting of crankshaft and camshaft gears [J]. Engineering Failure Analysis,2010,17(2):537-545
    [39]程哲,胡笃庆,秦国军.基于多模型的齿根疲劳裂纹齿轮寿命预测总体方案探讨[J].振动与冲击,2008,27(8):224-226
    [40] Wang Hong-bo, Ma Shi-ping, Wang Hong-gan. Study on dynamic characteristics andfatigue analysis about gear transmission based on ADAMS [J]. Machine Tool&Hydraulics,2007,35(12):180-182
    [41]杨敏,严骏.基于FEM的传动箱被动齿轮的疲劳特性研究[J].机械制造,2006,44(501):30-32
    [42]何忠蛟.输送机减速器齿轮故障分析[J].煤矿机械,2006,27(6):1096-1098
    [43]明廷锋,姚晓山.齿轮裂纹故障声发射检测技术[J].现代振动与噪声技术,2006,(6):506-510
    [44]李崇晨,屈梁生.齿轮早期疲劳裂纹的混沌检测方法[J].机械工程学报,2005,41(8):195-198
    [45] N. Saravanan, V.N.S. Kumar Siddabattuni, K.I. Ramachandran. Fault diagnosis of spurbevel gear box using artificial neural network (ANN), and proximal support vectormachine (PSVM)[J]. Applied Soft Computing,2010,10(1):344-360
    [46]张永生,杨占宏.对DF4型机车车轴齿轮镶入部疲劳裂纹定量的探讨[J].内燃机车,2005,(7):37-38
    [47]李琳.齿轮表层疲劳裂纹扩展的声发射模型[J].江西科学,2005,27(11):561-564
    [48]日本热处理技术协会[日].热处理指南[M].北京:机械工业出版社,1987,227-228
    [49]周尚臣,钟国欣,吴辉.渗碳齿轮的接触疲劳与渗碳层深度[J].一重技术,2001,(4):36-38
    [50] Wang Xin-heng, Liu Shi-jun. Study of improvement on contact fatigue strength ofcarbonitriding gears by shot peening [J]. Lubrication Engineering,2004,(6):75-76
    [51] J. Rafiee, M.A. Rafiee, P.W. Tse. Application of mother wavelet functions for automaticgear and bearing fault diagnosis [J]. Expert Systems with Applications,2010,37(6):4568-4579
    [52] Yoshihiro Fujisawa, Masaharu Komori. Method for removing burrs and pits from smallgears using a gear-shaped tool composed of glass-fiber-reinforced plastic [J]. Journal ofMaterials Processing Technology,2010,210(9):1159-1170
    [53]梁二军,梁会琴.激光淬火及熔覆层性能与物相变化的拉曼光谱研究[J].中国激光,2006,33(1):120-123。
    [54]石娟,戴忠森.齿轮激光淬火“当量硬化层深度”的计算方法[J].金属热处理,2005,30(12):88-90
    [55] Ales Belsak, Joze Flasker. Determining cracks in gears using adaptive wavelettransform approach [J]. Engineering Failure Analysis,2010,17(3):664-671
    [56]李文学,张风云,陈宏杰.92Cr钢激光淬火组织和硬度[J].包头钢铁学院学报,2005,24(3):251-253。
    [57] T. Pulecchi, A. Manes, M. Lisignoli. Digital filtering of acceleration data acquiredduring the intervention of a lift safety gears [J]. Measurement,2010,43(3):455-468
    [58]迟彩芬.激光表面处理技术的现状及其工业应用[J].中国科技信息,2005,24A:129
    [59]杨慧香,董辉跃.激光淬火齿轮与渗碳淬火齿轮的接触疲劳强度对比实验研究[J].延边大学学报(自然科学版),2006,32(2):127-130
    [60]石娟,戴忠森.激光淬火齿轮的疲劳寿命和耐磨性机理分析[J].机械传动,2005,29(2):58-60
    [61] Jun Sheng-cheng, Yu Yang, De Jie-yu. The envelope order spectrum based ongeneralized demodulation time–frequency analysis and its application to gear faultdiagnosis [J]. Mechanical Systems and Signal Processing,2010,24(2):508-521
    [62]陶晋,边新孝,王小群.从显微组织分析渗氮齿轮的弯曲疲劳寿命[J].机械设计与制造,2004,(2):88-89
    [63] José Luís Huertas Talón, Juan Carlos Cisneros Ortega, Carmelo López Gómez.Manufacture of a spur tooth gear in Ti–6Al–4V alloy by electrical discharge [J].Computer-Aided Design,2010,42(3):221-230
    [64]钱鲁阳,林太军,付昆.热处理工艺对渗碳淬火钢齿轮弯曲疲劳强度的影响[J].汽车工艺与材料,2006,(10):1-8
    [65] V. Hegadekatte, J. Hilgert, O. Kraft, N. Huber. Multi time scale simulations for wearprediction in micro-gears [J]. Wear,2010,268(1):316-324
    [66]温诗铸,杨沛然.弹性流体动力润滑[M].北京:清华大学出版社,1992:177-179
    [67] Nathan M. Bacheler, Joseph E. Hightower, Summer M. Burdick. Using generalizedlinear models to estimate selectivity from short-term recoveries of tagged red drumSciaenops ocellatus: Effects of gear, fate, and regulation period [J]. Fisheries Research,2010,102(3):266-275
    [68]河南省机械传动分会编译.圆柱齿轮强度计算标准[M].1982:8381~8386
    [69] R. Campbell, T. Harcus, D. Weirman, R.J. Fryer. The reduction of cod discards byinserting300mm diamond mesh netting in the forward sections of a trawl gear [J].Fisheries Research,2010,102(1):221-226
    [70] Zhang Zeng-qiang, Gao Chuang-kuan, YIN Xiao-liang. Study on the effect of lubricantviscosity on gear fatigue Life [J]. Mechanical Engineering&Automation,2008,(6):79-81
    [71]曹兴进.硼酸盐添加剂对齿轮表面疲劳强度的影响[J].现代制造工程2005,(2):35-37
    [72] Dong Wang, Tei Lin-shi, Jie Pan. Finite element simulation and experimentalinvestigation of forming micro-gear with Zr–Cu–Ni–Al bulk metallic glass [J]. Journalof Materials Processing Technology,2010,210(4):684-688
    [73] Zhi Peng-feng, Ming J. Zuo, Fu Lei-chu. Application of regularization dimension togear damage assessment [J]. Mechanical Systems and Signal Processing,2010,24(4):1081-1098
    [74] M.F. Imbaby, K. Jiang. Stainless steel–titania composite micro gear fabricated by softmoulding and dispersing technique [J]. Microelectronic Engineering,2010,87(5):1650-1654
    [75]黄华梁,周立,罗丹.表面镍磷、镍钴合金镀层提高铸铁齿轮接触疲劳强度研究[J].机械设计,2005,22(5):34-36
    [76] Florian K. Diekert, Dag. Hjermann, Eric Navdal, Nils Chr. Non-cooperativeexploitation of multi-cohort fisheries—The role of gear selectivity in the North-EastArctic cod fishery [J]. Resource and Energy Economics,2010,32(1):78-92
    [77] E. Mucchi, G. Dalpiaz, A. Fernàndez del Rincòn. Elastodynamic analysis of a gearpump. Part I: Pressure distribution and gear eccentricity [J]. Mechanical Systems andSignal Processing,2010,26(2):16-19
    [78]肖望强,李威.非对称齿廓齿轮弯曲疲劳强度理论分析与试验[J].机械工程学报,2008,44(10):44-50
    [79] Rune Pedersen, Ilmar F. Santos, Ivan A. Hede. Advantages and drawbacks of applyingperiodic time-variant modal analysis to spur gear dynamics [J]. Mechanical Systems andSignal Processing,2010,24(5):1495-1508
    [80] Robert G. Parker, Xiong Hua-wu. Vibration modes of planetary gears with unequallyspaced planets and an elastic ring gear [J]. Journal of Sound and Vibration,2010,329(11):2265-2275
    [81] Gill-Jeong Cheon. Numerical study on reducing the vibration of spur gear pairs withphasing [J]. Journal of Sound and Vibration,2010,329(19):3915-3927
    [82]郝瑞贤,谈嘉祯,李威.37SiMn2MoV调质齿轮弯曲疲劳强度的试验研究[J].机械传动,2008,32(2):67-68
    [83] Woohyung Kim, Hong Hee Yoo, Jintai Chung. Dynamic analysis for a pair of spur gearswith translational motion due to bearing deformation [J]. Journal of Sound andVibration,2010,24(4):27-28
    [84] Avinash Singh. Load sharing behavior in epicyclic gears: Physical explanation andgeneralized formulation [J]. Mechanism and Machine Theory,2010,45(3):511-530
    [85] Hong Zhou, Xin Tong, Zhi-hui Zhang. The thermal fatigue resistance of cast iron withbiomimetic non-smooth surface processed by laser with different parameters[J].Materials Science and Engineering,2010,45(3):511-530
    [86] H. Zhou, Y. Cao, Z.H. Zhang. Thermal fatigue behavior of3Cr2W8V die steel withbiomimetic non-smooth surface [J]. Materials Science and Engineering,2006,33(9):144-148
    [87]曹月.激光仿生耦合热作模具钢热疲劳性能研究[D],长春,吉林大学,2006
    [88]董立春.轻型卡车高速齿轮耐磨性仿生研究[D],长春,吉林大学,2007
    [89] Hong Zhou, Xin Tong, Zhi-hui Zhang. The thermal fatigue resistance of cast iron withbiomimetic non-smooth surface processed by laser with different parameters [J].Materials Science and Engineering,2006,28(5):141-147
    [90] F. Bagnoli, M. Bernabei. Fatigue analysis of a P180aircraft main landing gear wheelflange [J]. Engineering Failure Analysis,2008,15(6):654-665
    [91] Murat Inalpolat, Ahmet Kahraman. A dynamic model to predict modulation sidebandsof a planetary gear set having manufacturing errors [J]. Journal of Sound and Vibration,2010,329(4):371-393
    [92] Richard A. Phillips, Cindy Ridley, Keith Reid. Ingestion of fishing gear andentanglements of seabirds: Monitoring and implications for management [J]. BiologicalConservation,2010,143(2):501-512
    [93] Faruk Mendi, Tamer Ba kal, Kurtulu Boran. Optimization Of Module, ShaftDiameter And Rolling Bearing For Spur Gear Through Genetic Algorithm [J]. ExpertSystems with Applications,2010,5(3):240-242
    [94] Sunyoung Park, Jongmin Lee, Uijun Moon. Failure analysis of a planetary gear carrierof1200HP transmission [J]. Engineering Failure Analysis,2010,17(2):521-529
    [95] James P. Innes, Sean Pascoe. A multi-criteria assessment of fishing gear impacts indemersal fisheries [J]. Journal of Environmental Management,2010,91(4):932-939
    [96] Margalida Cerdà, Josep Alós, Miquel Palmer. Managing recreational fisheries throughgear restrictions: The case of limiting hook size in the recreational fishery from theBalearic Islands (NW Mediterranean)[J]. Fisheries Research,2010,101(3):146-155
    [97] Matthew J. Catalano, Micheal S. Allen. A size-and age-structured model to estimatefish recruitment, growth, mortality, and gear selectivity [J]. Fisheries Research,2010,13(5):407-414
    [98] M Labudovic, D Hu, R Kovacevic. Fatigue crack propagation and threshold for shallowmicrocracks under out-of-phase multiaxial loading in a gear steel [J]. EngineeringFracture Mechanics,2010,14(8):683-692
    [99] N. Saravanan, K.I. Ramachandran. Incipient gear box fault diagnosis using discretewavelet transform (DWT) for feature extraction and classification using artificial neuralnetwork (ANN)[J]. Expert Systems with Applications,2010,37(6):4168-4181
    [100]丘军林.激光加工技术[M].电工技术杂志,1996,7(4):40-42
    [101] Paula Adam, Gaietà Permanyer-Miralda, Oriol Solà-Morales. Información,conocimiento y práctica sanitaria: la participación de los profesionales como piezaclave del engranaje [J]. Medicina Clínica,2010,134(1):10-15
    [102] Yan Ding, Rhys Jones, Bruce Kuhnell. Numerical analysis of subsurface crack failurebeneath the pitch line of a gear tooth during engagement [J]. Wear,1995,185(2):141-149
    [103] Lu Xi. Investigation of the region of fatigue crack initiation in a transmission gear [J].Materials Science and Engineering,2010,527(6):1377-1382
    [104] J.R. Ottewill, S.A. Neild, R.E. Wilson. An investigation into the effect of tooth profileerrors on gear rattles [J]. Journal of Sound and Vibration,2010,329(17):3495-3506
    [105] J.Y. Dantan, J.P. Vincent, G. Goch. Correlation uncertainty—Application to gearconformity [J]. CIRP Annals-Manufacturing Technology,2010,59(1):509-512
    [106] Li Ping-wang, Guan Gan-zhang, R.J.K. Wood. Fabrication of CrAlN nanocompositefilms with high hardness and excellent anti-wear performance for gear application [J].Surface and Coatings Technology,2010,235(6):642-645
    [107] Nigel Williams. World gears up to water shortages [J]. Current Biology,2010,20(9):383-384
    [108] Zhang Wen-qiang, Sheng Yun, YU Li. Contact stress analysis and fatigue lifecalculation on gears of gearbox in fuel cell car[J]. Computer Aided Engineering,2007,16(4):36-39
    [109]郑慧燕,强建国.节点位于啮合区外的齿轮接触疲劳强度计算[J].陕西煤炭,2005,(2):17-18
    [110] Xu Fu-ren, Fan Xiao-gang, Wang Xin-hu. Contact fatigue strength of marine geartooth face [J]. Ship&Boat,2005,(2):36-40
    [111] Anjan Biswas, M.S. Ismail.1-Soliton solution of the coupled KdV equation andGear–Grimshaw model [J]. Applied Mathematics and Computation,2010,362(17):470-483
    [112]李秀莲.基于摩擦的斜齿轮齿面接触疲劳强度计算[J].农业机械学报,2005,36(4):123-124
    [113] Khadjavi Amina, Giribaldi Giuliana, Mauro Prato. From control to eradication ofmalaria: the end of being stuck in second gear [J]. Asian Pacific Journal of TropicalMedicine,2010,3(5):412-420
    [114] Roland Mathis, Yves Remond. Kinematic and dynamic simulation of epicyclic geartrains [J]. Mechanism and Machine Theory,2010,44(2):412-424
    [115] Liao Hai-ping, Zeng Cui-hua. Calculation of gearing contact fatigue strengthconsidering sliding friction between teeth [J]. Machinery Design&Manufacture,2007,(9):11-13
    [116] M. Kolivand, A. Kahraman. A load distribution model for hypoid gears using ease-offtopography and shell theory [J]. Mechanism and Machine Theory,2009,44(10):1848-1865
    [117] K. Mao, W. Li, C.J. Hooke. Friction and wear behaviour of acetal and nylon gears [J].Wear,2009,267(1):639-645
    [118] N.F.R. Cardoso, R.C. Martins, J.H.O. Seabra. Micropitting performance of nitridedsteel gears lubricated with mineral and ester oils [J]. Tribology International,2009,11(32):3491~3507
    [119] Mainak Mazumdar, David W Coit, Kelvin McBride. A highly efficient Monte Carlomethod for assessment of system reliability based on a Markov model [J]. QualityControl and Applied Statistics,2009,42(1):77-87
    [120] Hayrettin Düzcüko lu. Study on development of polyamide gears for improvement ofload-carrying capacity [J]. Tribology International,2009,42(8):1146-1153
    [121] Tao Zhen-rong. The search of calculating method of contact fatigue strength for gear[J]. Machinery Design&Manufacture,2007,(7):15-17
    [122]任露泉.试验优化设计与分析[M],长春,吉林科学技术出版社,2001
    [123] F. Riddar, S. Hogmark. On the wear of PVD-coated HSS hobs in dry gear cutting [J].Wear,2009,266(3):444-452
    [124]朱孝录,关焯等主编.齿轮的试验技术及设备[M],北京,机械工业出版社,1988年12月第一版:153-155
    [125]虞钢,虞和济.集成化激光智能加工工程[M],北京,冶金工业出版社,2002:69-89
    [126] M. Amarnath, C. Sujatha, S. Swarnamani. Experimental studies on the effects ofreduction in gear tooth stiffness and lubricant film thickness in a spur geared system [J].Tribology International,2009,42(2):340-352
    [127] Zhou Hong, Zhang Zhi-hui, Ren Lu-quan. Thermal fatigue behavior of45steel diewith bionic unsmoothed surface [J]. Materials Science and Technology,2006,6(12):561-568
    [128] S.Suresh.材料的疲劳[M],王中光译,北京,国防工业出版社,1993
    [129]阎洪.金属表面处理新技术[M],北京:冶金工业出版社,1996
    [130]朱荆璞.金属表面强化技术[M],北京:机械工业出版社,1989
    [131]王小群,霍东菊.齿根过渡曲线对齿轮弯曲疲劳强度影响的研究[J].机械设计与制造,2008,(8):114-116
    [132] Wang Guo-jun, Yan Qing-dong. New method for bending fatigue life prediction ofgear[J].Agricultural Equipment&Vehicle Engineering,2006,(1):40-42
    [133]周政平,覃国周.汽车驱动桥总成齿轮疲劳试验系统[J].容车技术与研究,2008(5):41-43
    [134] Babak Eftekharnejad, D. Mba. Seeded fault detection on helical gears with acousticemission [J]. Applied Acoustics,2009,70(4):547-555
    [135] Xu Fu-ren, Sui Peng, Fan Xiao-gang. The calculation for the bending fatigue strengthof tooth roots for marine gears [J]. Ship Science and Technology,2005,27(1):33-35
    [136]朱孝录,鄂中凯.齿轮承载能力分析[M].北京:高等教育出版社,1992
    [137]濮良贵,纪名刚.机械设计[M].北京:高等教育出版社,2007.
    [138] Yu Yang, Yi Gang-he, Jun Sheng-cheng. A gear fault diagnosis using Hilbert spectrumbased on MODWPT and a comparison with EMD approach [J]. Measurement,2009,42(4):542-551
    [139]李秀莲,雷良育,曹清林.齿间摩擦对斜齿轮齿根弯曲应力的影响[J].农业机械学报,2005,36(1):121-122
    [140] J. Lu, F.L. Litvin, J.S. Chen. Load share and finite element stress analysis for doublecircular-arc helical gears[J]. Mathematical and Computer Modelling,1995,21(10):13-30
    [141] O. Eyercioglu, M.A. Kutuk, N.F. Yilmaz. Shrink fit design for precision gear forgingdies [J]. Journal of Materials Processing Technology,2009,209(4):2186-2194
    [142] Kuan-Yu Chen, Chung-Biau Tsay. Mathematical model and worm wheel toothworking surfaces of the ZN-type hourglass worm gear set [J]. Mechanism and MachineTheory,2009,44(9):1701-1712
    [143] Cevdet Gologlu, Metin Zeyveli. A genetic approach to automate preliminary design ofgear drives [J]. Computers&Industrial Engineering,2009,57(3):1043-1051
    [144]齿轮手册编委会.齿轮手册[M].北京:机械工业出版社,2004
    [145] F.L. Litvin, J. Lu. Computerized design and generation of double circular-arc helicalgears with low transmission errors [J]. Computer Methods in Applied Mechanics andEngineering,1995,127(4):57-86
    [146] Xu Fu-ren, Fan Xiao-gang, Xu Zeng-hao. Contact fatigue strength involving theeffects of ship body deformation and friction between teeth [J].Journal of ShipMechanics,2006,10(2):104-110
    [147] Ales Belsak, Joze Flasker. Wavelet analysis for gear crack identification [J].Engineering Failure Analysis,2009,16(6):1983-1990
    [148] Arif Sugianto, Michiharu Narazaki, Minoru Kogawara. Numerical simulation andexperimental verification of carburizing-quenching process of SCr420H steel helicalgear [J]. Journal of Materials Processing Technology,2009,209(7):3597-3609
    [149] Li Xiu-lian, Lei Liang-yu, Cao Qing-lin. Effect of the friction between teeth on thebending stress at the tooth root of helical gear [J].Transactions of the Chinese Societyfor Agricultural Machinery,2005,36(1):121-122
    [150]李秀莲.船用高速齿轮齿根弯曲疲劳强度的计算[J].热能动力工程,2009,24(3):373-377
    [151] Wilson Wang, Derek Kanneg. An integrated classifier for gear system monitoring [J].Mechanical Systems and Signal Processing,2009,23(4):1298-1312
    [152] Tomasz Barszcz, Robert B. Randall. Application of spectral kurtosis for detection of atooth crack in the planetary gear of a wind turbine [J]. Mechanical Systems and SignalProcessing,2009,23(4):1352-1365
    [153] T.-J. Yeh, Feng-Kung Wu. Modeling and robust control of worm-gear driven systems[J]. Simulation Modelling Practice and Theory,2009,17(5):767-777
    [154]林湘泉.圆柱齿轮的疲劳寿命及其可靠性探讨[J].鄂州大学学报,2007,14(5):35-37
    [155] M. Sistiaga, B. Herrmann, R.B. Larsen. Investigation of the paired-gear method inselectivity studies [J]. Fisheries Research,2009,97(3):196-205
    [156]游世辉,曾德长,冯云华.用Taylor展开随机无网格法分析齿轮弯曲疲劳强度的可靠性[J].机械设计与制造,2005,(6):39-40
    [157]游世辉,冯云华,钟志华.用随机无网格点插值法分析齿轮弯曲疲劳强度的可靠性[J].机械传动,2005,29(5):14-15
    [158] Shao Chen, Ai Wei-Quan, Lu Xi. Experimental study of the effect of break-in time onfatigue life of transmission gear [J]. Journal of Mechanical Strength,2005,27(4):541-543
    [159] Lu Xi, Zheng Song-Lin. Experimental investigation of the fatigue life of automobilefinal drive gear [J].Journal of Mechanical Strength,2008,30(4):664~667
    [160]张照智,王伟,冯帆.40CrNiZMo中硬调质齿轮弯曲疲劳强度试验研究[J].机械传动,2005,29(4):52-55
    [161] Zhang Jing-zhu, Cui Qing-bin, Xu Cheng. Fatigue life prediction of transmission gearbased on cooperation simulation technology [J]. ACTA ARMAMENTARII,2007,28(12):1424-1427
    [162] D. Mundo, G. Gatti, D.B. Dooner. Optimized five-bar linkages with non-circular gearsfor exact path generation [J]. Mechanism and Machine Theory,2009,44(4):751-760
    [163] Greg R. Binion, Micheal S. Allen, Matt J. Catalano. Direct and indirect estimates ofblack crappie size selectivity to a common sampling gear: Potential biases andlimitations for assessment [J]. Fisheries Research,2002,95(1):47-54
    [164]渐开线圆柱齿轮承载能力计算方法[M].中华人民共和国国家标准GB3480~3483
    [165]王国军,闫清东,项昌乐.18Cr2Ni4WA渗碳淬火齿轮弯曲疲劳特性试验研究[J].机械传动,2006,30(5):56-57
    [166] C. Claudin, J. Rech. Development of a new rapid characterization method of hob'swear resistance in gear manufacturing—Application to the evaluation of various cuttingedge preparations in high speed dry gear hobbing [J]. Journal of Materials ProcessingTechnology,2009,209(11):5152-5160
    [167]杜李峰.齿轮接触疲劳试验中若干关键技术的研究[D].浙江大学硕士论文,2008
    [168] R.I. Raja Hamzah, D. Mba. The influence of operating condition on acoustic emission(AE) generation during meshing of helical and spur gear [J]. Tribology International,2009,42(1):3-14
    [169]马爱军,周传月,王旭.Patran和Nastran有限元分析专业教程[M],清华大学出版社,2005
    [170]李邦国,路华鹏,胡仁喜.Patran2006与Nastran2007有限元分析实例指导教程[M],机械工业出版社,2007
    [171]谢海东,周照耀,夏伟.粉末冶金斜齿轮系统振动频率响应分析[J].齿轮传动设计与制造,2005,2(3):26-28.
    [172] N. Saravanan, S. Cholairajan, K.I. Ramachandran. Vibration-based fault diagnosis ofspur bevel gear box using fuzzy technique [J]. Expert Systems with Applications,2009,36(2):3119-3135
    [173] Ming-Shyan Huang, Chen-Jung Li, Jyh-Cheng Yu. Robust parameter design ofmicro-injection molded gears using a LIGA-like fabricated mold insert [J]. Journal ofMaterials Processing Technology,2009,209(15):5690-5701
    [174] Rao Wei-feng, Wen He-ming. Response of a transmission shaft impacted by joggledgear in the gear transmission system [J]. Explosion and Shockwaves,2005,25(2):163-170
    [175]李波,李文峰,刘宁.时变刚度渐开线直齿轮啮合冲击响应的研究[J].机械制造,2009,42(481):32-34
    [176]吴吉林.圆柱齿轮的有限元模态分析[J].煤矿机械,2005(10):57-58
    [177] N. Saravanan, K.I. Ramachandran. A case study on classification of features by fastsingle-shot multiclass PSVM using Morlet wavelet for fault diagnosis of spur bevel gearbox [J]. Expert Systems with Applications,2009,36(8):10854-10862
    [178] Thomas Deroche, Yannick Stephan, Carole Castanier. Social cognitive determinants ofthe intention to wear safety gear among adult in-line skaters [J]. Accident Analysis&Prevention,2009,41(6):1064-1069
    [179]袁卫华.推土机终传动齿轮的模态分析[J].工程机械,2008,39(6):5-7
    [180]于英华,陈棕桢.斜齿轮的参数化建模及有限元模态分析[J].设计与研究,2007(9):25-27
    [181]张宏文.椭圆齿轮有限元模态分析[J].机械传动,2009,33(1):82-84
    [182]闵好年,周玉山,邵明.开线齿轮模具成形磨削砂轮廓形的计算通式[J].现代制造工程,2006,(1):1-3
    [183] B.Y. Tay, N.H. Loh, S.B. Tor. Characterisation of micro gears produced by micropowder injection moulding [J]. Powder Technology,2009,188(3):179-182
    [184] Yang Wei, Ma Xing-guo,You Xiao-me. The modal analysis of gear assembly based onANSYS [J]. Transactions,2008,27(4):71-75
    [185] Wu Xiao-fu, Hao Yong-ping. Model analysis of eccentric gear in MENS based onANSYS [J]. Manufacturing Information,2008,(9):85-86
    [186] Sun Peng-wen, Li Jian-dong, Wu Tai-cheng. Modal analysis on gear of electronicservomechanism based on ball guide screw[J].Machinery Design&Manufacture,2009,(5):99-101
    [187] R. Enever, A.S. Revill, A. Grant. Discarding in the North Sea and on the historicalefficacy of gear-based technical measures in reducing discards [J]. Fisheries Research,2009,95(1):40-46
    [188] Tang Yong, Zhang Zhi-qiang, Tang Sheng-li. The mode and vibration response of thedouble involute gear [J]. Journal of Chongqing University,2006,29(10):61-64
    [189] Wen-Hsiang Hsieh. Kinematic synthesis of cam-controlled planetary gear trains [J].Mechanism and Machine Theory,2009,44(5):873-895
    [190] Zhou Li-feng, Zhu Ru-peng. Modal analysis of planetary gear train based on ANSYS[J]. Manufacturing Information,2009,(1):67-68
    [191]芮执元,张伟.铝锭堆垛机传动系统齿轮的有限元模态分析[J].新技术新工艺,2009,(1):30-32
    [192]董雪花.电动往复锯传动齿轮的模态分析[J].电动工具,2003(4):8-9
    [193] Qian Xue-yi. Modality and harmonic response analysis of double arc gear based onANSYS and Pro/E [J]. Light Industry Machinery,2007,25(1):63-65
    [194]毕小平,王普凯.坦克动力-传动装置性能匹配与优化[M].北京:国防工业出版社,2004
    [195] Loutridis.S.J. Gear failure prediction using multi-scale local statistics [J]. EngineeringStructures,2007,(1):12-15
    [196] Juan Liu, Zhen Shan-cui. Hot forging process design and parameters determination ofmagnesium alloy AZ31B spur bevel gear [J]. Journal of Materials ProcessingTechnology,2009,209(18):5871-5880
    [197] Tang Yong, Zhang Zhi-qiang, Xu Yan. The mode and vibration response of thedouble-circular-arc gears [J]. Journal of Hunan University of Science&Technology(Natural Science Edition),2006,21(3):47-51
    [198]肖望强,李威,韩建友.对称齿廓渐开线齿轮传动的热分析[J].农业机械学报2006,37(12):164-167
    [199] Yan Ming, Sun Zhi-li, Yang Qiang. Research on the control parameters ofcreep-thermal fatigue crack [J]. ACTA ARMAMENTARII,2008,29(4):425-429
    [200] Ancelet O, Chapuliot S. Development of a test for the analysis of the harmfulness of a3D thermal fatigue loading in tubes [J]. International Journal of Fatigue,2006,10(4):8-16
    [201] Haddar N, Fissolo A.2D simulation of the initiation and propagation of crack arrayunder thermal fatigue [J]. Nuclear Engineer and Design,2005,23(5):945-964
    [202] Sasaki K, Takahashi T. Low cycle thermal fatigue and micro-structural change ofAC2B-T6aluminum alloy [J]. International Journal of Fatigue,2006,28(3):203-213
    [203] Maillot V, Fissolo A. Thermal fatigue crack networks parameters and stability: anexperimental study [J]. International Journal of Solids and Structures,2005,42(2):742-753
    [204] Haddar N. Thermal fatigue crack networks: a computational study [J].InternationalJournal of Solids and Structures,2005,42(2):771-788.
    [205] Inés Fernández Pariente, Mario Guagliano. Contact fatigue damage analysis of shotpeened gears by means of X-ray measurements [J]. Engineering Failure Analysis,2009,16(3):964-971
    [206] F.G. O’Neill, K. Summerbell, M. Breen. An underwater laser stripe seabed profiler tomeasure the physical impact of towed gear components on the seabed [J]. FisheriesResearch,2009,99(3):234-238
    [207] Zhang Yan, You Xian-qing, Ding Feng. Study on nucleation and propagationmechanism of thermal fatigue crack of steel bonded carbide Transactions of Materialand Heat Treatment [J], October2008,29(5):81-85