西藏齿突蟾蝌蚪冷适应策略研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文通过对高海拔两栖类西藏齿突蟾(Scutiger boulengeri)蝌蚪在实验室特定低温条件下的冷适应微空间行为分布的动态变化分析、温度耐受性实验及在不同适应温度的乳酸脱氢酶(LDH)同工酶的酶量与活性比较分析,探讨了高海拔两栖类蝌蚪的部分冷适应策略。
     西藏齿突蟾蝌蚪在不同温度的行为分布是一连续、动态过程,需用多种检验方法综合利用才能进行判断;在15℃,除低海拔分布的西藏齿突蟾种群外所有实验物种蝌蚪均符合负二项分布、NeymanⅡ型分布;在10℃,高海拔两栖类蝌蚪均符合负二项分布、NeymanⅡ型分布;在5℃、0℃低温时,高海拔两栖类不同分组的西藏齿突蟾蝌蚪的负二项分布、NeymanⅡ型分布均呈现明显差异,这可能与高海拔两栖类蝌蚪在低温条件下通过不断地改变其行为分布方式来避免自身被冻伤有关。野外观察表明:高海拔两栖类蝌蚪常选择与流动河水相连的静水水体这种微生境中生存,蝌蚪应对环境温度极端变化会不断改变其行为分布方式来选择最佳生存温度以避免极端高、低温对自身身体的伤害,这种对微生境的利用能力对高海拔两栖类蝌蚪耐受极端环境温度的变化极其重要。
     两栖类蝌蚪的温度耐受性实验表明不同的驯化温度可以改变西藏齿突蟾蝌蚪、两栖类仙琴水蛙蝌蚪的最适温度、逃避温度,并具有显著影响。随着驯化温度5℃、10℃逐渐升高,其最适温度、逃避温度也在一定范围内升高,但驯化温度对低海拔的仙琴水蛙蝌蚪的最适温度、逃避温度的改变效应大于高海拔的西藏齿突蟾蝌蚪的改变效应,仙琴水蛙蝌蚪对温度的耐受范围、最适温度和逃避温度的ARRS值都大于西藏齿突蟾蝌蚪,这说明仙琴水蛙蝌蚪对环境温度变化的适应能力大于西藏齿突蟾蝌蚪。
     高海拔地区不同分组的两栖类蝌蚪,在0℃适应温度时, LDH5条带的酶相对含量最高,而在5℃、10℃、15℃适应温度时,LDH5条带的酶相对含量明显都降低,这表明酵解作用是高海拔两栖类蝌蚪的一些组织在低温﹑缺氧环境中的重要供能方式。高海拔两栖类蝌蚪同一分组的LDH总酶活性总是表现为10℃适应温度的总酶活性最高,而对低海拔
The partly cold-adaptation stratagem of the high altitude amphibian tadpole were researched in the laboratory by analyzing the high altitude amphibian tadpole of Scutiger boulengeri mainly on endpoints related to the dynamic variation of the micro-spatial behavior distribution patterns, the experiment of the temperature tolerance, and the enzyme content and activity of the lactic acid dehydrogenase(LDH) isozyme in special temperature condition.
     The behavior distribution of the Scutiger boulengeri tadpole is continuous and variable, but it can be figured out by multple testing ways. At 15℃, all of the experiment amphibian tadpoles behavior distribution fit both for the negative binomial distribution and NeymanⅡtype distribution except for the low altitude Scutiger boulengeri tadpoles. At 10℃, all of the high altitude amphibian tadpoles behavior distribution fit both for the negative binomial distribution and NeymanⅡtype distribution. At lower temperature, 5℃and 0℃, the high altitude amphibian tadpoles of the Scutiger boulengeri at different groups behavior distribution fit for or don’t fit for behavior distribution respectively. It is denoted that the high altitude amphibian tadpoles probably avoid frostbiting by varying the behavior distribution patterns at low temperature condition. The high altitude amphibian tadpoles often actively select the special microhabitat which has the connected still water body and the flowing water body in the wild. It is important that tadpoles can endure the extreme temperature variety in this kind of microhabitat, because tadpoles can be better survival through select temperature condition through migrating in these kinds of microhabitats by varying their own behavior distribution patterns.
     Different acclimation temperature causes the significant change of preferred
引文
1. Alford RA, S.J. Richards. Global amphibian declines: a problem in applied ecology. Annu Rev Ecol Syst, 1999,30:133~165
    2. Airaksinen S, T.Jokilehto, C.M.I Rbergh,etal, Heat and cold inducible regulation of HSP70 expression in zebrafish ZF4 cells. Comp. Biochem Physiol PartB, 2003,136:275~282.
    3. Beebee T.J.C. Amphibian breeding and climate. Nature,1995,374:219~220
    4. Bentley, P. J. Adaptations of amphibia to arid environments: Science, v. 1966, 152, p. 619-623
    5. Berger L, R .Speare, P.Daszak, etal. Chytridiomycosis causes amphibian mortality associated with population declines in the rainforests of Australia and Central America. Proceedings of the National Academy of Science, USA 1998. 95: 9031~9036
    6. Binette,PD.,A. R Pragay. Rever-sibility of the Lactate dehydrogenase isozyme shift induced by low oxygen tension life. Science,1977,20
    7. Brattstrom, B H. Thermal control of aggregation behavior in. tadpoles. Copeia, 1962: 38–46.
    8. Brett J.R. Some principles in the thermal requirements of fishes. Quart. Rev.Biol, 1956,31:75~86
    9. Bridges,CM. Tadpole swimming performance and activity affected by acute exposure to sublethal levels of carbaryl. Envirn. Toxicol. Chem.,1997,16(9):1935~1939
    10. Bubliy O A,A .Riiniman,F M. .Norry,et al. Variation in resistance and acclimation to low temperature stress among three geographical strains of Drosophila melanagaster. Journal of Thermal Biology. 2002, 27:337~344
    11. Burlington, RF, J.H. Sampson,: Distribution and activity of lactic dehydrogenase isozymes in. tissues from a hibernator and a non-hibernator. Comp. Biochem. Physiol., 1968, 25, 185-192
    12. Cai Q,K.B. Storey Freeze induced genes in woodfrog(Rana sylvatica):fibrinogen upregulation by freezing and dehydration. AmJ Physiol,1997,272:R1480~R1491.
    13. Cai Q,K.B. Storey. Upregulation of a novel gene by freezing exposure in the freeze-tolerant wood frog(Rana sylvatica).Gene 1997, 198:305-312.
    14. Cai Q, S.C.Greenway,KB.Storey,Differential regulation of the mitochondrial ADP/ATPtranslocase gene in wood frogs under freezing stress. Biochim. Biophys. Acta,1991,1343:69-78.
    15. Calhoon, RE, D.L. Jameson. Canonical correlation between variation in weather and variation in size in the Pacific Tree Frog, Hyla regilla, in Southern California . Copea 1970,1: 124-144.
    16. Carey,C.,and M.A. Alexander, Climate change and amphibian declines:Is there a link?Divers.Distrib. 2003.. 9:89-98
    17. 曹玉萍,白 明,马 荣,陈红波,张 昭,李 志,任珊珊 黑斑蛙蛰眠前后形态生理生态变化初探[J]. 四川动物,2000,19(3):159-162
    18. Claussen D.L. Thermal acclimation in amby stomatid salamanders. Comp. Biochem. Physiol,1977,58A:333~340
    19. Daszak P,L .Berger,A A .Cunningham,A D. Hyatt, D E.Green,R. Speare,Emerging infectious diseases and amphibian population declines. Emerg Infect Dis,1999, 5(6): 735~ 748
    20. DeBurgos, NMG, C.,Burgos, M.,Gutierrez, A,. Blanco, Effect. of temperature upon the catalytic properties of lactate dehydro -.genase isoenzymes from a poikilotherm. Biochim. biophys. Acta. (Amst.), 1973, 315, 250-258
    21. 戴强,戴建洪,李成,刘志君,王跃招.. 仙姑弹琴蛙(Rana daunchina)蝌蚪对陌生捕食者克氏原螯虾(Procambarus clarkia)的反捕反应[J].. 生物多样性, 2004, 12(5):481-487
    22. 丁岩钦. 昆虫数学生态学. 第一版. 北京:科学出版社,1994
    23. 丁岩钦. 昆虫种群数学生态学原理与应用. 第一版. 北京:科学出版社,1980,87~124
    24. 丁 建,秦厚国,叶正襄. 斜纹夜蛾幼虫在甘蓝田间的空间分布型及序贯抽样技术. 江西农业学报,2002,14(2):33~37
    25. 杜荣骞,生物统计学. 北京:高等教育出版社,1999,223~227
    26. Edgren, RA Factors controlling color change in the tree. frog, Hyla versicolor Wied. Proc. Soc. Exp. Biol. Med. 1954,87: 20 –. 23
    27. Feder M E, G E .Hefmann. Heat-shock proteins,molecular chaperones,and the stress response. Annual Review of Physiology,1999, 61:243~282
    28. Feder J H, J M Rossi,J .Solomon,et al. The consequences of expressing Hsp70 in Drosophila cells at normal temperatures. Genes and Development,1992,6:1402~1413
    29. Fox,C .J. J. “on the Coefficients of Absorption of Atmospheric Gases in Sea Water.”Pub1. Circ.Cons.Explor.Mer.,No.41,1907
    30. Fry F.E.J. Effects of the environment on animal activity. Univ Toronto Stud Biol Ser,1947,68: 1~62.
    31. Frankel,J S. Lactate dehydrogenase tissue specificity and characterization in the teleost genus Barbus. Comp.Biochem.physiol.1983,76B
    32. Fromm, P.O Heat production of frogs. Physiology Zoology, 1956,29: 234-240.
    33. Fry F. E. J. Effects of the environment on animal activity. Univ.Toronto. Stud. Biol.Ser,1947,68:1~62
    34. 范燕,吴美锡,丁汉波 .泽蛙♀×虎纹蛙♂杂种胚胎发育过程中三种酶的同工酶酶谱分析[J]. 福建师范大学(自然科学版),1990,6(1):91-98.
    35. 费梁, 叶昌缓 青藏高原十二种锄足蟾(齿突蟾属 Scutiger, 两栖纲:锄足蟾科)骨骼的比较研究. 高原生物学集刊, 1987,7,155 -169
    36. 费梁. 中国两栖动物图鉴, 河南科学出版社, 1999,4:.80-81.
    37. 冯照军,季丽萍. 温度对东方铃蟾和中华大蟾蜍肌组织 ATP 酶活性的影响[J].动物学杂志,2001, 36(5):14-17.
    38. Garland T Jr,S C. Aldolph. Why not to do two-species comparative studies:Limitations on inferring adaptation. Physiological Zoology,1994,67:797~828
    39. Gosner,K.L. A simplified table for staging Anuran embryos and larvae with notes on identification. Herpetologica,1960,16:183~190
    40. Gladden L.B, Lactate metabolism: a new paradigm for the third millennium. J.Physiol, 2004,558(1):5~30
    41. 耿宝荣,杨秋乒,饶小珍,姚 丹. 人工养殖下棘胸蛙的 LDH 同工酶冬眠前后的变化[J]. 安徽大学学报(自然科学版),2003,27(2):108~110
    42. Hall, G . V. Lactate as a fuel for mitochondrial respiration. Acta Physiol Scand, 2000, 168, 643~656
    43. Hutchison VH. Factors influencing thermal tolerance of individual organisms. In:EschWG. McFarland WReds. ThermalEcologyⅡ. Springfield:US National Technical Information Service,1976,10~26.
    44. Hadfield, S. Observations on body temperature and activity in the toad Bufowoodhouseifowleri. Copeia,1996,(4):581~582
    45. 洪伟(生态空间分布格局理论研究课题组). 生态空间分布格局的理论研究. 福建林学院学报,1994,14(1):1 ~ 5
    46. Jameson, D. L..Solutions to environmental problems. Science.1970,170:1118- 1119.
    47. Jing. X H,L. Kang Geographical variation in egg cold hardiness:A study on the adaptation strategies of the migratory locust Locusta migratiria L. Ecological Entomology,2003, 28:151~158
    48. 蒋志刚, 麋鹿行为谱及 PAE 编码系统. 兽类学报, 2000,20(1):1 ~ 12
    49. 金 梅,崔玉颖,白庆余等,中国林蛙性别控制及其生长发育的研究[J].两栖爬行动物学研究,2000, 8:213-216
    50. 金昊,吴鹤龄. 乳酸脱氢酶同工酶的基因在冬眠黄鼠中的表达[J],遗传学报,1985,12(4):295 ~ 301
    51. 金昊, 赵红, 吴鹤龄. 低温环境对小鼠乳酸脱氢酶活性的影响[J]. 遗传学报, 1985,12(3):219~223
    52. Karsen SJ, W.L. Michael, K.A. Bogade. HongKong Amphibians and Reptiles. 2nd Ed. HongKONG Provisional Urban Council, 1998.
    53. King PA,M.N. Roshlt,K.B. Storey Seasonal changes in plasma membrane glucose transport in freeze tolerant wood frogs.Can.J.Zool.1995, 73:1-9.
    54. Krebs R A,V .Loeschcke. Effects of exposure to sort term heat stress on fitness componcnis in Drosophila melanogaster. Journal of Evolutionary Biology,1994,7:39~49
    55. Krebs R A,M.E .Feder. Deleterious consequences of Hsp70 overexpression in Drosophila melanogaster Larvae. Cell Stress and Chaperoncs,1997,2:50~71
    56. Lee. R EJr, Insect cold hardiness :to freeze or not to freeze.Bioscience, 1989,39:308~313.
    57. Lillywhite H B. Behavioural thermo regulation in the bullfrog Rana catesbiana. Copeia,1970,(1):158 ~ 168.
    58. 李大筠 山蝠和黑斑蛙乳酸脱氢酶同工酶及血糖浓度的季节性变化[J]. 生理学报,1994,46(3):267~272
    59. 李大筠,胡淑辉,邱时学 黑眉锦蛇 LDH 同工酶及血糖浓度的季节变化[J]. 四川师范学院(自然科学版),1995,16(3):222~225
    60. 李新红,赵文阁,郭玉民,薛建华. 中国林蛙性腺发育及温度对其性别分化的影响[J].动物学研究,2001, 22(5):351-356.
    61. Markert,C.L., J.B. Shaklee and G.S. Whitt, Evolution of a gene, multiple genes for LDH isozymes provide a model of the evolution of gene structure, function, and regulation. Science, 1975, 189(4197):102~114
    62. Maxson.L. R,. A.C.Wilson,Lactate dehydrogenase isozymes in the genus Xenopus: Species-specific patterns Copeia 1974 4:833~838
    63. McCauley R.W.,J.M .Casselman. The final preferendumasan index of the temperature for optimum growth in fishes.World Symposiumon Aquaculture in Heated Effluents and Recirculation Systems,1981,2:81~93
    64. McNally J.D.,C.M. Sturgeon,K.B. Storey. Freeze induced expression of an ovelgene,fr47,in the liver of the freeze tolerant woodfrog(Rana sylvatica.)Biochim.Biophys.Acta.,2003, 1625:183~191.
    65. Morrison C., J.M. Hero. Geographic variation in life-history characteristics of amphibians:A review. Journal of Animal Ecology 2003 72:270-279.
    66. 马成仓, 王子浩. 中国大鲵乳酸脱氢酶同工酶研究Ⅰ组织分布[J] 水生生物学报,1996,20(3):265~270
    67. 米志平,苏学辉,代庆阳. 中华大蟾蜍冬眠前与出眠初期肝细胞超微结构观察[J].四川师范学院学报, 2000,21(1)98-101.
    68. 苗振旺. 红脂大小蠹成虫侵入孔的空间分布型研究. 山西林业科技,2002,(3):7~9
    69. Narita,J.I., S. Horiuchi, Effect of environmental. temperature upon muscle lactate dehydrogenase in. the crayfish, Procambarus clarki GIRARD. Comp. Biochem. Physiol., 1979, 64B:249-253
    70. Parmesan,C.,and G.Yone. A globally coherent fingerprint of climate change impacts across natural systems.Nature 2003. 421:37-42
    71. Piotrowski,J.S.,S.L.Annis,and J.E. Loncore. Physiology of Batrachochytrium dendrobatidis a chytrid pathogen of amphibian. Mycologia 2004. 96:9-15
    72. Pounds JA,M.L .Crump.. Amphibian declines and climate disturbance:the case the GoldenToad and the HarlequinFrog. Conserv Biol, 1994,8(1):72~85
    73. Pounds JA,M.P.L. Fogden,Campbell JH. Biological response to climate change on a tropical mountain. Nature,1999,398:611~615
    74. Pounds JA. Climate and amphibian declines. Nature,2001,410:639~640
    75. Reynolds W.W,M.E. Casterlin. Behavioral thermo regulation and the “final prefer endum”paradiuma.AmZool,1979,19: 211 ~ 224.
    76. Ron,S.R.,W.E.Duellman,L.E.Coloma,and M.Bustamante.. Population decline of the Jambato toad Atelopus ignescen(sAnura: Bufonidae)in the Andes of Ecuador.J. Herpetal. 2003. 37:116-126
    77. 商胜华,张永春. 烟田南美班潜蝇空间分布型研究. 贵州农业科学,2002,30(6): 20~22
    78. Silbermann R,M .Tatar. Reproductive costs of heat shock protein in transgenic Drosophila melanogaster Evolution,2000,54:2038~2045
    79. 宋志明,黄大明,西藏齿突蟾( Scutiger boulenger)蝌蚪的生态学研究[J]. 高原生物学集刊, 1994 12:149-153.
    80. Spielmann. H, R.P Erickson, C.J Epstein: Immunochemical studies of lactate dehydrogenase and glucose-6-phosphate dehydrogenase in preimplantation mouse embryos J Reprod Fertil ,1974, 40: 367-373
    81. Stanley S M,P A .Parsons, G E .Spence,et al. Resistance of species of the Drosophila melanogaster Subgroup to environmental extremes. Australian Journal of Zoology,1980, 28:413~421
    82. Stebbins RC,N.W Cohen. Declining amphibians. In A Natural History of Amphibians. Princeton University Press,Priceton,NJ,USA,1995,210~251
    83. Stock,M., D. Frynta,W. R. Grosse,C. Steinlein,M. Schmid. A review of the distribution of diploid, triploid and tetraploid green toads (Bufo viridis complex) in Asia including new data from Iran and Pakistan. Asiatic Herp. Res. (Berkeley) 2001,9: 77-100
    84. Storey,KB.,J.M. Storey,T.A. Churchill. De novo protein biosynthesis responses to water stresses in wood frogs:Freeze-thaw and dehydration. Cryobiology 1997, 34: 200-213.
    85. Storey K B. Metabolic adaptations supporting anoxia tolerance in reptiles:Recentadvance. Comp.Biochem.Physiol.B 1996,113:23-35.
    86. 孙儒泳. 动物生态学原理. 第一版. 北京:北京师范大学出版社,1987,26~74
    87. Thorson, T B. The relationship of water economy to terrestrialism in amphibians. Ecology 1955,36 :100-116
    88. Wallace H.,B.M .Wallace. .Sex reversal of the newt Triturus cristatus reared at extreme temperatures[J]. Int. J. Dev. Biol.,2000 44(7): 807-810.
    89. Wake DB. Declining amphibian populations. Science,1991,253:860
    90. Weller WF,D.M. Green. Checklist and current status of Canadian amphibians. Herpetol Conserv,1997,1:309~328
    91. William F,. B.J. Walker , M. Mager Tissue lactic dehydrogenase isozymes: variation in rats during prolonged cold exposure. Am J Physiol ,1965, 209: 785-789
    92. Whitt G.S., J.B.Shaklee, C.L.Markert Isozymes Ⅳ. Genetics and Evolution.1975, 381~400(C.L.Markert ed.)Academic Press,New York..
    93. Woodhams,D.C.,R.A.Alford,and G.Marantelli. Emerging disease of amphibian cured by elevated body temperature. Dis. Aquat.Orgs. 2003. 55:65-67
    94. Wolff. J. H.R. Kobel. Lactate dehydrogenase of Xenopus. laevis laevis and Xenopus borealis depends on a multiple gene. system. J. Exp. Zool. , 1982,223: 203-210
    95. 王立志,李晓晨,孙涛. 中国林蛙(Rana chensinensis)蝌蚪和大蟾蜍(Bufo gargarizans)蝌蚪的最适温度、逃避温度及致死温度.[J]. 动物学杂志,2005,40(2):23~27
    96. 王宪辉,陈 兵,康 乐. 飞蝗热休克蛋白 70cDNA 片段的克隆和序列分析. 动物学研究,2003,24:349~353
    97. 王金星,赵小凡,廖正根 休眠与非休眠期中华鳖乳酸脱氢酶同工酶的比较分析[J]. 海洋湖沼通报,1995,2:43~47
    98. 文良印, 谭玉钧, 王武. 五日龄草鱼的温度耐受性研究[J]. 青岛海洋大学学报1998,28(3):415~419
    99. 吴仲庆. 泽蛙雌核单倍体几种同工酶基因表达的研究[J]动物学研究,1990, 11 (3) 249-252.
    100.徐士霞,戴强,刘志君,王跃招. 杀虫双溶液中峨眉林蛙(Rana omeimontis)蝌蚪的行为[J] 四川动物 ,2004,3:298-302.
    101.徐士霞,姚春生,苑宇哲,刘志君,李旭东,王跃招. 除草剂阿拉特津对弹琴蛙(Rana adenopleura)蝌蚪的微空间分布型的影响[J]. 应用与环境生物学报, 2004,2:174-179
    102.徐汝梅. 种群数量的时空动物—对温室白粉虱的系统探讨. 第一版. 北京:北京师范大学出版社,1990,16~76
    103.薛国雄,乳酸脱氢酶同工酶. 生物科学动态, 1978(3):10-17
    104.Yamashita H, Y .Sato, T .Kizaki, etal. Basic fibro blast growth factor (bFGF) contributes to the enlargement of brown adipose tissue during cold acclimation. Pflugers Arch,1994, 428∶352-356.
    105.杨红艺 冬眠期和繁殖期黑龙江林蛙不同组织的乳酸脱氢酶同工酶分析[J]. 哈尔宾师范大学自然科学学报,1996,12(1):79~83
    106.尹定华,李泉森,李黎,黄天福,傅善全,罗庆明. 贡嘎蝠蛾(Hepialus gonggaensis )生态分布的研究[J]. 特产研究, 1994 1: 6-9
    107.余志伟, 邓其祥, 吴毅, 周材权, 李操, 陈秀眉, 苏舟, 陈德川, 刘继东. 二滩水电站的修建对库区陆生脊椎动物的影响和应对措施.[J] 四川师范学院学报(自然科学版),1998,19(1):129 ~134
    108.于自然,生物化学习题及实验技术. 北京:化学工业出版社. 2003,303~309
    109.Zapata A, A Villena, E.L .Cooper. Direct contacts between nerve endings and lymphoid cells in the jugular body of Rana pipiens. Experientia, 1982,38: 623-624.
    110.张继寅. 浅谈动物行为与进化及遗传的关系. 濮阳教育学院学报,1994,(1):41~42
    111.皱寿昌,花背蟾蜍(Bufo raddeiin) 秋冬季的生态学研究[J].两栖爬行动物学报, 1987, 6(3):4-8