多载波无线通信系统中的差分检测关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于信道的时变特性、用户的快速移动等原因,在某些无线应用环境中,对信道的精确估计十分困难,在这种情况下,差分检测成为了很有吸引力的一种方案,差分检测技术可以克服相干检测中载波相位难以恢复的缺点,同时简化了接收机设计。当前,多载波无线通信技术得到了广泛的研究,本论文从差分检测的实现方式出发,研究了差分检测方案在三种多载波通信系统:正交频分复用系统、多载波频域扩频系统以及二维扩频通信系统中的应用。
     本文首先介绍了多载波通信系统的特点以及差分检测技术的研究现状,总结了需要进一步解决的问题。
     本文的第二部分针对正交频分复用系统中的差分检测方式进行了研究。对于差分检测正交频分复用系统,无论采用频域差分检测还是时域差分检测,需要考虑信道不同的衰落条件。时域差分检测的性能已有文献进行了分析,而频域差分检测的性能分析还十分不完善,因此本文在不同的衰落信道条件下,分析了频域差分检测正交频分复用系统的性能,并与时域差分检测正交频分复用系统的性能进行了比较,同时,分析了符号间干扰对频域差分检测正交频分复用系统的影响,研究了多字符差分检测在频域差分检测正交频分复用系统中的应用。
     码片级差分检测方法是在直接序列扩频系统中被提出的,与一般的基于数据符号进行差分检测不同,码片级差分检测在扩频码片上进行差分检测,并使直接序列扩频系统具有抵抗信道时间选择性衰落的能力。本文第三部分提出了多载波频域扩频码片级差分检测的方法,并从理论上分析了多载波频域扩频码片级差分检测的误码率性能,讨论了信道参数对多载波频域扩频码片级差分检测性能的影响,得到了多载波频域扩频系统具有抵抗信道频率选择性衰落能力的结论,同时,本文提出了一种多符号频域扩频码片级差分检测方法,该方法的目的是为了减少载波间干扰对码片级差分检测的影响,从而进一步改善了多载波频域扩频码片级差分检测在时间选择性较强的信道中的性能。
     二维扩频通信是近年来提出的新的扩频通信方式,由于二维扩频系统从时域和频域分别对数据进行扩展频谱,因此它同时具有时域扩频和频率扩频通信系统的特点。本文最后针对二维扩频通信系统,提出了一种导引辅助的相干解调方法和一种时频码片级差分检测方法,并从理论上分析了这两种方法的误码率性能,同时对两种方法的性能进行了对比,分析结果表明时频码片级差分检测同时具有抵抗信道时间和频率选择性衰落的能力。
Because of the time variation of channel, getting the exact channel estimation and good synchronization is difficult for the receiver, the differential detection enables the receiver to detect the data symbols without knowledge of the reference phase, so it can be applied into these environments. Multi-carrier wireless communications have been obtained extensive research in these years. This thesis will respectively research the performances of differential detection on the three multi-carrier wireless communications systems: Orthogonal frequency division multiplexing (OFDM) system, multi-carrier frequency domain spread spectrum (MC-FDSS) system and Two-Dimension Spread Spectrum (2D-SS) system.We firstly introduced the characteristics of multi-carrier wireless communications and the research background of differential detection, and summarized the questions needed to be further researched.Research on the performance of differential detection in OFDM system will be introduced in the second part of this thesis. For OFDM system, the differential detection can be carried out either in time domain or in frequency. There are more results of research on the performance of time domain differential detection (TDDD) OFDM system than that of frequency domain differential detection (FDDD) OFDM system, so the further research on the FDDD is a necessary part of differential detection OFDM system. In this thesis, the performance of FDDD in different fading channels was firstly analyzed, and then we compare the results with the performance of TDDD, further more, the effect of intersymbol interference on the performance of FDDD was analyzed, at last, we obtained the results of the research on the performance of multiple-symbol differential detection FDDD system.Chip-level differential detection (CLDD) was proposed in the direct sequence spread spectrum (DS-SS) system, in which the differential encoding/detection is implemented on chips rather than on data symbols, and it had been found to make the DS-SS system resistant to the time-selective fading. In the third part of this thesis, The CLDD was proposed in MC-FDSS system, and the bit error rate (BER) performance of CLDD in MC-FDSS was analyzed, and the results of research indicated that CLDD made the MC-FDSS system resistant to the frequency-selective fading. At last, we
引文
[1] W. W. Lu. 4G research in Asia[J]. IEEE Commun. Mag., 2003,3:104~106.
    [2] Mouly M, Pautet M B. The GSM system for mobile communication. ISBN: 29507190-0-7,1992
    [3] Ojanpera T, Prasad R. An overview of air interface multiple access·for IMT-2000/UMTS[J]. IEEE Commun. Mag, 1998 36(9): 82-95.
    [4] Chuang J, Sollenberger N. Beyond 3G: Wideband wireless data access based on OFDM and dynamic packet assignment[J]. IEEE Commun. Mag, 2000, 7:78-87.
    [5] Berezdivin R, Breinig R, Topp R. Next-generation wireless communications concepts and technologies[J]. IEEE Commun. Mag, 2002,3:108-116.
    [6] Rappaport T S, Wireless Communications: Principles and Practice[M]. N J, 2nd edition, Prentice-Hall, Englewood Cliffs, 2002.
    [7] Alard M and Lassalle R. Principles of Modulation and Channel Coding for Digital Broadcasting for Mobile Receivers[S]. EBU Review-Technical, No. 224, 1989:47.
    [8] Cimini L J, Jr. Analysis and simulation of a digital mobile channel using orthogonal frequency division multiplexing[J]. IEEE Trans. Commun., 1985, 33(7): 665-675.
    [9] Bingham J A. Multicarrier modulation for data transmission: an idea whose time has become. IEEE Commun. Mag[J], 1990,28: 17-25.
    [10] ETSI. Radio broadcasting systems: Digital audio broadcasting to mobile, portable and fixed receivers[S]. European telecommunication standard, ETS, 1995: 300-401.
    [11] ETSI. Digital video broadcasting: Framing structure, channel coding and modulation for digital terrestrial television[S]. European telecommunication standard, EN, 1997:300-744.
    [12] IEEE 802.11. IEEE standard for wireless LAN Medium access control (MAC) and Physical Layer (PHY) specifications[S], 1997.
    [13] Chow P S, Tu J C, Cioffi J M. Performance evaluation of a multichannel transceiver system for ADSL and VHDSL services. IEEE JSAC in Commun., 1991, 9(6).
    [14] Zou W Y, Wu Y. COFDM: an overview[J]. IEEE, Trans. Broadcasting, 1995, 41(1): 1-8.
    [15] Michael S, Stefan A. F, Gunnar F, Heinrich M. Optimum receiver design for wireless broad-band systems using OFDM-Part Ⅰ[J]. IEEE, Trans. Commun., 1999, 47(11): 1668-1677.
    [16] Michael S, Stefan A. F, Gunnar F, Heinrich M. Optimum receiver design for wireless broad-band systems using OFDM-Part Ⅱ: A case study[J]. IEEE, Trans. Commun., 2001, 49(4): 571-578.
    [17] Kim Y H, Song I, Kim H G, Chang T, Kim H M. Performance analysis of a coded OFDM system in time-varying multipath Rayleigh fading channels[J]. IEEE Trans. Veh. Technol., 1999, 48(5): 1610-1615.
    [18] Hara, S., Prasad, R., Overview of multicarrier CDMA[J]. IEEE Communications Magazine, vol 35, Dec 1997, pp.126-133.
    [19] Lok T M, Wong T F. Transmitter and receiver optimization in multicarrier CDMA systems[J]. IEEE, Trans. Commun., 2000, 48(7): 1997-1207.
    [20] Smida B, Despins C L, Delisle G Y. MC-CDMA performance evaluation over a multipath fading channel using the characteristic function method[J]. IEEE, Trans. Commun., 2001, 49(8): 1325-1328.
    [21] Branislav M. P. Spreading sequences for multicarrier CDMA systems[J]. IEEE, Trans. Commun., 1999, 47(6): 918-926.
    [22] Hara S, Prasad R. Design and Performance of Multicarrier CDMA System in Frequency-Selective Rayleigh Fading Channels[J]. IEEE Trans. Veh. Technol., 1999, 48(5): 1584-1595.
    [23] Xing H, Rinne J, The performance analysis of a two dimensional CDMA system for frequency selective channels[C], GLOBECOM 1998, Sydney, Australia, Nov. 8-12, 1998, vol 5, 2537-2542.
    [24] Xiao L, Liang Q L, A novel MC-2D-CDMA communication systems and its detection methods[C], ICC 2000, New Orleans, USA, June 18-22, 2000, 1223-1227.
    [25] Tang Y. A column-orthogonal two dimensional spread spectrum technique [A]. 2002 IEEE International Conference on Communications, Circuits and Systems and West Sino Expositions[C]. Chengdu, China, July 2002, vol. 1: 348-352.
    [26] Hanzo L, Webb W, Keller T. Single- and Multi-carrier Quadrature Amplitude Modulation: Principles and Applications for Personal Communications, WLANs and Broadcasting[M]. Chichester, England: John Wiley & Sons, 2000: 494.
    [27] Proakis J G., Digital Communications [M]. New York: McGraw-Hill, 2001.
    [28] Pawula R F. Generic error probabilities[J]. IEEE, Trans. Commun., 1999, 47(5): 697-702.
    [29] Pawula R F. A new formula for MDPSK symbol error probability[J]. IEEE, Commun., Letter. 1998, 2(10): 271-272.
    [30] Biyari K H, Lindsey W C. Error performance of DPSK mobile communication systems over non-Rayleigh fading channels[J]. IEEE Trans. Veh. Technol., 1995, 44(2): 211-219.
    [31] Garber F D, Pursley M B. Performance of differentially coherent digital communications over frequency-selective fading channels[J]. IEEE, Trans. Commun., 1988, 36(1): 21-31.
    [32] Pooi Y K, Thian P S, Chun S N. Further results on the bit error probabilities of MDPSK over the nonselective Rayleigh fading channel with diversity reception[J]. IEEE, Trans. Commun., 1995, 43(11): 2732-2741.
    [33] Kom I. Differential phase shift keying in two-path Rayleigh channel with adjacent channel interference[J]. IEEE Trans. Veh. Technol., 1991, 40(2): 461-471.
    [34] Justing C, Chuang I. Comparison of coherent and differential detection of BPSK and QPSK in a quasistatic fading channel[J]. IEEE, Trans. Commun., 1990, 38(5): 565-567.
    [35] Noneaker D L, Pursley M B, Error probability bounds for M-PSK and M-DPSK and selective fading diversity channels[J]. IEEE Trans. Veh. Technol., 1994, 43(4): 997-1005.
    [36] Ma Y, Teng J L, Subbarayan P. Error probability for coherent and differential PSK over arbitrary Rician fading channels with multiple cochannel interferersfJ]. IEEE, Trans. Commun., 2002, 50(3): 439-441.
    [37] Smith W S, Wittke P H. Differential detection of GMSK in Rician fading[J]. IEEE, Trans. Commun., 1994, 42(2/3/4): 216-220.
    [38] Nevio B, Antonio S, Luciano T. Further results on differential detection of GMSK signals[J]. IEEE, Trans. Commun., 1997,45(7): 761-764.
    [39] Giorgio M V, Umberto M, Michele M. Differential detection algorithms for MSK signals over AWGN and frequency-flat Rayleigh fading channels[J]. IEEE, Trans. Commun., 1999, 47(12): 1820-1827.
    [40] Molisch A F, Bonek E. Reduction of error floor of differential PSK in mobile radio channels by adaptive sampling[J]. IEEE Trans. Veh. Technol., 1998,47(4): 1276-1280.
    [41] Gordon L S. Soft decision direct-sequence DPSK receivers[J]. IEEE Trans. Veh. Technol., 1988,37(3): 151-157.
    [42] Pooi Y K. Bit-error probabilities of 2 and 4DPSK with nonselective Rayleigh fading, diversity reception, and correlated Gaussian interference[J]. IEEE, Trans. Commun., 1997, 45(4): 400-403.
    [43] Pooi Y K. Bit error probabilities MDPSK over the nonselective Rayleigh fading channel with diversity reception[J]. IEEE, Trans. Commun., 1991, 39(2): 220-224.
    [44] Mahesh K V. A systematic approach to the design and analysis of optimum DPSK receivers for generalized diversity communications over Rayleigh fading channels[J]. IEEE, Trans. Commun.,1999, 47(9): 1365-1375.
    [45] Stojanovic M, Zvonar Z. Differentially coherent diversity combining techniques for DPSK over fast Rayleigh fading channels[J]. IEEE Trans. Veh. Technol., 2000, 49(5): 1928-1933.
    [46] Adachi F. Postdetection optimal diversity combiner for DPSK differential detection[J]. IEEE Trans. Veh. Technol., 1993,42(3): 326-337.
    [47] Ma Y, Teng J L, Subbarayan P. Error Probability for Coherent and Differential PSK Over Arbitrary Rician Fading Channels With Multiple Cochannel InterferersfJ]. IEEE Trans. on Commun., 2002, 50(3), 429-441.
    [48] Ma Y, Zhang Q T. Accurate evaluation for MDPSK with noncoherent diversity[J]. IEEE, Trans. Commun., 2002, 50(7): 1189-1200.
    [49] Mastumoto Y, Kubota S, Kato S. Error-bound formulation for multichannel reception of M-DPSK and pilot-aided M-PSK over Rayleigh-fading channels with postdetection combining[J]. IEEE Trans. Veh. Technol., 1996,45(3): 475-483.
    [50] Roberto C, Silvano P. Performance of CDMA with differential detection in the presence of phase noise and multiuser interference[J]. IEEE, Trans. Commun., 2004, 52(3): 498-506.
    [51] Liu H, Sivesk Z. Differentially coherent decorrelating detector for CDMA single-path time-varying Rayleigh fading channels[J]. IEEE, Trans. Commun., 1999 47(4): 590-597.
    [52] Ma Y, Pasupathy S, Lim T J. Analysis of differentially coherent linear receivers over Rician-faded CDMA channels[J]. IEEE Trans. Wireless, Commun., 2003, 2(4): 758-772.
    [53] Karystinos G N, Pados D A. On DPSK demodulation of DS/CDMA signals[C]. IEEE GLOBECOM 1999, vol.5: 2487 - 2492.
    [54] Sasaki S, Kikuchi H, Zhu J, et al. Performance of differential parallel combinatorial CDMA systems in Rayleigh fading channels[C]. IEEE, 4th ISSSTA 1996, vol.2: 697-701.
    [55] Wang K, Ge H Y. Differential transceiver design for DS-CDMA systems with transmit diversity[C]. IEEE, MILCOM 2001, vol.2: 1310 - 1314.
    [56] D'Amours C, Moher M, Yongacoglu A, Wang J. RAKE receiver structures for differential and pilot symbol-assisted detection of DS-CDMA signals in frequency-selective Rayleigh fading channels[C]. IEEE, GLOBECOM 1993 vol.3: 1798 - 1802.
    [57] Duel-Hallen A, Andrijic S. DPSK diversity combining for CDMA frequency selective fading channels[C]. The Thirty-First Asilomar Conference on Signals, Systems & Computers, 1997 vol.2:1390-1394.
    [58] Qu S, Sheikh A U. An analysis of error probability of a cellular CDMA downlink with M-ary DPSK in a Rician/Rayleigh fading environment[C]. 2nd International Conference on Universal Personal Communications, 1993 vol.2: 965 - 969.
    [59] Cavallini A, Giannetti F, Luise M, Reggiannini R. Chip-level differential encoding/detection of spread-spectrum signals for CDMA radio transmissions over fading channels[J]. IEEE Trans. on Commun., vol.45, pp.456-463,Apr.1997.
    [60] Colavolpe G, Raheli R. Improved differential detection of chip-level differentially encoded direct-sequence spread-spectrum signals[J]. IEEE Trans. Wireless, Commun., 2002, 1(1): 125-133.
    [61] Gorday P; Martin F; Qicai S.Performance of chip-level differential detection with phase noise[C]. IEEE, WCNC 2004, Vol.1: 537 - 542.
    [62] Howlader M M K, Chang, H. Performance of chip-level differential detection for DS-CDMA in multipath fading channels[C]. IEEE, MILCOM 2003, Vol.2: 1065 -1070.
    [63] Qicai S, O'Dea R J. Martin, F. A new chip-level differential detection system for DS-CDMA[C]. IEEE, ICC 2002. Vol.1: 544 - 54.
    [64] Schober R; Lampe L H-J. DF-DD for multi-chip differentially encoded DS-CDMA[C]. IEEE GLOBECOM 2003, Vol.4: 2325-2329.
    [65] Zimmermann G; Rosenberger M; Dostert S. Theoretical bit error rate for uncoded and coded data transmission in digital audio broadcasting[C]. ICC 96, Dallas, USA, 1996: 297 -301.
    [66] Lu J, Tjhung T T, Adachi F, et al. BER performance of OFDM MDPSK system in frequency selective Rician fading with diversity reception[J]. IEEE Trans. on Vehicular Technology, 2000,49(4): 1216-1225.
    [67] Liu D Z, Wei C H. DAPSK-OFDM transmissions for high date-rate digital mobile radio[C]. Circuits and Systems, ISCAS, Sydney, Australia, 2001: 417 -420.
    [68] Matthias L. Comparison of frequency and time domain differential modulation in an OFDM system for wireless ATM[C]. Vehicular Technology Conference, Houston, Texas, USA, IEEE 49th, 1999:877-883.
    [69] Hasholzner R, Drewes C, Joachim S, et al. Frequency domain differentially encoded QPSK for OFDMA broadband radio in the local loop[C]. 6th European Conference on Fixed Radio Systems and Networks (ECRR'98), Bergen, Norway, 1998: 293-298.
    [70] Wetzker G, Dukek M, Ernst H, Jondral F. Multi-carrier modulation schemes for frequency selective fading channels[C]. IEEE, ICUPC 1998, vol.2: 939 - 943.
    [71] Song L J, Tang Y X, Li S Q, BER Performance of Differential Demodulation OFDM System in Multipath Fading Channels, IEEE, Globecom 2003, vol.1: 1-5
    [72] Zhong K, Tjeng Thiang Tjhung, Adachi F. A general SER formula for an OFDM system with MDPSK in frequency domain over Rayleigh fading channels[J]. IEEE, Trans. Commun., 2004, 52(4): 584-594.
    [73] Haas E, Kaiser S. Two-dimensional differential demodulation for OFDM[J]. IEEE, Trans. Commun., 2003, 51(4): 580-586.
    [74] Elnoubi S M, Sourour E, Elshamly A. Performance of multicarrier CDMA with DPSK modulation and differential detection in fading multipath channels[J]. IEEE Trans. Veh. Technol., 2002, 51(3): 526-536.
    [75] McCormick A C, Grant P M, Povey G J R. A differential phase-shift keying multicarrier code division multiple access system with an equal gain combining receiver[J]. IEEE, Trans. Veh. Technol., 2000, 49(5): 1907-1917.
    [76] Elnoubi S M, Elshamly A A. Performance of multi-carrier CDMA with MSK modulation and one-bit differential detection in a multi-path fading channel[C]. IEEE VTC 2000, Fall. vol.3: 1041 1048.
    [77] Elnoubi S M; Elshamly A A. Effect of overlapping between successive carriers of multicarrier CDMA with DPSK modulation and differential detection in a static fading multipath channel[C]. IEEE, ISCC 1999: 460-466.
    [78] Einoubi S M, Elshamly, A A. Performance of orthogonal multi-carrier CDMA with DPSK modulation and differential detection in a fading multi-path channel[C]. IEEE, VTC 1999 Spring, vol.2: 899-903.
    [79] Maxey J J, Ormondroyd R F. Non-coherent differential encoded multicarrier SS modulation schemes using low-rate orthogonal convolutional coding in frequency selective Rayleigh fading[C]. IEEE VTC 1997 Spring, vol.3: 2045-2049.
    [80] Xing H N, Jarske P, Renfors M. The performance analysis of a multi-carrier CDMA system using DQPSK modulation for frequency selective fading channels[C]. First IEEE Signal Processing Workshop, 1997: 245-248.
    [81] Krzymien L, Tomba W A. On the use of chip-level differential encoding for the uplink of MC-CDMA systems[C]. IEEE, VTC 98. Vol.2:958-962.
    [82] Dariush D, Marvin K S. Multiple-symbol differential detection of MPSK[J]. IEEE, Trans. Commun., 1990, 38(3): 300-308:
    [83] Robert S, Wolfgang H G, Johannes B H. Decision-feedback differential detection of MDPSK for flat Rayleigh fading channels[J]. IEEE, Trans. Commun., 1999,47(7): 1025-1035.
    [84] Robert S, Ma Y, Subbarayan P. On the error probability of decision-feedback differential detection[J]. IEEE, Trans. Commun., 2003, 51(4): 535-538.
    [85] Adachi F, Sawahashi M. Decision feedback differential phase detection of M-ary DPSK signals[J]. IEEE Trans. Veh. Technol., 1995, 44(2): 203-210.
    [86] Wang Q, Zeng M, Yashima H, Suzuki J. Multiple-Symbol Detection of MPSK in Narrow-Band Interference and AWGN. IEEE, Trans. Commun., 1998, 46(4): 460-463.
    [87] Miller S L, O'Dea R J. Multiple symbol differential detection for trellis-coded MPSK over Rayleigh fading channels[J]. IEEE, Commun., Letter, 1997, 1(1): 2-4.
    [88] Kenneth M. Mackenthun, Jr. A fast algorithm for multiple-symbol differential detection of MPSK[J]. IEEE, Trans. Commun., 1994, 42(2/3/4): 1471-1474.
    [89] Li B. A new reduced-complexity algorithm for multiple-symbol differential detection[J]. IEEE, Commun., Letter. 2003, 7(6): 269-271.
    [90] Marvin K S, Mohamed-Slim A. Multiple symbol differential detection with diversity reception[J]. IEEE, Trans. Commun., 2001, 49(8): 1312-1319.
    [91] Okada M, Hara S, Morinaga N. Bit error rate performance of orthogonal multicarrier modulation radio transmission systems[J]. IEICE Trans-Commun, 1993, E76-B(2): 113-119.
    [92] ITU-R. Recommendation M. 1225: Requirement for IMT-2000[S], 1997: 28.
    [93] Li Y, Seshadri N, Ariyavisitakul S, Channel estimation for OFDM systems with transmitter diversity in mobile wireless channels[J]. IEEE J. Select. Areas. Commun., 1999, 17: 461-471.
    [94] Pal K. Frenger, N. Arne B. Svensson. Decision-Directed Coherent Detection in Multicarrier Systems on Rayleigh Fading Channels[J], IEEE Trans. on Vehi. Tech. 1999, 48(2), 490-498.
    [95] Helstrom C. Calculating Error Probabilities for Intersymbol and Cochannel Interference[J]. IEEE Trans. on Commun., vol. 34, May. 1986, 430-435.
    [96] Schumacher K, O'Reilly J J. Relationship between the saddlepoint approximation and the modified chernoff bound[J], IEEE Transactions on Communications, vol. 38, Mar. 1990, 270-272.
    [97] Li Y. Cimini L J Jr. "Bounds on the Interchannel Interference of OFDM in Time-Varying Impairments," IEEE Transactions on Communications, March. 2001, Vol. 49, No. 3.
    [98] Russell M. Stuber G L S. Interchannel interference analysis of OFDM in a mobile environment. VTC'95, Chicago, IL, July 1995, pp. 820-824.
    [99] Zhou S L, Georgios B, Ananthram S. Digital Multi-Carrier Spread Spectrum Versus Direct Sequence Spread Spectrum for Resistance to Jamming and Multipath[J]. IEEE Trans. on, Commun., 2002, 50(4): 643-655.
    [100] Robert S, Wolfgang H G, and Johannes B H. Decision-feedback differential detection based on linear prediction for 16DAPSK signals transmitted over fiat Ricean fading channels[J]. IEEE, Trans. Commun., 2001, 49(8): 1339-1342.
    [101] Leonard E M, Lee J S. BER expressions for differentially detected π/4 DQPSK modulation[J]. IEEE, Trans. Commun., 1998, 46(1): 71-81.
    [102] Adachi F. Error rate analysis of differentially encoded and detected 16APSK under Rician fading[J]. IEEE Trans. Veh. Technol., 1996, 45(1): 1-11.
    [103] Liu C L, Feher K. Bit error rate performance of π/4-DQPSK in a frequency-selective fast Rayleigh fading channel[J]. IEEE Trans. Veh. Technol., 1991,40(3): 558-568.
    [104] Ochiai H, Imai H. On the error rates of differentially detected narrowband π/4-DQPSK in Rayleigh fading and Gaussian noise[J]. IEEE Trans. Veh. Technol., 2000, 49(1): 74-82.
    [105] Moriyama S, Tsuchida K, Sasaki M. Digital transmission of high bit rate signals using 16DAPSK-OFDM modulation scheme[J]. IEEE Trans. Broadcasting, 1998,44(1): 115-122.
    [106] Engels V, Rohling H. Multi-resolution 64-DAPSK modulation in a hierarchical COFDM transmission system[J]. IEEE Trans. Broadcasting, 1998,44(1): 139-149.
    [107] Marsland I D, Mathiopoulos P T. Differential detection of turbo codes for Rayleigh fast-fading channels[J]. IEEE, Commun., Letter. 1998, 2(2):42-44.
    [108] Robert S, Wolfgang H G, Johannes B H. Decision-feedback differential detection based on linear prediction for 16DAPSK signals transmitted over flat Ricean fading channels[J], IEEE, Trans. Commun.,2001,49(8): 1339-1342
    [109] Hoeher P, Lodge J. "Turbo DPSK": Iterative Differential PSK Demodulation and Channel Decoding[J]. IEEE, Trans. Commun., 1999,47(6): 837-843.
    [110] Lutz H.-J L, Robert S. Iterative decision-feedback differential demodulation of bit-interleaved coded MDPSK for flat Rayleigh fading channels[J]. IEEE, Trans. Commun., 2001,49(7): 1176-1184.
    [111] Fischer R F H, Lampe L H-J, Stefan H M-W. Coded modulation for noncoherent reception with application to OFDM[J]. IEEE Trans. Veh. Technol., 2001, 50(4): 910-919.
    [112] Liu Z Q, Giannakis G B. Block differentially encoded OFDM with maximum multipath diversity[J]. IEEE Trans. Wireless, Commun., 2003 2(3): 420-423.
    [113] Wu Y, Lim T J. Turbo multiuser detection for differentially modulated CDMA[J]. IEEE Trans. Wireless, Commun., 2004, 3(2): 348-352.
    [114] Rohling H, May T. OFDM systems with differential modulation schemes and turbo decoding techniques[C]. International Zurich Seminar on Broadband Communications, 2000:251-255.
    [115] Rohling H, May T, Comparison of PSK and DPSK modulation in a coded OFDM system[C]. IEEE, VTC 1997 Vol.2: 870 - 874.
    [116] Tarokh V, Jafarkhani H. A Differential Detection Scheme for Transmit Diversity[J]. IEEE Journal SAC, 2000,18(7): 1169~1174.
    [117] Jafarkhani H, Tarokh V. Multiple transmit antenna differential detection from generalized orthogonal design[J]. IEEE Trans. Inf. Theory, 2001,47(6): 2626~2631.
    [118] Hughes B L. Differential space-time modulation. IEEE Trans. Inf. Theory, 2000, 46(7): 2567~2578.
    [119] Warrier D, Madhow U. Spectrally Efficient Noncoherent Communication[J]. IEEE Trans. Mo. Theory, 2002,48(3): 651-667.
    [120] Hochwald B M, Marzetta T L, Richardson T J. System Design of Unitary Space-Time Constellations[J]. IEEE Trans. Info. Theroy, 2000, 46(6): 1962-1973.
    [121] Hassibi B, Hochwald B M, Cayley. Differential Unitary Space-Time Codes[J]. IEEE Trans. Info. Theory, 2002,48(6): 1485-1503.