MIMO无线通信系统中的空时编码与预编码研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
多输入多输出(MIMO)系统因为在容量和分集方面的卓越性能,成为未来无线通信系统的发展方向。近十年来,针对MIMO系统的通信技术,如空时编码、空间复用和空分多址,成为无线通信领域的研究热点并取得很多进展。本论文研究了MIMO系统中的差分空时编码技术、单载波频域均衡技术、多用户下行链路预编码技术以及用户调度技术。论文的主要创新点列举如下:
     1.提出了用发射信号矩阵的幅度分量传递多个比特以提高频谱效率的差分空时编码方案,并针对该方案推导了利用相邻的两个编码周期的接收信号的差分检测算法,以及对发射信号矩阵幅度分量的序列检测算法。针对采用QAM信息字符构造差分编码矩阵的差分空时块码,提出了一种避免信道能量估计的差分检测算法。
     2.针对发射天线数为偶数的系统,提出了一种降低接收机计算复杂度的差分酉空时编码方案,该方案利用Alamouti空时码的正交特性和循环群的设计构造差分空时编码矩阵,能实现最大的天线分集。同传统的采用对角信号矩阵的差分酉空时编码相比,所提方案在接收端的差分检测需要搜索的酉矩阵个数大大减少,且由于所采用的循环群中的酉矩阵的维数和个数都减少了,从而也简化了设计并提高了检测性能。
     3.针对存在衰落相关性的MIMO信道,提出了利用衰落相关性信息设计差分空时块码的初始化矩阵的方法,设计准则是使差分检测的平均成对错误概率的上界达到最小。最优的设计同时考虑发射端和接收端的衰落相关阵,但需要采用数值方法求解。通过忽略接收端的相关性,可以得到有闭合表达式的次优设计,其性能接近最优设计。
     4.针对快时变MIMO信道,利用时变信道的基扩展模型,提出了一种块差分空时编码方法。该方法利用基扩展模型中各复指数基的系数在一个块内为恒定的特性,将一个块分为多个子块并在各子块间进行差分编码。通过发射端的块交织和接收端的解块交织,信号检测不需要信道状态信息,从而避免了对快时变MIMO信道的估计。通过合理地设计差分编码的子块长度及差分编码矩阵,所提方案能同时实现最大的天线分集和Doppler分集。
     5.考虑针对频率选择性信道频域均衡的单载波传输,证明了线性MMSE频域均衡与时域均衡的等效性。当信道的频率响应在离散Fourier变换(DFT)的频点上有零点时,考察了块长度对单载波频域均衡性能的影响并与未编码的OFDM进行了比较。推导了带时域判决反馈的MMSE频域均衡器设计,在推导中考虑到了实际使用的反馈抽头数随块内已检测的字符数的变化。针对两路空间复用的空时块码信号,推导了接收端的频域干扰抑制和MMSE均衡算法。在此基础上,提出了根据均衡后的均方误差的大小进行排序的分层检测算法,通过利用接收分集提高了后检测的一路信号的误码率性能,并进一步提出了迭代检测算法使两路信号的误码率性能都得到了提高。
     6.针对采用块对角化预编码的MIMO多用户下行链路,分析了用户天线数对空间自由度及系统容量的影响,提出根据系统配置对用户天线进行选择以提高系统容量。直接最大化系统容量的最优用户天线选择算法需要很高的计算复杂度,为了降低计算复杂度,提出了两种基于等效信道
Because of its extraordinary capacity and diversity, multiple-input multiple-output (MIMO) system has become the direction of future development of wireless communication systems. In the past decade, techniques for MIMO system, such as space-time coding, spatial multiplexing, and space division multiple access (SDMA), have received extensive research and made significant progress. This thesis studies several techniques in the framework of MIMO, including differential space-time coding, single-carrier frequency domain equalization, multi-user downlink precoding, and user scheduling. The main contributions of the thesis are listed as follows:
     1. To increase the spectral efficiency of differential space-time coding, a scheme to deliver multiple bits by the amplitude component of transmit signal matrix is proposed. For the proposed scheme, a differential detection algorithm based on received signals in two adjacent coding intervals is derived, as well as a sequence detection algorithm for the amplitude component of transmit signal matrix. For differential space-time block code with differential encoding matrix constructed from QAM symbols, a differential detection algorithm which avoids channel power estimation is proposed.
     2. For the case when the number of transmit antennas is even, a differential unitary space-time modulation (DUSTM) scheme is proposed to reduce the computational complexity of the receiver. The proposed scheme exploits the orthogonal property of the Alamouti code and the design of cyclic group to construct differential encoding matrix, and achieves full antenna diversity. Compared with conventional DUSTM based on diagonal signals, the number of unitary matrices to be searched by the differential detector is significantly reduced. Furthermore, the proposed scheme reduces the dimensionality and cardinality of the cyclic group, thereby simplifying the design and improving the error performance.
     3. For MIMO channels with fading correlation, a scheme is proposed to design the initialization matrix of differential space-time block code by utilizing the information about fading correlation. The design is conducted by minimizing the upper bound on the average pairwise error probability of the differential detector. The optimal design takes into account fading correlation at both transmitter and receiver, but needs to be solved numerically. By ignoring fading correlation at the receiver, a suboptimal solution can be obtained, which has closed-form expression and performs close to the optimal design.
     4. For rapidly time-varying MIMO channels, a block differential space-time coding scheme is proposed by utilizing the basis expansion model (BEM) for time-varying channels. Relying on the fact that the coefficients of complex exponential basis of BEM are fixed for a block , the proposed scheme subdivide a block into multiple subblocks and performs differential encoding across the subblocks. By block interleaving at the transmitter and block deinterleaving at the receiver, signal detection does not need channel state information, and hence avoid estimation of the rapidly time-varying MIMO channel. By properly designing subblock length and differential encoding matrices, the proposed scheme can achieve full antenna diversity and Doppler diversity simultaneously.
     5. For single-carrier (SC) transmission over frequency-selective channels designed for frequency domain equalization (FDE), the equivalence between linear MMSE FDE and time-domain equalization is
引文
[1] I. E. Telatar, “Capacit of multi-antenna Gaussian channels,” European Transactions on Telecommunications, vol. 10, no. 6, pp. 585-595, Nov./Dec. 1999.
    [2] G. J. Foschini and M. J. Gans, “On limits of wireless communications in a fading environment when using multiple antennas,” Wireless Personal Communications, vol. 6, no. 3, pp. 311-335, Mar. 1998.
    [3] G. J. Foschini, “Layered space-time architecture for wireless communication in a fading environment when using multi-element antennas,” Bell Labs Technical Journal, vol. 2, pp. 41-59, 1996.
    [4] P. W. Wolniansky, G. J. Foschini, G. D. Golden, et al. “V-BLAST: A new architecture for realizing very high data rates over rich-scattering wireless channels,” IEEE International Symposium on Signals, Systems, and Electronics, 1998, pp. 295-300.
    [5] S. M. Alamouti, “A simple transmit diversity technique for wireless communications,” IEEE Journal on Selected Areas in Communications, vol. 16, no. 8, pp. 1451-1458, Oct. 1998.
    [6] V. Tarokh, N. Seshadri, and A. R. Calderbank, “Space-time codes for high data rate wireless communication: Performance criterion and code construction,” IEEE Transactions on Information Theory, vol. 44, no. 2, pp. 744-765, Mar. 1998.
    [7] V. Tarokh and A. R. Calderbank, “Space-time block codes from orthogonal designs,” IEEE Transactions on Information Theory, vol. 45, no. 5, pp. 1456-1467, July 1999.
    [8] B. Hassibi and B. M. Hochwald, “High-rate codes that are linear in space and time,” IEEE Transactions on Information Theory, vol. 48, no. 7, pp. 1804-1824, July 2002.
    [9] R. W. Heath and A. J. Paulraj, “Linear dispersion codes for MIMO systems based on frame theory,” IEEE Transactions on Signal Processing, vol. 50, no. 10, pp. 2429-2441, Oct. 2002.
    [10] H. Sampath, S. Talwar, J. Tellado, V. Erceg, and A. Paulraj, “Generalized linear precoder and decoder design for MIMO channels using the weighted MMSE criterion,” IEEE Transactions on Communications, vol. 49, no. 12, pp. 2198-2206, Dec. 2001.
    [11] H. Jafarkhani, “A quasi-orthogonal space-time block code,” IEEE Transactions on Communications, vol. 49, no. 1, pp. 1-4, Jan. 2001.
    [12] C. B. Papadias and G. J. Foschini, “A space-time coding approach for systems employing four transmit antennas,” IEEE International Conference on Acoustics, Speech, and Signal Processing, 2001, pp. 2481-2484.
    [13] N. Sharma and C. B. Papadias, “Improved quasi-orthogonal codes through constellation rotation,” IEEE International Conference on Acoustics, Speech, and Signal Processing, 2002, pp. 3968-3971.
    [14] L. Xian and H. Liu, “Optimal rotation angles for quasi-orthogonal space-time codes with PSK modulation,” IEEE Communications Letters, vol. 9, no. 8, pp. 676-678, Aug. 2005.
    [15] W. Su and X.-G. Xia, “Quasi-orthogonal space-time block codes with full diversity,” IEEE Global Telecommunications Conference, 2002, pp. 1098-1102.
    [16] A. Lozano and C. Papadias, “Layered space-time receivers for frequency-selective wireless channels,” IEEE Transactions on Communications, vol. 50, no. 1, pp. 65-73, Jan. 2002.
    [17] Y. Li and Z.-Q. Luo, “Parallel detection for V-BLAST system,” IEEE International Conference on Communications, 2002, pp. 340-344.
    [18] B. Hassibi, “A fast square-root implementation for BLAST,” IEEE Asilomar Conference on Signals, Systems, and Computers, 2000, pp. 1255-1259.
    [19] G. Jongren, M. Skoglund, and B. Ottersten, “Combining beamforming and orthogonal space-time block coding,” IEEE Transactions on Information Theory, vol. 48, no. 3, pp. 611-627, Mar. 2002.
    [20] G. Jongren and M. Skoglund, “Quantized feedback information in orthogonal space-time block coding,” IEEE Transactions on Information Theory, vol. 50, no. 10, pp. 2473-2482, Oct. 2004.
    [21] S. T. Chung, A. Lozano, and H. C. Huang, “Approaching eigenmode BLAST channel capacity using V-BLAST with rate and power feedback,” IEEE Vehicular Technology Conference, 2001, pp. 915-919.
    [22] R. Kalbasi, D. D. Falconer, and A. H. Banihashemi, “Optimum power allocation for a V-BLAST system with two antennas at the transmitter,” IEEE Communications Letters, vol. 9, no. 9, pp. 826-828, Sept. 2005.
    [23] S. H. Nam, O. Shin, and K. B. Lee, “Transmit power allocation for a modified V-BLAST system,” IEEE Transactions on Communications, vol. 52, no. 7, pp. 1074-1079, July 2004.
    [24] H. Zhuang, L. Dai, S. Zhou, and Y. Yao, “Low complexity per-antenna rate and power control approach for closed-loop V-BLAST,” IEEE Transactions on Communications, vol. 51, no. 11, pp. 1783-1787, Nov. 2003.
    [25] E. Viterbo and J. Boutros, “A universal lattice code decoder for fading channels,” IEEE Transactions on Information Theory, vol. 45, no. 5, pp. 1639-1642, July. 1999.
    [26] O. Damen, A. Chkeif, and J.-C. Belfiore, “Lattice code decoder for space-time codes,” IEEE Communications Letters, vol. 4, no. 5, pp. 161-163, May 2000.
    [27] B. M. Hochwald, T. L. Marzetta, T. J. Richardson, W. Sweldens, and R. Urbanke, “Systematic design of unitary space-time constellations,” IEEE Transactions on Information Theory, vol. 46, no. 6, pp. 1962-1973, Sept. 2000.
    [28] B. M. Hochwald and T. L. Marzetta, “Unitary space-time modulation for multiple-antenna communications in Rayleigh flat fading,” IEEE Transactions on Information Theory, vol. 46, no. 2, pp. 543-564, Mar. 2000.
    [29] V. Tarokh and H. Jafarkhani, “A differential detection scheme for transmit diversity,” IEEE Journal on Selected Areas in Communications, vol. 18, no. 7, pp. 1169-1174, July 2000.
    [30] B. M. Hochwald and W. Sweldens, “Differential unitary space-time modulation,” IEEE Transactions on Communications, vol. 48, no. 12, pp. 2041-2052, Dec. 2000.
    [31] B. L. Hughes, “Differential space-time modulation,” IEEE Transactions on Information Theory, vol. 46, no. 7, pp. 2567-2578, Nov. 2000.
    [32] G. Ganesan and P. Stoica, “Differential modulation using space-time block codes,” IEEE Signal Processing Letters, vol. 9, no. 2, pp. 57-60, Feb. 2002.
    [33] B. Hassibi and B. M. Hochwald, “Cayley differential unitary space-time codes,” IEEE Transactions onInformation Theory, vol. 48, no. 6, pp. 1485-1503, June 2002.
    [34] C. Yuen, Y. L. Guan, and T. T. Tjhung, “Differential transmit diversity based on quasi-orthogonal space-time block code,” IEEE Global Telecommunication Conference, 2004, pp. 545-549.
    [35] Y. Zhu and H. Jafarkhani, “Differential modulation based on quasi-orthogonal codes,” IEEE Wireless Communications and Network Conference, 2004, pp. 531-535.
    [36] F. Adachi and M. Sawahashi, “Decision feedback differential detection of differentially encoded 16APSK signals,” IEEE Transactions on Communications, vol. 44, no. 4, pp. 416-418, Apr. 1996.
    [37] R. Schober, W. H. Gerstacher, and J. B. Huber, “Decision-feedback differential detection of MDPSK for flat Rayleigh fading channels,” IEEE Transactions on Communications, vol. 47, no. 7, pp. 1025-1035, July 1999.
    [38] C. Ling, K. H. Li, and A. C. Kot, “Noncoherent sequence detection of differential space-time modulation,” IEEE Transactions on Information Theory, vol. 49, no. 10, pp. 2727-2734, Oct. 2003.
    [39] R. Schober and L. H.-J. Lampe, “Noncoherent receivers for differential space-time modulation,” IEEE Transactions on Communications, vol. 50, no. 5, pp. 768-777, May 2002.
    [40] H. Sari, G. Karam, and I. Jeanclaude, “Transmission techniques for digital terrestrial TV broadcasting,” IEEE Communications Magazine, vol. 33, no. 2, pp. 100-109, Feb. 1995.
    [41] D. Falconer, S. L. Ariyavistakul, A. Benyamin-Seeyar, and B. Eidson, “Frequency domain equalization for single-carrier broadband wireless systems,” IEEE Communications Magazine, vol. 40, no. 4, pp. 58-66, Apr. 2002.
    [42] Z. Wang, X. Ma, and G. B. Giannakis, “OFDM or single-carrier block transmissions,” IEEE Transactions on Communications, vol. 52, no. 3, pp. 380-394, Mar. 2004.
    [43] N. Al-Dhahir, “Single-carrier frequency-domain equalization for space-time block-coded transmissions over frequency-selective fading channels,” IEEE Communications Letters, vol. 5, no. 7, pp. 304-306, July 2001.
    [44] S. Zhou and G. B. Giannakis, “Single-carrier space-time block-coded transmissions over frequency-selective fading channels,” IEEE Transactions on Information Theory, vol. 49, no. 1, pp. 164-179, Jan. 2003.
    [45] M. V. Clark, “Adaptive frequency-domain equalization and diversity combining for broadband wireless communications,” IEEE Journal on Selected Areas in Communications, vol. 16, no. 8, pp. 1385-1395, Oct. 1998.
    [46] W. M. Younis, A. H. Sayed, and N. Al-Dhahir, “Adaptive frequency-domain joint equalization and interference cancellation for multi-user space-time block coded systems,” IEEE International Conference on Communications, 2003.
    [47] Q. H. Spencer, C. B. Peel, A. L. Swindlehurst, and M. Haardt, “An introduction to the multiuser MIMO downlink,” IEEE Communication Magazine, pp. 60-67, Oct. 2004.
    [48] Q. H. Spencer, A. L. Swindlehurst, and M. Haardt, “Zero-forcing methods for downlink spatial multiplexing in multiuser MIMO channels,” IEEE Transactions on Signal Processing, vol. 52, no. 2, pp. 461-471, Feb. 2004.
    [49] J. Zhang, Y. Wu, S. Zhou, and J. Wang, “Joint linear transmitter and receiver design for the downlink of multiuser MIMO systems,” IEEE Communications Letters, vol. 9, no. 11, pp. 901-903, Nov. 2005.
    [50] J. Zhang, Y. Wu, M. Xu, and J. Wang, “Linear transmitter precoding design for downlink of multiuser MIMO systems,” IEE Electronics Letters, vol. 41, no. 14, July 2005.
    [51] Z. Liu, Y. Xin, and G. B. Giannakis, “Space-time-frequency block coded OFDM with subcarrier grouping and constellation precoding,” in Proceedings of the International Conference on Acoustics, Speech, and Signal Processing, 2002, pp. 2205-2208.
    [52] H. E. Gamal, A. R. Hammons, Y. Liu, M. P. Fitz, O. Y. Takeshita, “On the design of space-time and space-frequency codes for MIMO frequency-selective fading channel,” IEEE Transactions on Information Theory, vol. 49, no. 9, pp. 2277-2292, Sept. 2003.
    [53] H. Bolcskei and A. J. Paulraj, “Space-frequency codes for broadband fading channels,” in Proceedings of International Symposium on Information Theory, 2001, p. 219.
    [54] L. Shao and S. Roy, “Rate-one space-frequency block codes with maximum diversity for MIMO-OFDM,” IEEE Transactions on Wireless Communications, vol. 4, no. 4, pp. 1674-1687, July 2005.
    [55] W. Zou and Y. Wu, “COFDM: An overview,” IEEE Transactions on Broadcasting, vol. 41, no.1, pp. 1-8, Mar. 1995.
    [56] Z. Liu, Y. Xin, and G. B. Giannakis, “Linear constellation precoding for OFDM with maximum multipath diversity and coding gains,” Asilomar Conference on Signals, Systems, and Computers, 2001, pp.1445-1449.
    [57] X.-G. Xia, “Differentially en/decoded orthogonal space-time block codes with APSK signals,” IEEE Communications Letters, vol. 6, no. 4, pp. 150-152, Apr. 2002.
    [58] C.-S. Hwang, S. H. Nam, J. Chung, and V. Tarokh, “Differential space time block codes using nonconstant modulus constellations,” IEEE Transactions on Signal Processing, vol. 51, no. 11, pp. 2955-2964, Nov. 2003.
    [59] R. T. Derryberry, S. D. Gray, D. M. Ionescu, G. Mandyam, and B. Raghothaman, “Transmit diversity in 3G CDMA systems,” IEEE Communications Magazine, pp. 68-75, Apr. 2002.
    [60] W. C. Jakes, Microwave Mobile Communications, IEEE Press, New York, 1994.
    [61] Y. R. Zheng and C. Xiao, “Simulation models with correct statistical properties for Rayleigh fading channels,” IEEE Transactions on Communications, vol. 51, no. 6, pp. 920-928, June 2003.
    [62] D.-S. Shiu, G. J. Foschini, M. J. Gans, and J. M. Kahn, “Fading correlation and its effect on the capacity of multielement antenna systems,” IEEE Transactions on Communications, vol. 48, no. 3, pp. 502-513, Mar. 2000.
    [63] H. Bolcskei and A. J. Paulraj, “Performance of space-time codes in the presence of spatial fading correlation,” Asilomar Conf. on Signals, Systems, and Computers, Pacific Grove (CA), Oct./Nov. 2000, Vol. 1, pp. 687-693.
    [64] A. Scaglione, P. Stoica, S. Barbarossa, G. B. Giannakis, and H. Sampath, “Optimal designs for space-time linear precoders and decoders,” IEEE Transactions on Signal Processing, vol. 50, no. 5, pp.1051-1064, May 2002.
    [65] M. T. Ivrlac, T. P. Kurpjuhn, C. Brunner, and W. Utschick, “Efficient use of fading correlations in MIMO channels,” Vehicular Technology Conference, pp. 2763-2767, 2001.
    [66] O. Simeone and U. Spagnolini, “Combined linear pre-equalization and BLAST equalization with channel correlation feedback,” IEEE Communications Letters, vol. 7, no. 10, pp. 487-489, Oct. 2003.
    [67] H. Sampath and A. Paulraj, “Linear precoding for space-time coded systems with known fading correlations,” IEEE Communications Letters, vol. 6, no. 6, pp. 239-241, June 2001.
    [68] S. Zhou and G. B. Giannakis, “Optimal transmitter eigen-beamforming and space-time block coding based on channel correlations,” IEEE Transactions on Information Theory, vol. 49, no. 7, pp. 1673-1690, July 2003.
    [69] P. Ho and D. Fung, “Error performance of multiple-symbol differential detection of PSK signals transmitted over correlated Rayleigh fading channels,” IEEE Transactions on Communications, vol. 40, no. 10, pp. 25-29, Oct. 1992.
    [70] G. Colavolpe and R. Raheli, “Noncoherent sequence detection,” IEEE Transactions on Communications, vol. 47, no. 9, pp. 1376-1385, Sept. 1999.
    [71] E. Chiavaccini and G. M. Vitetta, “Further results on differential space-time modulations,” IEEE Transactions on Communications, vol. 51, no. 7, pp. 1093-1101, July 2003.
    [72] A. Song and X.-G. Xia, “Decision feedback differential detection for differential orthogonal space-time modulation with APSK signals over flat-fading channels,” IEEE Transactions on Wireless Communications, vol. 3, no. 6, pp. 1873-1878, Nov. 2004.
    [73] X. Ma and G. B. Giannakis, “Block differential encoding for rapidly fading channels,” IEEE Transactions on Communications, vol. 52, no. 3, pp. 416-425.
    [74] G. B. Giannakis and C. Tepedelenlioglu, “Basis expansion models and diversity techniques for blind identification and equalization of time-varying channels,” Proceedings of the IEEE, vol. 86, no. 10, pp. 1969-1986, Oct. 1998.
    [75] M. Bengtsson, “A pragmatic approach to multi-user spatial multiplexing,” in Proceedings of IEEE Sensor Array and Multichannel Signal Processing Workshop, 2002, pp. 130-134.
    [76] J. H .Chang, L. Tassiulas, and F. Rashid-Farrokhi, “Joint transmitter receiver diversity for efficient space division multi-access,” IEEE Transactions on Wireless Communications, vol. 1, no. 1, pp. 16-27, Jan. 2002.
    [77] M. Costa, “Writing on dirty paper,” IEEE Transactions on Information Theory, vol. 29, no. 5, pp. 439-451, May 1983.
    [78] P. Viswanath and D. Tse, “Sum capacity of the vector Gaussian broadcast channel and downlink-uplink duality,” IEEE Transactions on Information Theory, vol. 49, no. 8, pp. 1912-1921, Aug. 2003.
    [79] S. Vishwanath, N. Jindal, and A. Goldsmith, “Duality, achievable rates and sum rate capacity of Gaussian MIMO broadcast channel,” IEEE Transactions on Information Theory, vol. 49, no. 10, pp. 2658-2668, Oct. 2003.
    [80] J. Ham, K. Kim, S. Shim, C. Lee, and J. Chung, “A new multiuser diversity scheme exploiting detection order for AM-OSIC system,” in Proceedings of Vehicular Technology Conference, Spring 2005.
    [81] D. A. Gore, R. U. Nabar, and A. Paulraj, “Selecting an optimal set of transmit antennas for a low rank matrix channel,” IEEE International Conference on Acoustics, Speech, and Signal Processing, June 2000, pp. 2785-2788.
    [82] A. Gorokhov, “Antenna selection algorithms for MEA transmission systems,” IEEE International Conference on Acoustics, Speech, and Signal Processing, May 2002, pp. 2857-2860.
    [83] M. Gharavi-Alkhansari and A. B. Gershman, “Fast antenna subset selection in MIMO systems,” IEEE Transactions on Signal Processing, vol. 52, no. 2, pp. 339-346, Feb. 2004.
    [84] D. A. Gore and A. Paulraj, “MIMO antenna subset selection with space-time coding,” IEEE Transactions on Signal Processing, vol. 50, no. 10,pp. 2580-2588, Oct. 2002.
    [85] D. Gesbert, M. Shafi, D.-S. Shiu, P. J. Smith, and A. Naguib, “From theory to practice: an overview of MIMO space-time coded wireless systems,” IEEE Journal on Selected Areas in Communications, vol. 21, no. 3, pp. 281-302, Apr. 2003.
    [86] J. K. Cavers, “An analysis of pilot symbol assisted modulation for Rayleigh fading channels,” IEEE Transactions on Vehicular Technology, vol. 40, no. 4, pp. 686-693, July 1991.
    [87] W. Choi and J. M. Cioffi, “Space-time block codes over frequency selective Rayleigh fading channels,” in Proceedings of Vehicular Technology Conference, Amsterdam, Netherlands, 1999, pp. 2541–2545.
    [88] A. Lozano and C. Papadias, “Layered space-time receivers for frequency-selective fading wireless channels,” IEEE Transactions on Communications, vol. 50, no. 1, pp. 65-73, Jan. 2002.
    [89] Z. Wang and G. B. Giannakis, “Wireless multicarrier communications: where Fourier meets Shannon,” IEEE Signal Processing Magazine, vol. 47, no. 5, pp. 29-48, May 2000.
    [90] K. F. Lee and D. B. Williams, “A space-time coded transmitter diversity technique for frequency selective fading channels,” in Proceedings of the IEEE Sensor Array and Multichannel processing workshop, 2000, pp. 149-152.
    [91] D. Agarwal, V. Tarokh, A. Naguib, and N. Seshadri, “Space-time coded OFDM for high data rate wireless communication over wideband channels,” in Proceedings of Vehicular Technology Conference, 1998, pp. 2232-2236.
    [92] G. J. Foschini, and Z. Miljanic, “A simple distributed autonomous power control algorithm and its convergence,” IEEE Transactions on Vehicular Technology, vol. 42, no. 4, pp. 641-646, Nov. 1993.
    [93] F. Rashid-Farrokhi, L. Tassiulas, and K. J. R. Liu, “Joint optimal power control and beamforming in wireless networks using antenna arrays,” IEEE Transactions on Communications, vol. 46, no. 10, pp. 1313-1324, Oct. 1998.
    [94] F. Rashid-Farrokhi, K. J. R. Liu, L. Tassiulas, “Transmit beamforming and power control for cellular wireless systems,” IEEE Journal on Selected Areas in Communications, vol. 16, No. 8, pp. 1437-1450, Oct. 1998.
    [95] M. Schubert and H. Boche, “Solution of the multiuser downlink beamforming problem with individual SINR constraints,” IEEE Transactions on Vehicular Technology, vol. 53, no. 1, pp. 18-28, Jan. 2004.
    [96] E. Visotsky and U. Madhow, “Optimum beamforming using transmit antenna arrays,” in Proceedings of IEEE Vehicular Technology Conference, vol. 1, 1999, pp. 851-856.
    [97] R. Knopp and P. Humblet, “Information capacity and power control in single cell multiuser communications,” in Proceedings of International Conference on Communications, Seattle, June 1995, pp. 331-335.
    [98] D. N. C. Tse, “Optimal power allocation over parallel Gaussian channels,” in Proceedings of International Symposium on Information Theory, Ulm, Germany, June 1997, p. 27.
    [99] P. Viswanath, D. N. C. Tse, and R. Laroia, “Opportunistic beamforming using dumb antennas,” IEEE Transactions on Information Theory, vol. 48, no. 6, pp. 1277-1294, June 2002.
    [100] P. Bender, P. Black, M. Grob, R. Padovani, N. Sindhushayana, and A. Viterbi, “CDMA/HDR: a bandwidth-efficient high-speed wireless data service for nomadic users,” IEEE Communications Magazine, pp. 70-77, vol. 38, no. 7, pp. 70-77, July 2000.
    [101] A. Jalali, R. Padovani, and R. Pankaj, “Data throughput of CDMA-HDR: A high efficiency, high data rate personal wireless system,” in Proceedings of IEEE Vehicular Technology Conference, May 2000, pp. 1854-1858.
    [102] F. Berggren and R. Jantti, “Asymptotically fair transmission scheduling over fading channels,” IEEE Transactions on Wireless Communications, vol. 3, no. 1, pp. 326-336, Jan. 2004.
    [103] G. Dimic and N. D. Sidiropoulos, “On downlink beamforming with greedy user selection: performance analysis and a simple new algorithm,” IEEE Transactions on Signal Processing, vol. 53, no. 10, pp. 3857-3868.
    [104] Z. Tu and R. S. Blum, “Multiuser diversity for a dirty paper approach,” IEEE Communications Letters, vol. 7, no. 8, pp. 370-372, Aug. 2003.
    [105] J. Jiang, R. M. Buehrer, and W. H . Tranter, “Antenna diversity in multiuser data networks,” IEEE Transactions on Communications, vol. 52, no. 3, pp. 490-497, Mar. 2004.
    [106] R. Gozali, R. M. Buehrer, and B. D. Woerner, “The impact of multiuser diversity on space-time block coding,” IEEE Communications Letters, vol. 7, no. 5, pp. 213-215, May 2003.
    [107] R. W. Heath, M. Airy, and A. J. Paulraj, “Multiuser diversity for MIMO wireless systems with linear receivers,” in Proceedings of Asilomar Conference on Signals, Systems, and Computers, 2001, pp. 1194-1198.
    [108] M. Airy, R. W. Heath, and S. Shakkottai, “Multi-user diversity for the multiple antenna broadcast channel with linear receivers: asymptotic analysis,” in Proceedings of Asilomar Conference on Signals, Systems, and Computers, 2004, pp. 886-890.
    [109] J. Chung, C.-S. Hwang, K. Kim, and Y. K. Kim, “A random beamforming technique in MIMO systems exploiting multiuser diversity,” IEEE Journal on Selected Areas in Communications, vol. 21, no. 5, pp. 848-855, June 2003.
    [110] M. Sharif and B. Hassibi, “On the capacity of MIMO broadcast channels with partial sideinformation,” IEEE Transactions on Information Theory, vol. 51, no. 2, pp. 506-522, Feb. 2005.
    [111] T. Yoo and A. Goldsmith, “Optimality of zero-forcing beamforming with multiuser diversity,” in Proceedings of IEEE International Conference on Communications, 2005, pp. 542-546.
    [112] A. J. Goldsmith and S. Chua, “Variable-rate variable-power MQAM for fading channels,” IEEE Transactions on Communications, vol. 45, no. 10, pp. 1218-1230, Oct. 1997.
    [113] D. Gore, R. W. Heath, A. J. Paulraj, “On performance of the zero forcing receiver in the presence of transmit correlation,” in Proceedings of IEEE International Symposium on Information Theory, Lausanne, Switzerland, 2002, p.159.
    [114] O.-S. Shin and K. B. Lee, “Antenna-assisted round robin scheduling for MIMO cellular systems,” IEEE Communications Letters, vol. 7, no. 3, pp. 109-111, Mar. 2003.
    [115] H. Lee, M. Shin, and C. Lee, “An eigen-based MIMO multiuser scheduler with partial feedback information,” IEEE Communications Letters, vol. 9, no. 4, pp. 328-330, Apr. 2005.
    [116] J. G. Proakis, Digital Communications (Fourth Edition), McGraw-Hill, 2001.
    [117] X. Cai and G. B. Giannakis, “Differential space-time modulation with eigen-beamforming for correlated MIMO fading channels,” IEEE Transactions on Signal Processing, vol. 54, no. 4, pp. 1279-1288, Apr. 2006.
    [118] N. Al-Dhahir and J. M. Cioffi, “MMSE decision-feedback equalizers: finite-length results,” IEEE Transactions on Information Theory, vol. 41, no. 4, pp. 961-975, July 1995.
    [119] N. Al-Dhahir and A. H. Sayed, “The finite-length multi-input multi-output MMSE-DFE,” IEEE Transactions on Signal Processing, vol. 48, no. 10, pp. 2921-2936, Oct. 2000.
    [120] S. Qureshi, “Adaptive equalization,” Proceedings of IEEE, vol. 73, no. 9, pp. 1349-1387, Sept. 1985.
    [121] C. Komninakis, C. Fragouli, A. H. Sayed, and R. D. Wesel, “Multi-input multi-output fading channel tracking and equalization using Kalman estimation,” IEEE Transactions on Signal Processing, vol. 50, no. 5, pp. 1065-1075, May 2002.
    [122] M. Russell and G. L. Stuber, “Interchannel interference analysis of OFDM in a mobile environment,” in Proceedings of Vehicular Technology Conference, vol. 2, 1995, pp. 820-824.
    [123] T. Pollet, M. V. Bladel, and M. Moeneclaey, “BER sensitivity of OFDM systems to carrier frequency offset and Wiener phase noise,” IEEE Transactions on Communications, vol. 43, no. 2/3/4, pp. 1252-1255, 1995.
    [124] L. J. Cimini and N. R. Sollenberger, “Peak-to-average power ratio reduction of an OFDM signal using partial transmit sequences,” IEEE Communications Letters, vol. 4, no. 3, pp. 86-88, Mar. 2000.
    [125] Y. Xin, Z. Wang, and G. B. Giannakis, “Space-time diversity systems based on linear constellation precoding,” IEEE Transactions on Wireless Communications, vol. 2, no. 3, pp. 294-309, Mar 2003.
    [126] M. K. Varanasi and T. Guess, “Optimum decision feedback multiuser equalization with successive decoding achieves the total capacity of the Gaussian multiple-access channel,” in Proceedings of Asilomar Conference on Signals, Systems, and Computers, 1998, pp. 1405-1409.
    [127] A. F. Naguib, N. Seshadri, and A. R. Calderbank, “Applications of space-time block codes and interference suppression for high capacity and high data rate wireless systems,” in Proceedings ofAsilomar Conference on Signals, Systems, and Computers, 1998, pp. 1803-1810.
    [128] W. M. Younis and A. H. Sayed, “Interference suppression of asynchronous multi-user space-time block coded transmissions,” in Proceedings of International Conference of Acoustics, Speech, and Signal Processing, 2004, pp. 789-792.
    [129] R. Kalbasi, R. Dinis, D. Falconer, and A. Banihashemi, “An iterative frequency-domain layered space-time receiver for SDMA systems with single-carrier transmission,” in Proceedings of International Conference of Acoustics, Speech, and Signal Processing, 2004, pp. 793-796.
    [130] C. Windpassinger, R. F. H. Fischer, T. Vencel, and J. B. Huber, “Precoding in multiantenna and multiuser communications,” IEEE Transactions on Wireless Communications, vol. 3, no. 4, pp. 1305-1316, July 2004.
    [131] C. Chuah, D. Tse, J. Kahn, and R. Valenzuela, “Capacity scaling in MIMO wireless systems under correlated fading,” IEEE Transactions on Information Theory, vol. 48, no. 3, pp. 637-650, Mar. 2002.
    [132] A. Paulraj, R. Nabar, and D. Gore, Introduction to Space-Time Wireless Communications, Cambridge, 2005.
    [133] J. C. Roh and B. D. Rao, “Multiple antenna channels with partial channel state information at the transmitter,” IEEE Transactions on Wireless Communications, vol. 3, no. 2, pp. 677-688, Mar. 2004.
    [134] T. Marzetta and B. Hochwald, “Capacity of mobile multiple-antenna communication link in a Rayleigh flat-fading environment,” IEEE Transactions on Information Theory, vol. 45, pp. 139-157, Jan. 1999.
    [135] L. Zheng and D. N. C. Tse, “Communication on the Grassmann manifold: A geometric approach to the noncoherent multiple-antenna channel,” IEEE Transactions on Information Theory, vol. 48, no. 2, pp. 359-383, Feb. 2002.
    [136] L. Zheng and D. N. C. Tse, “Diversity and multiplexing: A fundamental tradeoff in multiple-antenna channels,” IEEE Transactions on Information Theory, vol. 49, no. 5, pp. 1073-1096, May 2003.
    [137] J. C. Roh and B. D. Rao, “Multiple antenna channels with partial channel state information at the transmitter,” IEEE Transactions on Wireless Communications, vol. 3, no. 2, pp. 677-688, Mar. 2004
    [138] H. E. Gamal, G. Caire, M. O. Damen, “Lattice coding and decoding achieve the optimal diversity-multiplexing tradeoff of MIMO channels,” IEEE Transactions on Information Theory, vol. 50, no. 6, pp. 968-985, June 2004.
    [139] D. Tse, P. Viswanath, and L. Zheng, “Diversity-multiplexing tradeoff for multi-access channels,” in Proceedings of International Symposium on Information Theory, 2003, p. 352.
    [140] X. Ma and G. B. Giannakis, “Maximum diversity transmissions over doubly-selective wireless channels,” IEEE Transactions on Information Theory, vol. 49, no. 7, pp. 1832-1840, Jul. 2003.
    [141] D. Gore, S. Sandhu, and A. Paulraj, “Delay diversity codes for frequency selective channel,” in Proceedings of International Conference on Communications, 2002, pp. 1949-1953.
    [142] X. Ma, G. Leus, and G. B. Giannakis, “Space-time-Doppler block coding for correlated time-selective fading channels,” IEEE Transactions on Signal Processing, vol. 53, no. 6, pp. 2167-2181, Jun. 2005.
    [143] X. Li, H. Huang, G.. J. Foschini, and R. A. Valenzuela, “Effects of iterative detection and decoding onthe performance of BLAST,” in Proceedings of Global Telecommunications Conference, 2000, pp. 1061-1066.
    [144] A. Wittneben, “Base station modulation diversity for digital SIMULCAST,” in Proceedings of Vehicular Technology Conference, 1991, pp. 848-853.
    [145] X. Zhuang, F. W. Vook, S. Rouquette-Leveil, and K. Gosse, “Transmit diversity and spatial multiplexing in four-transmit-antenna OFDM,” in Proceedings of IEEE International Conference on Communications, 2003, pp. 2316-2320.
    [146] Y. Xin and G. B. Giannakis, “High-rate space-time layered OFDM,” IEEE Communications Letters, vol. 6, no. 5, pp. 187-189, May 2002.
    [147] X. Ma and G. B. Giannakis, “Full-diversity full-rate complex-field space-time coding,” IEEE Transactions on Signal Processing, vol. 51, no. 11, pp. 2917-2930, Nov. 2003.
    [148] B. Suard, G. Xu, and T. Kailath, “Uplink channel capacity of space-d-ivision-multiple-access schemes,” IEEE Transactions on Information Theory, vol, no., pp. 1468-1476, July 1998.
    [149] W. Yu, W. Rhee, and J. Cioffi, “Optimal power control in multiple access fading channels with multiple antennas,” in Proceedings of IEEE International Conference on Communications, 2001, pp. 575-579.
    [150] G. Ginis and J. Cioffi, “A multi-user precoding scheme achieving crosstalk cancellation with application to DSL systems”, in Proceedings of Asilomar Conference on Signals, Systems, and Computers, 2000, pp. 1627-1631.
    [151] W. Yu and J. Cioffi, “Trellis precoding for the broadcast channel,” in Proceedings of Global Telecommunication Conference, 2001, pp. 156-160.
    [152] M. Sharif and B. Hassibi, “Scaling laws of sum rate using time-sharing, DPC, and beamforming for MIMO broadcast channels,” in Proceedings of International Symposium on Information Theory, 2004, p. 175.
    [153] T. Lo, “Maximal ratio transmission,” IEEE Transactions on Communications, vol. 47, no. 10, pp. 1458-1461, Oct. 1999.
    [154] D. J. Love and R. W. Heath, “Limited feedback unitary precoding for orthogonal space-time block codes, ” IEEE Transactions on Signal Processing, vol. 53, no. 1, pp. 64-73, Jan. 2005.
    [155] D. J. Love and R. W. Heath, “Limited feedback unitary precoding for spatial multiplexing systems, ” IEEE Transactions on Information Theory, vol. 51, no. 8, pp. 2967-2976, Aug. 2005.
    [156] D. J. Love, R. W. Heath Jr., W. Santipach, and M. L. Honig, “What is the value of limited feedback for MIMO channels?,” IEEE Communications Magazine, pp. 54-59, Oct. 2004.
    [157] Y. Chen and C. Tellambura, “Performance analysis of maximum ratio transmission with imperfect channel estimation,” IEEE Communications Letters, vol. 9, no.4, pp. 322-324, Apr. 2005.